Mining Data Streams (Part 2)

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
More algorithms for streams:

1. Filtering a data stream: **Bloom filters**
 - Select elements with property x from stream

2. Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: **AMS method**
 - Estimate std. dev. of last k elements

4. Counting frequent items
Filtering Data Streams
Each element of data stream is a tuple

Given a list of keys S

Determine which elements of stream have keys in S

Obvious solution: Hash table

- But suppose we **do not have enough memory** to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- Example: Email spam filtering
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is NOT spam

- Publish-subscribe systems
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest
First Cut Solution – (1)

- Given a set of keys S that we want filter
- Create a **bit array** B of n bits, initially all 0s
- Choose a hash function h with range $[0,n)$
- Hash each member of $s \in S$ to one of m buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if $B[h(a)] == 1$
First Cut Solution – (2)

- **Creates false positives but no false negatives**
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item. It hashes to a bucket set to 0 so it is surely not in S.

First Cut Solution – (3)

- $|S| = 1$ billion email addresses
 $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
Analysis: Throwing Darts

- More accurate analysis for the number of false positives

- **Consider:** If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

- **In our case:**
 - Targets = bits/buckets
 - Darts = hash values of items
We have m darts, n targets

What is the probability that a target gets at least one dart?

Probability target not hit by one dart

Probability at least one dart hits target

Equals $1/e$ as $n \to \infty$

$1 - (1 - 1/n)$

Equivalent

$1 - e^{-m/n}$
Fraction of 1s in the array B == probability of false positive == $1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets

- Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
- Compare with our earlier estimate: $1/8 = 0.125$
Consider: \(|S| = m, |B| = n\)

Use \(k\) independent hash functions \(h_1, \ldots, h_k\)

Initialization:
- Set \(B\) to all 0s
- Hash each element \(s \in S\) using each hash function \(h_i\), set \(B[h_i(s)] = 1\) (for each \(i = 1, \ldots, k\))

Run-time:
- When a stream element with key \(x\) arrives
 - If \(B[h_i(x)] = 1\) for all \(i = 1, \ldots, k\), then declare that \(x\) is in \(S\)
 - i.e., \(x\) hashes to a bucket set to 1 for every hash function \(h_i(x)\)
 - Otherwise discard the element \(x\)
What fraction of the bit vector B are 1s?

- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions

So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- $m = 1$ billion, $n = 8$ billion
 - $k = 1$: $(1 - e^{-1/8}) = 0.1175$
 - $k = 2$: $(1 - e^{-1/4})^2 = 0.0493$

- What happens as we keep increasing k?

- “Optimal” value of k: $n/m \ln(2)$
 - E.g.: $8 \ln(2) = 5.54$
Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks
- E.g., Google’s BigTable, Squid web proxy

Suitable for hardware implementation

- Hash function computations can be parallelized
Counting Distinct Elements
Problem:
- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:
Maintain the set of elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) = \text{position of first 1 counting from the right}$
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
 - Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far
 - **Estimated number of distinct elements** $= 2^R$
Why It Works: Intuition

- One can also think of Flajolet-Martin the following way (roughly):
 - $h(a)$ hashes a with equal prob. to any of N values
 - Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all a’s have a tail r zeros
 - About 50% of a’s hash to ***0
 - About 25% of a’s hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r
The probability that a given $h(a)$ ends in at least r 0s is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r 0s is 2^{-r}

Probability of NOT seeing a tail of length r among m elements:

$$ (1 - 2^{-r})^m $$

Prob. all end in fewer than r 0s.
Prob. a given $h(a)$ ends in fewer than r 0s.
Note: \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r (m^{2^{-r}})} \approx e^{-m2^{-r}}\)

Prob. of NOT finding a tail of length \(r\) is:

- If \(m \ll 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \to 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0

- If \(m \gg 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \to \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

Thus, \(2^R\) will almost always be around \(m\)
Why It Doesn’t Work

- $E[2^R]$ is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
 - Workaround involves using many hash functions and getting many samples
- How are samples combined?
 - Average? What if one very large value?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the average of groups
 - Then take the median of the averages
Computing Moments
Suppose a stream has elements chosen from a set of \(N \) values

Let \(m_a \) be the number of times value \(a \) occurs

The \(k \)th \textit{moment} is \(\sum_a (m_a)^k \)
Special Cases

- **0th moment** = number of distinct elements
 - The problem just considered

- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute

- **2nd moment** = *surprise number* = a measure of how uneven the distribution is
 \[\sum_i (m_i)^k \]
Example: Surprise Number

- Stream of length 100; 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise # = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise # = 8,110
AMS Method

- Works for all moments
- Gives an unbiased estimate

- We will just concentrate on the 2nd moment

- Based on calculation of many random variables X:
 - For each rnd. var. X we store $X.el$ and $X.val$
 - Note this requires a count in main memory, so number of Xs is limited
How to set \(X.val\) and \(X.el\)?

- Assume stream has length \(n\)
- Pick a random time \(t\) to start, so that any time is equally likely
- Let at time \(t\) the stream have record \(a\) (i.e., \(X.el = a\))
- Maintain count \(c\) (\(X.val = c\)) of the number \(a\)'s in the stream starting from the chosen time \(t\)

Then the estimate of the 2\(^{nd}\) moment is \(n \cdot (2c - 1)\)

- Store \(n\) once, count \(a\)'s for each \(X\)
- 2nd moment is $\sum_a (m_a)^2$
- c_t ... number of times the stream record at time t appears from that time on ($c_1 = m_a$, $c_2 = m_a - 1$, ...)
- $E[X.\text{val}] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$
- $= \frac{1}{n} \sum_a n (1 + 3 + 5 + \cdots + 2m_a - 1)$

Group times by the value seen

Time t when the last a is seen ($c_t=1$)

Time t when the penultimate a is seen ($c_t=2$)

Time t when the first a is seen ($c_t=m_a$)
Expectation Analysis

- $E[X.\ val] = \frac{1}{n} \sum a \ n \ (1 + 3 + 5 + \cdots + 2m_a - 1)$
 - Little side calculation: $(1 + 3 + 5 + \cdots + 2m_a - 1) = \sum_{i=1}^{m_a} (2i - 1) = 2 \frac{m_a(m_a-1)}{2} - m_a = (m_a)^2$
 - $= \frac{1}{n} \sum a \ n \ (m_a)^2$
 - So, $E[X.\ val] = \sum a (m_a)^2$
 - We have the second moment (in expectation)!
For estimating k^{th} moment we essentially use the same algorithm but change the estimate:

- For $k=2$ we used $n \ (2 \cdot c - 1)$
- For $k=3$ use: $n \ (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

Why?

- For $k=2$: terms $2c-1$ (for $c=1,...,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
- For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

Generally: Estimate $= n \ (c^k - (c - 1)^k)$
Combining Samples

- **In practice:**
 - Compute $n \ (2 \ c - 1)$ for as many variables X as you can fit in memory
 - Average them in groups
 - Take median of averages

- **Problem: Streams never end**
 - We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable – the number of inputs seen so far
1) The variables X have n as a factor – keep n separately; just hold the count in X

2) Suppose we can only store k counts. We must throw some Xs out as time goes on:

- **Objective:** Each starting time t is selected with probability k/n

- **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item
- $1 = $ item present; $0 = $ not present
- Use DGIM to estimate counts of 1’s for all items
In principle, you could count frequent pairs or even larger sets the same way
- One stream per itemset

Drawbacks:
- Only approximate
- Number of itemsets is way too big
Exponentially decaying windows: A heuristic for selecting likely frequent itemsets

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

- If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 $$\sum_{i=1}^{t} a_i (1 - c)^{t-i}$$

 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
If each a_i is an "item" we can compute the characteristic function of each possible item x as an E.D.W.

That is: $\sum_{i=1,2,\ldots,t} \delta_i (1-c)^{(t-i)}$

- where $\delta_i = 1$ if $a_i = x$, and 0 otherwise

Imagine that for each item x we have a binary stream (1 ... x is appears, 0 ... x does not appear)

New item x arrives:

- Multiply all counts by $(1-c)$
- Add +1 to count for x

Call this sum the "weight" item x
- **Important property:** Sum over all weights
 \[\sum_t (1 - c)^t \] is
 \[\frac{1}{1 - (1 - c)} = \frac{1}{c} \]
What are “currently” most popular movies?

Suppose we want to find movies of weight $> \frac{1}{2}$

Important property: Sum over all weights
$$\sum_{t}(1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c}$$

Thus:

- There cannot be more than $\frac{2}{c}$ movies with weight of $\frac{1}{2}$ or more
- So, $\frac{2}{c}$ is a limit on the number of movies being counted at any time
Count (some) itemsets in an E.D.W.

- What are currently “hot” itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

When a basket B comes in:

- Multiply all counts by (1-c)
- For uncounted items in B, create new count
- Add 1 to count of any item in B and to any itemset contained in B that is already being counted
- Drop counts < ½
- Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

- **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”

Example:

- Start counting $\{i, j\}$ iff both i and j were counted prior to seeing B
- Start counting $\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
How many counts do we need?

- Counts for single items < \((2/c) \times \text{(average number of items in a basket)}\)

- Counts for larger itemsets = ??.

- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts