Large Scale
Support Vector Machines

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Perceptron

- **Perceptron**: \(y' = \text{sign}(w \cdot x) \)
- **How to find parameters** \(w \)?
 - Start with \(w_0 = 0 \)
 - Pick training examples \(x_t \) **one by one**
 - Predict class of \(x_t \) using current \(w_t \)
 - \(y' = \text{sign}(w_t \cdot x_t) \)
 - If \(y' \) is correct (i.e., \(y_t = y' \))
 - No change: \(w_{t+1} = w_t \)
 - If \(y' \) is wrong: Adjust \(w_t \)
 \[
 w_{t+1} = w_t + \eta \cdot y_t \cdot x_t
 \]
 - \(\eta \) is the learning rate parameter
 - \(x_t \) is the t-th training example
 - \(y_t \) is true t-th class label (\{+1, -1\})
Issues with Perceptrons

- **Overfitting:**

- **Regularization:** If the data is not separable weights dance around

- **Mediocre generalization:**
 - Finds a “barely” separating solution
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:

- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 \[
 w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}
 \]

Which is best linear separator (defined by \(w\))?
Distance from the separating hyperplane corresponds to the “confidence” of prediction

Example:
- We are more sure about the class of A and B than of C
Margin: Distance of closest example from the decision line/hyperplane.

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- **Remember: Dot product**

$$A \cdot B = \|A\| \|B\| \cos \theta$$

![Diagram showing dot product and cosine of angle between vectors A and B]
Distance from a point to a line

Let:

- **Line L**: \(\mathbf{w} \cdot \mathbf{x} + b = 0 \)
- **\(\mathbf{w} \)** = \((w^{(1)}, w^{(2)}) \)
- **Point A** = \((x_A^{(1)}, x_A^{(2)}) \)
- **Point M** on a line = \((x_M^{(1)}, x_M^{(2)}) \)

\[
d(A, L) = |AH| = |(A-M) \cdot \mathbf{w}| = |(x_A^{(1)} - x_M^{(1)}) w^{(1)} + (x_A^{(2)} - x_M^{(2)}) w^{(2)}| = x_A^{(1)} w^{(1)} + x_A^{(2)} w^{(2)} + b = \mathbf{w} \cdot \mathbf{A} + b
\]

Remember \(x_M^{(1)} w^{(1)} + x_M^{(2)} w^{(2)} = -b \) since \(M \) belongs to line \(L \)
Prediction = \text{sign}(w \cdot x + b)

“Confidence” = (w \cdot x + b) y

For i-th datapoint:
\[\gamma_i = (w \cdot x_i + b) y_i \]

Want to solve:
\[
\max_{w} \min_{i} \gamma_i
\]

Can rewrite as
\[
\max_{w, \gamma} \gamma
\]

s.t. \(\forall i, y_i (w \cdot x_i + b) \geq \gamma \)
Maximize the margin:

- Good according to intuition, theory (VC dimension) & practice

\[
\max_{w, \gamma} \gamma \\
\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]

- \(\gamma \) is margin ... distance from the separating hyperplane

Maximizing the margin
Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - If no degeneracies, \(d+1 \) support vectors (for \(d \) dim. data)
Problem:

Let \((w \cdot x + b) y = \gamma\)
then \((2w \cdot x + b) y = 2\gamma\)

Scaling \(w\) increases margin!

Solution:

Work with normalized \(w\):

\[
\gamma = \left(\frac{w}{\|w\|} \cdot x + b\right) y
\]

Let’s also require support vectors \(x_j\)
to be on the plane defined by:

\[
w \cdot x_j + b = \pm 1
\]
Want to maximize margin γ!

What is the relation between x_1 and x_2?

- $x_1 = x_2 + 2\gamma \frac{w}{||w||}$

We also know:

- $w \cdot x_1 + b = +1$
- $w \cdot x_2 + b = -1$

So:

- $w \cdot x_1 + b = +1$
- $w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1$
- $w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1$

$\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||}$

Note: $w \cdot w = ||w||^2$
Maximizing the Margin

- We started with
 \[
 \max_{w, \gamma} \gamma \quad \text{s.t.} \forall i, y_i(w \cdot x_i + b) \geq \gamma
 \]
 But \(w \) can be arbitrarily large!

- We normalized and...
 \[
 \max \gamma \approx \max \frac{1}{\|w\|} \approx \min \|w\| \approx \min \frac{1}{2} \|w\|^2
 \]

- Then:
 \[
 \min_w \frac{1}{2} \|w\|^2 \quad \text{s.t.} \forall i, y_i(w \cdot x_i + b) \geq 1
 \]

This is called SVM with “hard” constraints
If data is **not separable** introduce **penalty**:

\[\min_w \frac{1}{2} \|w\|^2 + C \quad (# \text{number of mistakes}) \]

\[s.t. \forall i, y_i(w \cdot x_i + b) \geq 1 \]

- Minimize \(\|w\|^2 \) plus the number of training mistakes
- Set \(C \) using cross validation

How to penalize mistakes?

- All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** ξ_i

\[
\min_{w, b, \xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

s.t. $\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- If point x_i is on the wrong side of the margin then get penalty ξ_i

For each datapoint:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Slack Penalty C

$$\min_w \frac{1}{2}\|w\|^2 + C \quad (# \text{number of mistakes})$$

$s.t. \forall i, y_i(w \cdot x_i + b) \geq 1$

- **What is the role of slack penalty C:**
 - **$C=\infty$:** Only want to w, b that separate the data
 - **$C=0$:** Can set ξ_i to anything, then $w=0$ (basically ignores the data)
Support Vector Machines

- SVM in the “natural” form

\[
\arg \min_{w,b} \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (w \cdot x_i + b) \right\}
\]

Margin

Empirical loss \(L \) (how well we fit training data)

- SVM uses “Hinge Loss”:

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

subject to \(\forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i \)

Penalty

0/1 loss

Hinge loss: \(\max\{0, 1-z\} \)
Announcement: HW2 is graded. We sorted it alphabetically into several piles. Please don’t mess the piles.

SVM: How to estimate w, b?
SVM: How to estimate w?

\[
\min_{w,b} \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i
\]

\[
s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i
\]

- **Want to estimate w and b!**
 - **Standard way:** Use a solver!
 - **Solver:** software for finding solutions to “common” optimization problems
 - **Use a quadratic solver:**
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem:** Solvers are inefficient for big data!
Want to estimate w, b!

Alternative approach:

- Want to minimize $f(w, b)$:

$$f(w, b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

- How to minimize convex functions $f(z)$?
- Use gradient descent: $\min_{z} f(z)$
- Iterate: $z_{t+1} \leftarrow z_t - \eta f'(z_t)$

$$\min_{w,b} \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i$$

$s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i$
SVM: How to estimate w?

- **Want to minimize** $f(w,b)$:

$$f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

- **Compute the gradient** $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla(j) = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if} \quad y_i (w \cdot x_i + b) \geq 1$$

$$= -y_i x_i^{(j)} \quad \text{else}$$
Gradient descent:

Iterate until convergence:
• For $j = 1 \ldots d$
 • Evaluate: $\nabla(j) = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^j + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 • Update: $w^{(j)} \leftarrow w^{(j)} - \eta \nabla(j)$

Problem:
 • Computing $\nabla(j)$ takes $O(n)$ time!
 • n ... size of the training dataset

η ... learning rate parameter
C ... regularization parameter
SVM: How to estimate w?

- **Stochastic Gradient Descent**
 - Instead of evaluating gradient over all examples, evaluate it for each individual training example.

$$\nabla(j, i) = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

- **Stochastic gradient descent**:

 Iterate until convergence:
 - For $i = 1 \ldots n$
 - For $j = 1 \ldots d$
 - Evaluate: $\nabla(j, i)$
 - Update: $w^{(j)} \leftarrow w^{(j)} - \eta \nabla(j, i)$

We just had:

$$\nabla(j) = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$
Example: Text categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - $n = 781,000$ training examples (documents)
 - 23,000 test examples
 - $d = 50,000$ features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Example: Text categorization

Questions:

1. Is SGD successful at minimizing $f(w,b)$?
2. How quickly does SGD find the min of $f(w,b)$?
3. What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $f(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>"Fast SVM"</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

(1) SGD-SVM is successful at minimizing the value of $f(w,b)$
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
Optimization “Accuracy”

For optimizing $f(w,b)$ within reasonable quality

SGD-SVM is super fast
SGD vs. Batch Conjugate Gradient

- **SGD** on full dataset vs. **Batch Conjugate Gradient** on a sample of \(n \) training examples

Bottom line: Doing a simple (but fast) SGD update many times is better than doing a complicated (but slow) BCG update a few times.

Theory says: Gradient descent converges in linear time \(k \). Conjugate gradient converges in \(\sqrt{k} \).

\(k \) … condition number
Practical Considerations

- Need to choose learning rate η and t_0

$$w_{t+1} \leftarrow w_t - \frac{\eta_t}{t + t_0} \left(w_t + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$$

- Leon suggests:
 - Choose t_0 so that the expected initial updates are comparable with the expected size of the weights
 - Choose η:
 - Select a small subsample
 - Try various rates η (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset
Sparse Linear SVM:

- **Feature vector** \(x_i \) **is sparse (contains many zeros)**
 - Do not do: \(x_i = [0,0,0,1,0,0,0,0,5,0,...] \)
 - But represent \(x_i \) as a sparse vector \(x_i = [(4,1), (9,5), ...] \)

- **Can we do the SGD update more efficiently?**
 \[
 w \leftarrow w - \eta \left(w + C \frac{\partial L(x_i, y_i)}{\partial w} \right)
 \]

- **Approximated in 2 steps:**
 \[
 w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}
 \]
 \[
 w \leftarrow w(1 - \eta)
 \]

 cheap: \(x_i \) is sparse and so few coordinates \(j \) of \(w \) will be updated

 expensive: \(w \) is not sparse, all coordinates need to be updated
Solution 1: \(\mathbf{w} = s \cdot \mathbf{v} \)
- Represent vector \(\mathbf{w} \) as the product of scalar \(s \) and vector \(\mathbf{v} \)
- Then the update procedure is:
 1. \(\mathbf{v} = \mathbf{v} - \eta C \frac{\partial L(x_i, y_i)}{\partial \mathbf{w}} \)
 2. \(s = s(1 - \eta) \)

Solution 2:
- Perform only step (1) for each training example
- Perform step (2) with lower frequency and higher \(\eta \)
Practical Considerations

- **Stopping criteria:**
 - How many iterations of SGD?
 - **Early stopping with cross validation**
 - Create validation set
 - Monitor cost function on the validation set
 - Stop when loss stops decreasing
 - **Early stopping**
 - Extract two disjoint subsamples A and B of training data
 - Train on A, stop by validating on B
 - Number of epochs is an estimate of k
 - Train for k epochs on the full dataset
Idea 1:
One against all
Learn 3 classifiers
- + vs. \{o, -\}
- - vs. \{o, +\}
- o vs. \{+, -\}
Obtain:
\[w_+ b_+, w_- b_-, w_o b_o \]

How to classify?
Return class \(c \)

\[\arg \max_c \ w_c x + b_c \]
- Learn 3 sets of weights simultaneously
 - For each class c estimate w_c, b_c
 - Want the correct class to have highest margin:
 $$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i, \forall i$$
Optimization problem:

\[
\min_{w,b} \frac{1}{2} \sum_c ||w_c||^2 + C \sum_{i=1}^n \xi_i \\
w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i \quad \forall c \neq y_i, \forall i \\\n\xi_i \geq 0, \forall i
\]

- To obtain parameters \(w_c, b_c \) (for each class \(c \))
 we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
New setting: Online Learning

- Allows for modeling problems where we have a continuous stream of data
- We want an algorithm to learn from it and slowly adapt to the changes in data

Idea: Do slow updates to the model

- All our methods SVM and Perceptron make updates if they misclassify an example
- So: First train the classifier on training data. Then for every example from the stream, if we misclassify, update the model (using small learning rate)
Example: Shipping Service

- **Protocol:**
 - User comes and tell us origin and destination
 - We offer to ship the package for some money ($10 - $50)
 - Based on the price we offer, sometimes the user uses our service ($y = 1$), sometimes they don't ($y = -1$)

- **Task:** Build an algorithm to optimize what price we offer to the users

- **Features x capture:**
 - Information about user
 - Origin and destination

- **Problem:** Will user accept the price?
Example: Shipping Service

- Model whether user will accept our price:
 \(y = f(x; w) \)
 - Accept: \(y = 1 \), Not accept: \(y = -1 \)
 - Build this model with say Perceptron or Winnow
- The website that runs continuously
- Online learning algorithm would do something like
 - User comes
 - User is represented as an \((x, y)\) pair where
 - \(x \): Feature vector including price we offer, origin, destination
 - \(y \): If they chose to use our service or not
 - The algorithm updates \(w \) using just the \((x, y)\) pair
 - Basically, we update the \(w \) parameters every time we get some new data
We discard this idea of a data “set”
Instead we have a continuous stream of data

Further comments:
- For a major website where you have a massive stream of data then this kind of algorithm is pretty reasonable
- Don’t need to deal with all the training data
- If you had a small number of users you could save their data and then run a normal algorithm on the full dataset
 - Doing multiple passes over the data
Online Algorithms

- An online algorithm can adapt to changing user preferences
- For example, over time users may become more price sensitive
- The algorithm adapts and learns this
- So the system is dynamic