Decision Trees

- **Input features:**
 - N features: $X_1, X_2, \ldots X_N$
 - Each X_j has domain D_j
 - Categorical: $D_j = \{\text{red, blue}\}$
 - Numerical: $D_j = (0, 10)$
 - Y is output variable with domain D_Y:
 - Categorical: Classification
 - Numerical: Regression

- **Task:**
 - Given input data vector x_i predict y_i
Decision Trees (1)

- **Decision trees:**
 - Split the data at each internal node
 - Each leaf node makes a prediction

- **Lecture today:**
 - Binary splits: $X_j < v$
 - Numerical attrs.
 - Regression
How to make predictions?

- **Input:** Example x_i
- **Output:** Predicted y_i'
- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits
How to construct a tree?

- Training dataset D^*, $|D^*| = 100$ examples

```
A
  /  \
|D|=10 |D|=90
   / \
  X_1<v_1

Y=0.42

D
  /  \
|D|=45 |D|=45
   / \
  X_2<v_2

C
  /  \
|D|=45 |D|=45
   / \
  X_1<v_1

E
  /  \
|D|=15 |D|=30
   / \
  X_2<v_5

|D|=25 |D|=20
  /  \
F  G

|D|=10 |D|=15
  /  \
H  I
```

of examples traversing the edge
Imagine we are currently at some node G

- Let D_G be the data reaches G
- There is a decision we have to make:

 Do we continue building the tree?

 - If so, which variable and which value do we use for a split?
 - If not, how do we make a prediction?
 - We need to build a “predictor node”
How to construct a tree?

- Alternative view:
How to construct a tree?

Algorithm 1 InMemoryBuildNode

Require: Node n, Data $D \subseteq D^*$
1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
2: if StoppingCriteria(D_L) then
3: $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$
4: else
5: InMemoryBuildNode($n \rightarrow \text{left}, D_L$)
6: if StoppingCriteria(D_R) then
7: $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
8: else
9: InMemoryBuildNode($n \rightarrow \text{right}, D_R$)

- Requires at least a single pass over the data!
How to construct a tree?

- **How to split?** Pick attribute & value that optimizes some criterion

- **Classification:** Information Gain

 - \(IG(Y \mid X) = H(Y) - H(Y \mid X) \)
 - Entropy: \(H(Z) = -\sum_{j=1}^{m} p_j \log p_j \)
 - Conditional entropy:
 \[
 H(W \mid Z = v_j) = -\sum_{j=1}^{m} P(Z = v_j) H(W \mid Z = v_j)
 \]
 - Suppose \(Z \) takes \(m \) values (\(v_1 \ldots v_m \))
 - \(H(W \mid Z=v) \) ... Entropy of \(W \) among the records in which \(Z \) has value \(v \)
How to construct a tree?

- **How to split?** Pick attribute & value that optimizes some criterion

 - **Regression:**
 - Find split \((X_i, v)\) that creates \(D, D_L, D_R\): parent, left, right child datasets and maximizes:
 \[
 |D| \cdot \text{Var}(D) - \left(|D_L| \cdot \text{Var}(D_L) + |D_R| \cdot \text{Var}(D_R) \right)
 \]
 - For ordered domains sort \(X_i\) and consider a split between each pair of adjacent values
 - For categorical \(X_i\) find best split based on subsets (Breiman’s algorithm)
How to construct a tree?

- **When to stop?**
 - 1) When the leaf is “pure”
 - E.g., $\text{Var}(y_i) < \epsilon$
 - 2) When # of examples in the leaf is too small
 - E.g., $|D| \leq 10$

- **How to predict?**
 - **Predictor:**
 - **Regression:** Avg. y_i of the examples in the leaf
 - **Classification:** Most common y_i in the leaf
Building a tree using MapReduce
Problem: Building a tree

- Given a large dataset with hundreds of attributes
- **Build a decision tree!**

General considerations:

- Tree is small (can keep it memory):
 - Shallow (~10 levels)
- Dataset too large to keep in memory
- Dataset too big to scan over on a single machine
- **MapReduce to the rescue!**

```plaintext
Algorithm 1 FindBestSplit
Require: Node n, Data D ⊆ D*
1: (n →split,DL,DR) = FindBestSplit(D)
2: if StoppingCriteria(DL) then
3:     n →left prediction = FindPrediction(DL)
4: else
5:     FindBestSplit(n →left,DL)
6: if StoppingCriteria(DR) then
7:     n →right prediction = FindPrediction(DR)
8: else
9:     FindBestSplit(n →right,DR)
```
MapReduce

Can use a secondary key to control ordering in which reducers see key-value pairs.
Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ’09]

- A sequence of MapReduce jobs that build a decision tree

Setting:
- Hundreds of numerical (discrete & continuous) attributes
- Target (class) is numerical: *Regression*
- Splits are binary: $X_j < v$
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory
Mapper loads the model and info about which attribute splits to consider

- Each mapper sees a subset of the data D^*
- Mapper “drops” each datapoint to find the appropriate leaf node L

For each leaf node L it keeps statistics about

- 1) the data reaching L
- 2) the data in left/right subtree under split S

Reducer aggregates the statistics (1) and (2) and determines the best split for each node
PLANT: Components

- **Master**
 - Monitors everything (runs multiple MapReduce jobs)

- **MapReduce Initialization**
 - For each attribute identify values to be considered for splits

- **MapReduce FindBestSplit**
 - MapReduce job to find best split when there is too much data to fit in memory

- **MapReduce InMemoryBuild**
 - Similar to FindBestSplit (but for small data)
 - Grows an entire sub-tree once the data fits in memory

- **Model file**
 - A file describing the state of the model

Algorithm 1: **FindBestSplit**

```plaintext
Require: Node n, Data D \subseteq D^*
1: (n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)
2: if StoppingCriteria(D_L) then
3: \quad n \rightarrow \text{left prediction} = \text{FindPrediction}(D_L)
4: else
5: \quad \text{FindBestSplit}(n \rightarrow \text{left}, D_L)
6: if StoppingCriteria(D_R) then
7: \quad n \rightarrow \text{right prediction} = \text{FindPrediction}(D_R)
8: else
9: \quad \text{FindBestSplit}(n \rightarrow \text{right}, D_R)
```

Hardest part
Initialization: Attribute metadata

- Identifies all the attribute values which need to be considered for splits
- **Splits for numerical attributes:**
 - Would like to consider very possible value \(v \in D \)
 - Compute an approximate equi-depth histogram on \(D^* \)
 - **Idea:** Select buckets such that counts per bucket are equal
 - Use boundary points of histogram as potential splits
- Generates an “attribute metadata” to be loaded in memory by other tasks
Goal:
- Equal number of elements per bucket (B buckets total)
- Construct by first sorting and then taking B-1 equally-spaced splits

Faster construction:
Sample & take equally-spaced splits in the sample
- Nearly equal buckets
PLANT: Master

- Controls the entire process
- **Determines the state of the tree and grows it:**
 - Decides if nodes should be split
 - If there is little data entering a node, runs an InMemory-Build MapReduce job to grow the entire subtree
 - For larger nodes, launches MapReduce FindBestSplit to find candidates for best split
 - Collects results from MapReduce jobs and chooses the best split for a node
 - Updates model
Master keeps two node queues:

- **MapReduceQueue (MRQ)**
 - Nodes for which D is too large to fit in memory

- **InMemoryQueue (InMemQ)**
 - Nodes for which the data D in the node fits in memory

The tree will be built in levels

- Epoch by epoch
Two MapReduce jobs:

- **FindBestSplit**: Processes nodes from the MRQ
 - For a given set of nodes S, computes a candidate of good split predicate for each node in S

- **InMemoryBuild**: Processes nodes from the InMemQ
 - For a given set of nodes S, completes tree induction at nodes in S using the InMemoryBuild algorithm

Start by executing FindBestSplit on full data D^*
FindBestSplit

- MapReduce job to find best split when there is too much data to fit in memory
- **Goal:** For a particular split node find attribute X_j and value v that maximize:

$$|D| \times \text{Var}(D) - (|D_L| \times \text{Var}(D_L) + |D_R| \times \text{Var}(D_R))$$

- D ... training data (x_i, y_i) reaching the node
- D_L ... training data x_i, where $x_{i,j} < v$
- D_R ... training data x_i, where $x_{i,j} \geq v$
- $\text{Var}(D) = 1/(n-1) \sum_i y_i^2 - (\sum_i y_i)^2/n$

Note: Can be computed from sufficient statistics: $\Sigma y_i, \Sigma y_i^2$
FindBestSplit: Map

- **Mapper:**
 - Initialize by loading from Initialization task
 - Current Model (to find which node each x_i ends up)
 - Attribute metadata (all split points for each attribute)
 - For each record run the Map algorithm
 - For each node store statistics and at the end emit (to all reducers):
 - `<Node.Id, \{ \Sigma y, \Sigma y^2, \Sigma 1 \}>`
 - For each split store statistics and at the end emit:
 - `<Split.Id, \{ \Sigma y, \Sigma y^2, \Sigma 1 \}>`
 - `Split.Id = (node, feature, split value)`
FindBestSplit: Map

- Requires: Split node set S, Model file M, Training record \((x_i, y_i)\)

Node \(n = \text{TraverseTree}(M, x_i)\)

if \(n \in S:\)

- Update \(T_n \leftarrow y_i\) //stores \(\{\Sigma y, \Sigma y^2, \Sigma 1\}\) for each node

for \(j = 1 \ldots N:\) // \(N\)... number of features

- \(v = \text{value of feature } X_j \text{ of example } x_i\)

for each split point \(s \text{ of feature } X_j, s.t. s < v:\)

- Update \(T_{n,j}[s] \leftarrow y_i\) //stores \(\{\Sigma y, \Sigma y^2, \Sigma 1\}\) for each (node, feature, split)

- MapFinalize: Emit

 - <Node.Id, \{ \Sigma y, \Sigma y^2, \Sigma 1 \}> // sufficient statistics (so we can later
 - <Split.Id, \{ \Sigma y, \Sigma y^2, \Sigma 1\}> // compute variance reduction)
FindBestSplit: Reducer

Reducer:

1) Load all the `<Node_Id, List {Σy, Σy^2, Σ1}>` pairs and aggregate the per node statistics
2) For all the `<Split_Id, List {Σy, Σy^2, Σ1}>` aggregate and run the reduce algorithm

For each Node_Id, output the best split found:

Reduce(Split_Id, values):

split = NewSplit(Split_Id)
best = BestSplitSoFar(split.node.id)
for stats in values
 split.stats.AddStats(stats)
left = GetImpurity(split.stats)
right = GetImpurity(split.node.stats–split.stats)
split.impurity = left + right
if split.impurity < best.impurity:
 UpdateBestSplit(Split.Node.Id, split)
Collects outputs from FindBestSplit reducers

\(<\text{Split.Node.Id, feature, value, impurity}>\)

For each node decides the best split

- If data in D_L/D_R is small enough put the nodes in the InMemoryQueue
 - to later run InMemoryBuild on the node
- Else put the nodes into MapReduceQueue
Task: Grow an entire subtree once the data fits in memory

Mapper:
- Initialize by loading current model file
- For each record identify the node it falls under and if that node is to be grown, output `<Node_Id, Record>`

Reducer:
- Initialize by loading attribute file from Initialization task
- For each `<Node_Id, List{Record}>` run the basic tree growing algorithm on the records
- Output the best splits for each node in the subtree
Overall system architecture

- Need to split nodes F, G, H, I
- \(D_1, D_4 \) small, run InMemoryGrow
- \(D_2, D_3 \) too big, run FindBestSplit\(\{G, H\}\):
 - **FindBestSplit::Map** (each mapper)
 - Load the current model \(M \)
 - Drop every example \(x_i \) down the tree
 - If it hits \(G \) or \(H \), update in-memory hash tables:
 - For each node: \(T_n: (\text{node}) \rightarrow \{\Sigma y, \Sigma y^2, \Sigma 1\} \)
 - For each split,node: \(T_{n,j,s}: (\text{node}, \text{attribute}, \text{split_value}) \rightarrow \{\Sigma y, \Sigma y^2, \Sigma 1\} \)
 - Map::Finalize: output the key-value pairs from above hashtables
 - **FindBestSplit::Reduce** (each reducer)
 - Collect:
 - \(T1:<\text{node}, \text{List}\{\Sigma y, \Sigma y^2, \Sigma 1\}> \rightarrow <\text{node}, \{\Sigma \Sigma y, \Sigma \Sigma y^2, \Sigma \Sigma 1\}> \)
 - \(T2:<(\text{node, attr. split}), \text{List}\{\Sigma y, \Sigma y^2, \Sigma 1\}> \rightarrow <(\text{node, attr. split}), \{\Sigma \Sigma y, \Sigma \Sigma y^2, \Sigma \Sigma 1\}> \)
 - Compute impurity for each node using \(T1, T2 \)
 - Return best split to Master (that decides on the globally best split)
Practical considerations

- We need one pass over the data to construct one level of the tree!

- **Set up and tear down**
 - Per-MapReduce overhead is significant
 - Starting/ending MapReduce job costs time
 - Reduce tear-down cost by polling for output instead of waiting for a task to return
 - Reduce start-up cost through forward scheduling
 - Maintain a set of live MapReduce jobs and assign them tasks instead of starting new jobs from scratch
Very high dimensional data

- If the number of splits is too large the Mapper might run out of memory
- Instead of defining split tasks as a set of nodes to grow, define them as a set of nodes to grow and a set of attributes to explore
 - This way each mapper explores a smaller number of splits (needs less memory)
Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - Predictions from each tree are averaged to compute the final model prediction
Bagged Decision Trees

- **Model construction for bagging in PLANET**
 - When tree induction begins at the root, nodes of all trees in the bagged model are pushed onto the MRQ queue
 - Controller does tree induction over dataset samples
 - Queues will contain nodes belonging to many different trees instead of a single tree
- **How to create random samples of D***?
 - Compute a hash of a training record’s id and tree id
 - Use records that hash into a particular range to learn a tree
 - This way the same sample is used for all nodes in a tree
 - **Note:** This is sampling D* without replacement (but samples of D* should be created with replacement)
SVM vs. DT

- **SVM**
 - Classification
 - Real valued features (no categorical ones)
 - Tens/hundreds of thousands of features
 - Very sparse features
 - Simple decision boundary
 - No issues with overfitting
 - Example applications
 - Text classification
 - Spam detection
 - Computer vision

- **Decision trees**
 - Classification
 - Real valued and categorical features
 - Few (hundreds) of features
 - Usually dense features
 - Complicated decision boundaries
 - Overfitting!
 - Example applications
 - User profile classification
 - Landing page bounce prediction
Experiments: Bounce Rate Prediction

- **Google:** Bounce rate of ad = fraction of users who **bounced from ad landing page**
 - Clicked on ad and quickly moved on to other tasks
 - Bounce rate high --> users not satisfied

- **Prediction goal:**
 - Given an new add and a query
 - Predict bounce rate using query/ad features

- **Feature sources:**
 - Query
 - Ad keyword
 - Ad creative
 - Ad landing page
Experimental Setup

- **MapReduce Cluster**
 - 200 machines
 - 768MB RAM, 1GB Disk per machine
 - 3 MapReduce jobs forward-scheduled

- **Full Dataset:** 314 million records
 - 6 categorical features, cardinality varying from 2-500
 - 4 numeric features

- Compare performance of PLANET on whole data with *R* on sampled data
 - *R* model trains on 10 million records (~ 2GB)
 - Single machine: 8GB, 10 trees, each of depth 1-10
 - Peak RAM utilization: 6GB
Results: Scalability
Results: Prediction accuracy

- Prediction accuracy (RMSE) of PLANET on full data better than R on sampled data