Trawling for Web Communities

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Method: Trawling

- Search for small communities in a Web graph
- What is the signature of a community/discussion in a Web graph?

Intuition: Many people all talking about the same things

Use this to define “topics”: What the same people on the left talk about on the right
Remember HITS!

[Kumar et al. ‘99]
A more well-defined problem:
Enumerate complete bipartite subgraphs $K_{s,t}$
- Where $K_{s,t}$: t nodes on the “left” where each links to the same s other nodes on the “right”

$K_{3,4}$

$|X| = s = 3$
$|Y| = t = 4$

Fully connected
The Plan: (1), (2) and (3)

Three points:

- **(1)** Dense bipartite graph
 - The signature of a community/discussion

- **(2)** Complete bipartite subgraph $K_{s,t}$
 - $K_{s,t} = \text{graph on } s \text{ nodes, each links to the same } t \text{ other nodes}$

- **(3)** Frequent itemset enumeration finds $K_{s,t}$

Plan:

- **(A)** From (2) to (3) and then get back to (1):
 - **Via:** Any dense enough graph contains smaller $K_{s,t}$ as a subgraph

[Kumar et al. ‘99]
Marketbasket analysis:

- What items are bought together in a store?

Setting:

- **Market**: Universe U of n items
- **Baskets**: m subsets of U: $S_1, S_2, \ldots, S_m \subseteq U$ (S_i is a set of items one person bought)
- **Support**: Frequency threshold s

Goal:

- Find all sets T s.t. $T \subseteq S_i$ of $\geq s$ sets S_i
 (items in T were bought together at least s times)
The Apriori Algorithm

- For $i = 1, \ldots, k$
 - Generate all sets of size i by composing sets of size $i - 1$ that differ in 1 element
 - Prune the sets of size i with support $< s$

- What’s the connection between the itemsets and complete bipartite graphs?
Freq. Itemsets finds Complete bipartite graphs

- Set frequency threshold $s=3$
- Suppose $\{a, b, c\}$ is a frequent itemset
- Then there exist $\geq s$ nodes that all link to each of $\{a, b, c\}$!
Freq. Itemsets finds Complete bipartite graphs

How?

- View each node i as a set S_i of nodes i points to
- $K_{s,t}$ = a set Y of size t that occurs in s sets S_i
- Finding $K_{s,t}$ is equivalent to finding itemsets of frequency threshold s and then look at layer t

s … minimum support ($|X| = s$)
t … frequent itemset size
From $K_{s,t}$ to Communities

- **From $K_{s,t}$ to Communities:** Informally, every dense enough graph G contains a bipartite subgraph $K_{s,t}$ where s and t depend on the size (# of nodes) and density (avg. degree) of G

 [Kovan-Sos-Turan ‘53]

- **Theorem:**

 Let $G = (V, E), \ |V| = n$

 with avg. degree $\overline{k} = \frac{1}{s^t} n^{1-\frac{1}{t}} + t$

 then G contains $K_{s,t}$ as a subgraph
Proof: \(K_{s,t} \) and Communities

For the proof we will need the following fact:

- **Recall:**
 \[
 \binom{a}{b} = \frac{a(a-1)...(a-b+1)}{b!}
 \]

- Let \(f(x) = x(x-1)(x-2)...(x-k) \)
 Once \(x \geq k \), \(f(x) \) curves upward (convex)

- **Suppose a setting:**
 - \(g(y) \) is convex
 - Want to *minimize* \(\sum_{i=1}^{n} g(x_i) \) where \(\sum_{i=1}^{n} x_i = x \)
 - **Solution:** Make all \(x_i = \frac{x}{n} \)
 - Due to convexity: \(g \left(\frac{x}{n} + \varepsilon \right) - g \left(\frac{x}{n} \right) > g \left(\frac{x}{n} \right) - g \left(\frac{x}{n} - \varepsilon \right) \)
Proof: Nodes and Buckets

- Consider node i of degree k_i and neighbor set S_i

- Put node i in buckets for all size t subsets of i’s neighbors

Imagine we want to find graphs $K_{s,t}$ where $t = 2$ and s is some value

Potential right-hand sides of $K_{s,t}$ (i.e., all size t subsets of S_i)

As soon as s nodes appear in a bucket we have a $K_{s,t}$

Bucket height: number of node i in the bucket
Nodes and Buckets

- **Note**: As soon as at least \(s \) nodes appear in a bucket (i.e., bucket height \(\geq s \)) we found a \(K_{s,t} \).

- **Proof strategy**:
 - Argue that for a graph of avg. degree \(\overline{k} \) the average bucket height \(\geq s \).
 - By the pigeonhole principle this means that at least 1 bucket has height \(\geq s \), which means we found \(K_{s,t} \).

- **Calculation**
 - What is \(H \) the total height of all buckets?
 - How many buckets \(B \) are there?
 - Then avg. bucket height is \(H/B \).
As soon as bucket height ≥ s we found a $K_{s,t}$

How many buckets does node i contribute to?

$\binom{k_i}{t} = \# \text{ of ways to select } t \text{ elements out of } k_i$

(ki ... degree of node i)

What is the total height H of all buckets?

$H = \sum_{i=1}^{n} \binom{k_i}{t} \geq \sum_{i=1}^{n} \binom{\bar{k}}{t} = n \binom{\bar{k}}{t}$

By convexity. Note $k_i \geq t$.
If $k_i < t$, then we can prune i from the graph since we know it cannot belong to $K_{s,t}$.

$\bar{k} = \frac{1}{n} \sum_{i \in N} k_i$
So, the total height of all buckets is...

\[H = \sum_{i=1}^{n} \binom{k_i}{t} \geq n \binom{k}{t} \]

\[= \frac{k(k-1) \ldots (k-t+1)}{t!} \geq n \frac{(k-t)^t}{t!} \]

\[= n \frac{\left(\frac{1}{s^t} n^{1-\frac{1}{t}} + t - t \right)^t}{t!} = n s n^{t-1} = \frac{n^t s}{t!} \]

Plug in:

\[\bar{k} = s^t n^{1-\frac{1}{t}} + t \]
And We are Done!

- We have: Total size of all buckets:
 \[H = \sum_{i=1}^{n} \binom{k_i}{t} \geq \frac{n^t s}{t!} \]

- How many buckets are there?
 \[B = \binom{n}{t} = \frac{n(n-1) \ldots (n-t+1)}{t!} \leq \frac{n^t}{t!} \]

- What is the average height of buckets?
 \[\frac{H}{B} \geq \frac{n^t s}{t!} \leq \frac{n^t}{t!} = s \]
 So, avg. bucket height \(\geq s \)

- By pigeonhole principle, there must be at least one bucket with height more than \(s \) \(\Rightarrow \) We found a \(K_{s,t} \)!
Trawling — Summary

- **Analytical result:**
 - Complete bipartite subgraphs $K_{s,t}$ are embedded in larger dense enough graphs (i.e., the communities)
 - Biparite subgraphs act as “signatures” of communities

- **Algorithmic result:**
 - Frequent itemset extraction and dynamic programming find graphs $K_{s,t}$
 - Method is very scalable

- **Further improvements:** Given s and t
 - (Repeatedly) prune out all nodes with out-degree $< t$ and in-degree $< s$
Large Scale Machine Learning: k-NN, Perceptron
Supervised Learning

- Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class ($\{+1, -1\}$, or a real number)

Estimate $y = f(x)$ on X, Y. Hope that the same $f(x)$ also works on unseen X', Y'
We will talk about the following methods:

- k-Nearest Neighbor (Instance based learning)
- Perceptron and Winnow algorithms
- Support Vector Machines
- Decision trees

Main question:
How to efficiently train
(build a model/find model parameters)?
Instance Based Learning

- **Instance based learning**
- **Example: Nearest neighbor**
 - Keep the whole training dataset: \{ (x, y) \}
 - A query example (vector) \(q \) comes
 - Find closest example(s) \(x^* \)
 - Predict \(y^* \)
- **Works both for regression and classification**
 - **Collaborative filtering** is an example of k-NN classifier
 - Find \(k \) most similar people to user \(x \) that have rated movie \(y \)
 - Predict rating \(y_x \) of \(x \) as an average of \(y_k \)
1-Nearest Neighbor

To make Nearest Neighbor work we need 4 things:

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - One

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the same output as the nearest neighbor
k-Nearest Neighbor

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - k

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the average output among k nearest neighbors

$k=9$
Kernel Regression

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - All of them (!)
- Weighting function:
 - \(w_i = \exp\left(- \frac{d(x_i, q)^2}{K_w}\right) \)
 - Nearby points to query q are weighted more strongly. \(K_w \) ...kernel width.
- How to fit with the local points?
 - Predict weighted average: \(\frac{\sum_i w_i y_i}{\sum_i w_i} \)
How to find nearest neighbors?

- **Given:** a set P of n points in \mathbb{R}^d
- **Goal:** Given a query point q
 - **NN:** Find the nearest neighbor p of q in P
 - **Range search:** Find one/all points in P within distance r from q
Main memory:
- Linear scan
- Tree based:
 - Quadtree
 - kd-tree
- Hashing:
 - Locality-Sensitive Hashing

Secondary storage:
- R-trees
(1958)
F. Rosenblatt

The perceptron: a probabilistic model
for information storage and organization in the brain
Psychological Review 65: 386–408

Perceptron
Linear models: Perceptron

- **Example: Spam filtering**

<table>
<thead>
<tr>
<th>viagra</th>
<th>learning</th>
<th>the</th>
<th>dating</th>
<th>nigeria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x}_1) = (1, 0, 1, 0, 0, 0)</td>
<td>(y_1 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}_2) = (0, 1, 1, 0, 0, 0)</td>
<td>(y_2 = -1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}_3) = (0, 0, 0, 0, 0, 1)</td>
<td>(y_3 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Instance space** \(x \in X \) (|X| = n data points)
 - Binary or real-valued feature vector \(x \) of word occurrences
 - \(d \) features (words + other things, \(d \sim 100,000 \))

- **Class** \(y \in Y \)
 - \(y \): Spam (+1), Ham (-1)
Binary classification:

\[
f(x) = \begin{cases}
+1 & \text{if } w_1 x_1 + w_2 x_2 + \ldots + w_d x_d \geq \theta \\
-1 & \text{otherwise}
\end{cases}
\]

Input: Vectors \(x^{(i)} \) and labels \(y^{(i)} \)
- Vectors \(x^{(i)} \) are real valued where \(\|x\|_2 = 1 \)
- **Goal:** Find vector \(w = (w_1, w_2, \ldots, w_d) \)
 - Each \(w_i \) is a real number

Decision boundary is linear

\[
w \cdot x = 0
\]

\[
w \cdot x = \theta
\]

Note:
- \(x \leftrightarrow \langle x, 1 \rangle \quad \forall x \)
- \(w \leftrightarrow \langle w, -\theta \rangle \)
(very) Loose motivation: Neuron

Inputs are feature values

Each feature has a weight w_i

Activation is the sum:

$$f(x) = \sum_i w_i x_i = w \cdot x$$

If the $f(x)$ is:

- **Positive:** Predict +1
- **Negative:** Predict -1

\[x^{(1)}\]
\[x^{(2)}\]
\[x^{(3)}\]

Spam=1

Ham=-1

viagra

nigeria
Perceptron: Estimating w

- **Perceptron**: $y' = \text{sign}(w \cdot x)$
- **How to find parameters w?**
 - Start with $w_0 = 0$
 - Pick training examples $x^{(t)}$ one by one (from disk)
 - Predict class of $x^{(t)}$ using current weights
 - $y' = \text{sign}(w^{(t)} \cdot x^{(t)})$
 - If y' is correct (i.e., $y_t = y'$)
 - No change: $w^{(t+1)} = w^{(t)}$
 - If y' is wrong: adjust $w^{(t)}$
 - $w^{(t+1)} = w^{(t)} + \eta \cdot y^{(t)} \cdot x^{(t)}$
 - η is the learning rate parameter
 - $x^{(t)}$ is the t-th training example
 - $y^{(t)}$ is true t-th class label ($\{+1, -1\}$)

Note that the Perceptron is a conservative algorithm: it ignores samples that it classifies correctly.
Perceptron Convergence

- **Perceptron Convergence Theorem:**
 - If there exist a set of weights that are consistent (i.e., the data is linearly separable) the Perceptron learning algorithm will converge

- **How long would it take to converge?**

- **Perceptron Cycling Theorem:**
 - If the training data is not linearly separable the Perceptron learning algorithm will eventually repeat the same set of weights and therefore enter an infinite loop

- **How to provide robustness, more expressivity?**
Properties of Perceptron

- **Separability:** Some parameters get training set perfectly

- **Convergence:** If training set is separable, perceptron will converge

- **(Training) Mistake bound:**

 Number of mistakes < \(\frac{1}{\gamma^2} \)

 - where \(\gamma = \min_{t,u} |x^{(t)}u| \)

 and \(||u||_2 = 1 \)

 - Note we assume \(x \) Euclidean length 1, then \(\gamma \) is the minimum distance of any example to plane \(u \)
- Perceptron will oscillate and won’t converge

When to stop learning?

- *(1)* Slowly decrease the learning rate η
 - A classic way is to: $\eta = \frac{c_1}{(t + c_2)}$
 - But, we also need to determine constants c_1 and c_2
- *(2)* Stop when the training error stops chaining
- *(3)* Have a small test dataset and stop when the test set error stops decreasing
- *(4)* Stop when we reached some maximum number of passes over the data
Multiclass Perceptron

- **What if more than 2 classes?**
- **Weight vector** w_c **for each class** c
 - **Train one class vs. the rest:**
 - **Example:** 3-way classification $y = \{A, B, C\}$
 - Train 3 classifiers: w_A: A vs. B, C; w_B: B vs. A, C; w_C: C vs. A, B
 - **Calculate activation for each class**
 \[
 f(x,c) = \sum_i w_{c,i} x_i = w_c \cdot x
 \]
 - **Highest activation wins**
 \[
 c = \arg \max_c f(x,c)
 \]
Issues with Perceptrons

- Overfitting:
- **Regularization:** If the data is not separable weights dance around

- Mediocre generalization:
 - Finds a “barely” separating solution
Improvement: Winnow Algorithm

- **Winnow**: Predict $f(x) = +1$ iff $w \cdot x \geq \theta$
 - Similar to perceptron, just different updates
 - Assume x is a real-valued feature vector, $\|x\|_2 = 1$

 • Initialize: $\theta = \frac{d}{2}$, $w = \left[\frac{1}{d}, \ldots, \frac{1}{d} \right]$

 • For every training example $x^{(t)}$
 - Compute $y' = f(x^{(t)})$
 - If no mistake ($y^{(t)} = y'$): do nothing
 - If mistake then: $w_i \leftarrow w_i \frac{\exp(\eta y^{(t)} x_i^{(t)})}{Z^{(t)}}$

- w ... weights *(can never get negative!)*

- $Z^{(t)} = \sum_i w_i \exp \left(\eta y^{(t)} x_i^{(t)} \right)$ is the normalizing const.
Improvement: Winnow Algorithm

About the update: \(\mathbf{w}_i \leftarrow \mathbf{w}_i \frac{\exp(\eta y(t)x_i(t))}{Z(t)} \)

- If \(x \) is false negative, increase \(\mathbf{w}_i \) (promote)
- If \(x \) is false positive, decrease \(\mathbf{w}_i \) (demote)

In other words: Consider \(x_i(t) \in \{-1, +1\} \)

Then \(\mathbf{w}_i^{(t+1)} \propto \mathbf{w}_i^{(t)} \cdot \begin{cases} e^\eta & \text{if } x_i^{(t)} = y^{(t)} \\ e^{-\eta} & \text{else} \end{cases} \)

Notice: This is a weighted majority algorithm of “experts” \(x_i \) agreeing with \(y \)
Problem: All w_i can only be >0

Solution:
- For every feature x_i, introduce a new feature $x_i' = -x_i$
- Learn Winnow over $2d$ features

Example:
- Consider: $x = [1, .7, -4], w = [.5, .2, -3]$
- Then $x = [1, .7, -4, -1, -7, .4], w = [.5, .2, 0, 0, 0, .3]$
- Note this results in the same dot values as if we used original x and w

New algorithm is called Balanced Winnow
Extensions: Balanced Winnow

- In practice we implement Balanced Winnow:
 - 2 weight vectors $w^+, w^-;$ effective weight is the difference

- Classification rule:
 - $f(x) = +1$ if $(w^+-w^-) \cdot x \geq \theta$

- Update rule:
 - If mistake:
 - $w_i^+ \leftarrow w_i^+ \frac{\exp(\eta y(t)x_i^{(t)})}{Z^+(t)}$
 - $w_i^- \leftarrow w_i^- \frac{\exp(-\eta y(t)x_i^{(t)})}{Z^-(t)}$

$$Z^-(t) = \sum_i w_i \exp (-\eta y(t)x_i^{(t)})$$
Extensions: Thick Separator

- **Thick Separator** (aka Perceptron with Margin) (Applies both to Perceptron and Winnow)
 - Set margin parameter γ
 - **Update** if $y = +1$
 but $w \cdot x < \theta + \gamma$
 - or if $y = -1$
 but $w \cdot x > \theta - \gamma$

Note: γ is a functional margin. Its effect could disappear as w grows. Nevertheless, this has been shown to be a very effective algorithmic addition.
Summary of Algorithms

- **Setting:**
 - **Examples:** \(x \in \{0, 1\} \), weights \(w \in \mathbb{R}^d \)
 - **Prediction:** \(f(x) = +1 \) iff \(w \cdot x \geq \theta \) else \(-1\)

- **Perceptron:** Additive weight update
 \[
 w \leftarrow w + \eta y x
 \]
 - If \(y=+1 \) but \(w \cdot x \leq \theta \) then \(w_i \leftarrow w_i + 1 \) (if \(x_i=1 \)) (promote)
 - If \(y=-1 \) but \(w \cdot x > \theta \) then \(w_i \leftarrow w_i - 1 \) (if \(x_i=1 \)) (demote)

- **Winnow:** Multiplicative weight update
 \[
 w \leftarrow w \exp\{\eta y x\}
 \]
 - If \(y=+1 \) but \(w \cdot x \leq \theta \) then \(w_i \leftarrow 2 \cdot w_i \) (if \(x_i=1 \)) (promote)
 - If \(y=-1 \) but \(w \cdot x > \theta \) then \(w_i \leftarrow w_i / 2 \) (if \(x_i=1 \)) (demote)
How to compare learning algorithms?

Considerations:

- Number of features d is very large
- The instance space is sparse
 - Only few features per training example are non-zero
- The model is sparse
 - Decisions depend on a small subset of features
 - In the “true” model on a few w_i are non-zero
- Want to learn from a number of examples that is small relative to the dimensionality d
Perceptron vs. Winnow

Perceptron
- **Online:** Can adjust to changing target, over time
- **Advantages**
 - Simple
 - Guaranteed to learn a linearly separable problem
 - *Advantage with few relevant features per training example*
- **Limitations**
 - Only linear separations
 - Only converges for linearly separable data
 - Not really “efficient with many features”

Winnow
- **Online:** Can adjust to changing target, over time
- **Advantages**
 - Simple
 - Guaranteed to learn a linearly separable problem
 - Suitable for problems with many irrelevant attributes
- **Limitations**
 - Only linear separations
 - Only converges for linearly separable data
 - Not really “efficient with many features”

2/14/2013
Online Learning

- **New setting: Online Learning**
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data

- **Idea: Do slow updates to the model**
 - Both our methods Perceptron and Winnow make updates if they misclassify an example
 - So: First train the classifier on training data. Then for every example from the stream, if we misclassify, update the model (using small learning rate)
Example: Shipping Service

- **Protocol:**
 - User comes and tells us origin and destination
 - We offer to ship the package for some money ($10 - $50)
 - Based on the price we offer, sometimes the user uses our service \((y = 1)\), sometimes they don't \((y = -1)\)

- **Task:** Build an algorithm to optimize what price we offer to the users

- **Features \(x\) capture:**
 - Information about user
 - Origin and destination

- **Problem:** Will user accept the price?
Example: Shipping Service

- Model whether user will accept our price:
 \[y = f(x; w) \]
 - Accept: \(y = 1 \)
 - Not accept: \(y = -1 \)
- Build this model with say Perceptron or Winnow
- The website that runs continuously
- Online learning algorithm would do something like:
 - User comes
 - She is represented as an \((x, y)\) pair where
 - \(x \): Feature vector including price we offer, origin, destination
 - \(y \): If they chose to use our service or not
 - The algorithm updates \(w \) using just the \((x, y)\) pair
 - Basically, we update the \(w \) parameters every time we get some new data
We discard this idea of a data “set”
Instead we have a continuous stream of data

Further comments:
- For a major website where you have a massive stream of data then this kind of algorithm is pretty reasonable
- Don’t need to deal with all the training data
- If you had a small number of users you could save their data and then run a normal algorithm on the full dataset
 - Doing multiple passes over the data
Online Algorithms

- An online algorithm can adapt to changing user preferences
- For example, over time users may become more price sensitive
- The algorithm adapts and learns this
- So the system is dynamic