Frequent Itemset Mining & Association Rules

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- A large set of *items*
 - e.g., things sold in a supermarket
- A large set of *baskets*
- Each basket is a small subset of *items*
 - e.g., the things one customer buys on one day

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Given a set of baskets
Want to discover association rules
- People who bought \{x, y, z\} tend to buy \{v, w\}
 - Amazon!

2 step approach:
- 1) Find frequent itemsets
- 2) Generate association rules

Input:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:
- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store
- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no $$’s
- **Amazon’s people who bought X also bought Y**
Applications – (2)

- **Baskets** = sentences; **Items** = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
Outline

First: Define
- Frequent itemsets
- Association rules:
 - Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
- Finding frequent pairs
- A-Priori algorithm
- PCY algorithm + 2 refinements
Frequent Itemsets

- **Simplest question:** Find sets of items that appear together “frequently” in baskets
- **Support** for itemset I: Number of baskets containing all items in I
 - Often expressed as a fraction of the total number of baskets
- Given a **support threshold** s, then sets of items that appear in at least s baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Support threshold** = 3 baskets

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Frequent itemsets:** \{m\}, \{c\}, \{b\}, \{j\}, \{m,b\}, \{b,c\}, \{c,j\}.
Association Rules:

- If-then rules about the contents of baskets
- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \)”
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of this association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Not all high-confidence rules are interesting

- The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high.

Interest of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j

$$\text{Interest}(I \rightarrow j) = \text{conf}(I \rightarrow j) - \Pr[j]$$

- Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\}\] \[B_2 = \{m, p, j\}\]
\[B_3 = \{m, b\}\] \[B_4 = \{c, j\}\]
\[B_5 = \{m, p, b\}\] \[B_6 = \{m, c, b, j\}\]
\[B_7 = \{c, b, j\}\] \[B_8 = \{b, c\}\]

- **Association rule:** \(\{m, b\} \rightarrow c\)
 - **Confidence** = \(\frac{2}{4} = 0.5\)
 - **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8}\)
 - Item \(c\) appears in \(\frac{5}{8}\) of the baskets
 - Rule is not very interesting!
Problem: Find all association rules with support $\geq s$ and confidence $\geq c$

- Note: Support of an association rule is the support of the set of items on the left side

Hard part: Finding the frequent itemsets!

- If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$
Step 1: Find all frequent itemsets \(I \)
 - (we will explain this next)
Step 2: Rule generation
 - For every subset \(A \) of \(I \), generate a rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - \(\text{confidence}(A,B \rightarrow C,D) = \frac{\text{support}(A,B,C,D)}{\text{support}(A,B)} \)
 - **Variant 2:**
 - **Observation:** If \(A,B,C \rightarrow D \) is below confidence, so is \(A,B \rightarrow C,D \)
 - Can generate “bigger” rules from smaller ones!

Output the rules above the confidence threshold
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Support threshold** \(s = 3 \), **confidence** \(c = 0.75 \)

1) Frequent itemsets:
 - \(\{b, m\} \quad \{b, c\} \quad \{c, m\} \quad \{c, j\} \quad \{m, c, b\} \)

2) Generate rules:
 - \(b \rightarrow m: c = 4/6 \quad b \rightarrow c: c = 5/6 \quad b, c \rightarrow m: c = 3/5 \)
 - \(m \rightarrow b: c = 4/5 \quad ... \quad b, m \rightarrow c: c = 3/4 \)
 - \(b \rightarrow c, m: c = 3/6 \)
To reduce the number of rules we can post-process them and only output:

- **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning

or

- **Closed itemsets:**
 No immediate superset has the same count (> 0)
 - Stores not only frequent information, but exact counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B 5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C 3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB 4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC 2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC 3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC 2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **A** has count 4 and is not maximal, so it is not closed.
- **B** has count 5 and is not maximal, so it is closed.
- **AB** has count 4 and is maximal, so it is closed.
- **BC** has count 3 and is maximal, so it is closed.
- **ABC** has count 2 and is not maximal, so it is not closed.

Frequent, but superset BC also frequent.

Frequent, and its only superset, ABC, not freq.

Superset BC has same count.

Its only superset, ABC, has smaller count.
We are releasing HW1 today

- It is due in 2 weeks
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation session:

- Review of **probability** and **proof techniques**
- Tomorrow 4:15-5:30pm in Gates B03
Finding Frequent Itemsets
Back to finding frequent itemsets

Typically, data is kept in flat files rather than in a database system:

- Stored on disk
- Stored basket-by-basket
- Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.
The true cost of mining disk-resident data is usually the **number of disk I/Os**

- In practice, association-rule algorithms read the data in **passes** – all baskets read in turn

- We measure the cost by the **number of passes** an algorithm makes over the data
For many frequent-itemset algorithms, **main-memory** is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster (**why?**)
The hardest problem often turns out to be finding the frequent **pairs** of items \(\{i_1, i_2\} \)

- **Why?** Freq. pairs are common, freq. triples are rare
 - **Why?** Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

Let’s first concentrate on pairs, then extend to larger sets

The approach:
- We always need to generate all the itemsets
- But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its $\frac{n(n-1)}{2}$ pairs by two nested loops
- Fails if $(#\text{items})^2$ exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5\times10^9$
 - Therefore, 2×10^{10} (20 gigabytes) of memory needed
Two approaches:

- **Approach 1**: Count all pairs using a matrix
- **Approach 2**: Keep a table of triples \([i, j, c]\) = “the count of the pair of items \(\{i, j\}\) is \(c\).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- **Approach 1** only requires 4 bytes per pair
- **Approach 2** uses 12 bytes per pair (but only for pairs with count > 0)
Comparing the 2 Approaches

Triangular Matrix

4 bytes per pair

Triples

12 per occurring pair
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n \) = total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position \((i - 1)(n - i/2) + j - 1 \)
 - Total number of pairs \(n(n - 1)/2 \); total bytes = \(2n^2 \)
 - **Triangular Matrix** requires 4 bytes per pair

- **Approach 2** uses **12 bytes** per occurring pair
 - **(but only for pairs with count > 0)**
 - Beats Approach 1 if less than \(1/3 \) of possible pairs actually occur
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i,j\} \) is at position \((i-1)(n-i)/2 + j - 1 \)
 - Total number of pairs \(n(n-1)/2 \); total bytes = 2\(n^2 \)
 - Triangular Matrix requires 4 bytes per pair

- **Approach 2** uses 12 bytes per pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than \(1/3 \) of possible pairs actually occur

Problem is if we have too many items so the pairs do not fit into memory. Can we do better?
A-Priori Algorithm
A two-pass approach called A-Priori limits the need for main memory.

Key idea: monotonicity

- If a set of items I appears at least s times, so does every subset J of I.

Contrapositive for pairs:
If item i does not appear in s baskets, then no pair including i can appear in s baskets.

So, how does A-Priori find freq. pairs?
A-Priori Algorithm – (2)

- **Pass 1:** Read baskets and count in main memory the occurrences of each *individual item*
 - Requires only memory proportional to #items

- **Items that appear \(\geq s \) times are the frequent items**

- **Pass 2:** Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

- **Pass 1**: Item counts
- **Pass 2**: Frequent items
 - Counts of pairs of frequent items (candidate pairs)

Main memory
You can use the triangular matrix method with $n = \text{number of frequent items}$

- May save space compared with storing triples

Trick: re-number frequent items 1, 2, ... and keep a table relating new numbers to original item numbers

- **Item counts**
- **Frequent items**
- **Old item #s**
- **Counts of pairs of frequent items**

Pass 1

Pass 2
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k =$ candidate k-tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for $k-1$
- $L_k =$ the set of truly frequent k-tuples
Example

Hypothetical steps of the A-Priori algorithm

- \(C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \} \)
- Count the support of itemsets in \(C_1 \)
- Prune non-frequent: \(L_1 = \{b, c, j, m\} \)
- Generate \(C_2 = \{\{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\}\} \)
- Count the support of itemsets in \(C_2 \)
- Prune non-frequent: \(L_2 = \{\{b,m\} \{b,c\} \{c,m\} \{c,j\}\} \)
- Generate \(C_3 = \{\{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\}\} \)
- Count the support of itemsets in \(C_3 \)
- Prune non-frequent: \(L_3 = \{\{b,c,m\}\} \)

** Note here we generate new candidates by generating \(C_k \) from \(L_{k-1} \) and \(L_1 \). But that one can be more careful with candidate generation. For example, in \(C_3 \) we know \(\{b,m,j\} \) cannot be frequent since \(\{m,j\} \) is not frequent.
One pass for each \(k\) (itemset size)

Needs room in main memory to count each candidate \(k\)-tuple

For typical market-basket data and reasonable support (e.g., 1%), \(k = 2\) requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter \(\rightarrow\) FruitJam
 - BakedGoods, MilkProduct \(\rightarrow\) PreservedGoods
- Lower the support \(s\) as itemset gets bigger
PCY (Park-Chen-Yu) Algorithm
Observation:
In pass 1 of A-Priori, most memory is idle
- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a **count** for each bucket into which **pairs** of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!
PCY Algorithm – First Pass

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Few things to note:
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least \(s \) (support) times
Observations about Buckets

- **Observation**: If a bucket contains a frequent pair, then the bucket is surely frequent.
- However, even without any frequent pair, a bucket can still be frequent 😞
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket.
- **But, for a bucket with total count less than s, none of its pairs can be frequent 😊**
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items).

- **Pass 2**: Only count pairs that hash to frequent buckets.
Replace the buckets by a bit-vector:

1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not.

4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory.

Also, decide which items are frequent and list them for the second pass.
PCY Algorithm – Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:
 1. Both \(i \) and \(j \) are frequent items
 2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

- Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

Pass 1
- Hash table for pairs
- Item counts

Pass 2
- Bitmap
- Frequent items
- Counts of candidate pairs

Main memory
Buckets require a few bytes each:

- **Note:** we do not have to count past s
- #buckets is $O(main-memory\ size)$

On second pass, a table of \((item, item, count)\) triples is essential (we cannot use triangular matrix approach, why?)

- Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori
Refinement: Multistage Algorithm

- **Limit the number of candidates to be counted**
 - **Remember:** Memory is the bottleneck
 - Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent

- **Key idea:** After Pass 1 of PCY, rehash only those pairs that **qualify** for Pass 2 of PCY
 - \(i \) and \(j \) are frequent, and
 - \(\{i, j\} \) hashes to a frequent bucket from **Pass 1**

- On middle pass, fewer pairs contribute to buckets, so fewer **false positives**

- Requires 3 passes over the data
Main-Memory: Multistage

- **First hash table**
 - Item counts
 - Bitmap 1

- **Second hash table**
 - Freq. items
 - Bitmap 1
 - Bitmap 2
 - Counts of candidate pairs

Pass 1
- Count items
- Hash pairs \{i,j\}

Pass 2
- Hash pairs \{i,j\} into Hash2 iff:
 - \(i,j\) are frequent,
 - \{i,j\} hashes to freq. bucket in B1

Pass 3
- Count pairs \{i,j\} iff:
 - \(i,j\) are frequent,
 - \{i,j\} hashes to freq. bucket in B1
 - \{i,j\} hashes to freq. bucket in B2
Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:

1. Both \(i \) and \(j \) are frequent items
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1
Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket
Refinement: Multihash

- **Key idea:** Use several independent hash tables on the first pass
- **Risk:** Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes
Main-Memory: Multihash

Pass 1

Main memory

First hash table

Second hash table

Item counts

Counts of candidate pairs

Pass 2

Freq. items

Bitmap 1

Bitmap 2
Either **multistage** or **multihash** can use more than two hash functions

In **multistage**, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory

For **multihash**, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$