Frequent Itemset Mining & Association Rules

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If one buys diaper and milk, then he is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:
- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
The Market-Basket Model

- A large set of **items**
 - e.g., things sold in a supermarket
- A large set of **baskets**, each is a small subset of items
 - e.g., the things one customer buys on one day
- A general many-many mapping (association) between two kinds of things
 - But we ask about connections among "items," not "baskets"

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Association Rules: Approach

- Given a set of baskets
- Want to discover association rules
 - People who bought \{x,y,z\} tend to buy \{v,w\}
 - Amazon!

2 step approach:
- 1) Find frequent itemsets
- 2) Generate association rules

Input:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Output:

Rules Discovered:
- \{Milk\} --\> \{Coke\}
- \{Diaper, Milk\} --\> \{Beer\}
Applications – (1)

- **Items** = products; **baskets** = sets of products someone bought in one trip to the store
- **Real market baskets**: chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price of beer
- **High support** needed, or no $$’s
- **Amazon’s people who bought X also bought Y**
Applications – (2)

- **Baskets** = sentences; **items** = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension**: absence of an item needs to be observed as well as presence.
Applications – (3)

- Finding communities in graphs (e.g., web)
- **Baskets** = nodes; **items** = outgoing neighbors
 - Searching for complete bipartite subgraphs $K_{s,t}$ of a big graph
 - Use this to define topics:
 - What the same people on the left talk about on the right
 - A dense 2-layer graph

- **How?**
 - View each node i as a bucket B_i of nodes i it points to
 - $K_{s,t} = \text{a set } Y \text{ of size } t \text{ that occurs in } s \text{ buckets } B_i$
 - Looking for $K_{s,t} \rightarrow \text{set of support } s \text{ and look at layer } t$ – all frequent sets of size t
First: Define

Frequent Itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

Apriori algorithm

PCY algorithm + 2 refinements
Frequent Itemsets

- **Simplest question**: Find sets of items that appear together “frequently” in baskets

- **Support** for itemset I: number of baskets containing all items in I
 - Often expressed as a fraction of the total number of baskets

- Given a **support threshold** s, then sets of items that appear in at least s baskets are called **frequent itemsets**

Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Minimum support** = 3 baskets

\[
\begin{align*}
B_1 &= \{m, c, b\} & B_2 &= \{m, p, j\} \\
B_3 &= \{m, b\} & B_4 &= \{c, j\} \\
B_5 &= \{m, p, b\} & B_6 &= \{m, c, b, j\} \\
B_7 &= \{c, b, j\} & B_8 &= \{b, c\}
\end{align*}
\]

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}.
Association Rules

- **Association Rules:**
 If-then rules about the contents of baskets

- \{i_1, i_2, \ldots, i_k\} \rightarrow j \text{ means: “if a basket contains all of } i_1, \ldots, i_k \text{ then it is likely to contain } j”

- **Confidence** of this association rule is the probability of } j \text{ given } I = \{i_1, \ldots, i_k\}

\[
\text{conf}(I \rightarrow j) = \frac{\Pr[I \cup j]}{\Pr[I]} = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]

1/10/2012

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X)
 - **Interest** of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j
 \[
 \text{Interest}(I \rightarrow j) = \text{conf}(I \rightarrow j) - \text{Pr}[j]
 \]
- Interesting rules are those with high positive or negative interest values
Example: Confidence and Interest

\[
B_1 = \{m, c, b\} \quad \quad B_2 = \{m, p, j\}
\]
\[
B_3 = \{m, b\} \quad \quad B_4 = \{c, j\}
\]
\[
B_5 = \{m, p, b\} \quad \quad B_6 = \{m, c, b, j\}
\]
\[
B_7 = \{c, b, j\} \quad \quad B_8 = \{b, c\}
\]

- Association rule: \(\{m, b\} \rightarrow c\)
 - **Confidence** = \(\frac{2}{4} = 0.5\)
 - **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8}\)
 - Item \(c\) appears in \(\frac{5}{8}\) of the baskets
 - Rule is not very interesting!
Problem: Find all association rules with support $\geq s$ and confidence $\geq c$

- Note: Support of an association rule is the support of the set of items on the left side

- Hard part: Finding the frequent itemsets!

- If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Mining Association Rules

- **Step 1:** Find all frequent itemsets \(I \)
 - (we will explain this next)

- **Step 2:** Rule generation
 - For every subset \(A \) of \(I \), generate a rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - \(\text{conf}(AB \rightarrow CD) = \frac{\text{supp}(ABCD)}{\text{supp}(AB)} \)
 - **Variant 2:**
 - **Observation:** If \(ABC \rightarrow D \) is below confidence, so is \(AB \rightarrow CD \)
 - Can generate “bigger” rules from smaller ones!

- **Output the rules above the confidence threshold**
Example

- $B_1 = \{m, c, b\}$
- $B_2 = \{m, p, j\}$
- $B_3 = \{m, c, b, n\}$
- $B_4 = \{c, j\}$
- $B_5 = \{m, p, b\}$
- $B_6 = \{m, c, b, j\}$
- $B_7 = \{c, b, j\}$
- $B_8 = \{b, c\}$

- **Min support $s=3$, confidence $c=0.75$**

- **1) Frequent itemsets:**
 - $\{b, m\}$
 - $\{b, c\}$
 - $\{c, m\}$
 - $\{c, j\}$
 - $\{m, c, b\}$

- **2) Generate rules:**
 - $b \rightarrow m$: $c=4/6$
 - $b \rightarrow c$: $c=5/6$
 - $b, c \rightarrow m$: $c=3/5$
 - $m \rightarrow b$: $c=4/5$
 - $b \rightarrow m$: $c=3/4$
 - $b, m \rightarrow c$: $c=3/4$
1. **Maximal Frequent itemsets**: no immediate superset is frequent

2. **Closed itemsets**: no immediate superset has the same count (> 0).
 - Stores not only frequent information, but exact counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Frequent, but superset BC also frequent.
- Frequent, and its only superset, ABC, not frequent.
- Superset BC has same count.
- Its only superset, ABC, has smaller count.
Finding Frequent Itemsets
Back to finding frequent itemsets

Typically, data is kept in flat files rather than in a database system:
- Stored on disk
- Stored basket-by-basket
- Baskets are small
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k
Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/O’s

- In practice, association-rule algorithms read the data in passes – all baskets read in turn

- We measure the cost by the number of passes an algorithm makes over the data
For many frequent-itemset algorithms, **main-memory** is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster (**why?**)
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items \(\{i_1, i_2\}\)
 - Why? Often frequent pairs are common, frequent triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size.
- Concentrate on pairs, then extend to larger sets

- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count/keep track only of those that at the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of \(n \) items, generate its \(n(n-1)/2 \) pairs by two nested loops
- Fails if \((#\text{items})^2\) exceeds main memory
 - Remember: \#items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose \(10^5 \) items, counts are 4-byte integers.
 - Number of pairs of items: \(10^5(10^5-1)/2 = 5*10^9 \)
 - Therefore, \(2*10^{10} \) (20 gigabytes) of memory needed
Counting Pairs in Memory

Two Approaches:

- **Approach 1**: Count all pairs using a matrix
- **Approach 2**: Keep a table of triples \([i, j, c]\) = “the count of the pair of items \(\{i, j\}\) is \(c\)”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- **Approach 1** only requires 4 bytes per pair
- **Approach 2** uses 12 bytes per pair (but only for pairs with count > 0)
Comparing the 2 Approaches

Triangular Matrix

4 bytes per pair

Triples

12 per occurring pair
Triangular Matrix Approach

- \(n \) = total number items
- Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position \((i - 1)(n - i/2) + j - 1 \)
 - Total number of pairs \(n(n - 1)/2 \); total bytes = \(2n^2 \)
 - **Triangular Matrix** requires 4 bytes per pair
 - **Approach 1** uses 12 bytes per pair (*but only for pairs with count > 0*)
 - Beats triangular matrix if less than 1/3 of possible pairs actually occur
A-Priori Algorithm
A two-pass approach called \textit{a-priori} limits the need for main memory

\textbf{Key idea: monotonicity}

- If a set of items I appears at least s times, so does every subset J of I.

\textbf{Contrapositive for pairs:}

If item i does not appear in s baskets, then no pair including i can appear in s baskets
A-Priori Algorithm – (2)

- **Pass 1:** Read baskets and count in main memory the occurrences of each *individual item*
 - Requires only memory proportional to #items
- **Items that appear at least s times are the frequent items**
- **Pass 2:** Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of *frequent* items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Pass 1

Item counts

Pass 2

Frequent items

Counts of pairs of frequent items (candidate pairs)
You can use the triangular matrix method with $n =$ number of frequent items
- May save space compared with storing triples
- **Trick:** re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s) \text{ based on information from the pass for } k-1$

- $L_k = \text{the set of truly frequent } k\text{-tuples}$
Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C_1
- Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C_2
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \}$
- Count the support of itemsets in C_3
- Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory
PCY (Park-Chen-Yu) Algorithm
Observation:
In pass 1 of a-priori, most memory is idle
- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
 - Just the count, not the pairs that hash to the bucket!
FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times
Observations about Buckets

- If a bucket contains a **frequent pair**, then the bucket is surely **frequent**
 - But we cannot use the hash to eliminate any member of this bucket
- Even without any frequent pair, a bucket can still be frequent
- **But, for a bucket with total count less than** s, none of its pairs can be frequent
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)

- **Pass 2:**
 Only count pairs that hash to frequent buckets
PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support \(s \) (a frequent bucket); 0 means it did not
- 4-byte integers are replaced by bits, so the bit-vector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass
Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:

1. Both \(i \) and \(j \) are frequent items
2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., frequent bucket)

Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

- Hash table
 - Item counts
 - Counts of candidate pairs
- Bitmap
 - Frequent items

Pass 1

Pass 2
Main-Memory Details

- **Buckets require a few bytes each:**
 - **Note:** we don’t have to count past s
 - #buckets is O(main-memory size)

- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, **why**?
 - Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat a-priori.
Limit the number of candidates to be counted

- **Remember**: memory is the bottleneck
- Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent

Key idea: After Pass 1 of PCY, rehash only those pairs that **qualify** for Pass 2 of PCY
- i and j are frequent, and
- \{i,j\} hashes to a frequent bucket from Pass 1

- On middle pass, fewer pairs contribute to buckets, so fewer **false positives**
- Requires 3 passes over the data
Main-Memory: Multistage

Pass 1
- Count items
- Hash pairs \{i,j\}

Pass 2
- Hash pairs \{i,j\} into Hash2 iff:
 - i,j are frequent,
 - \{i,j\} hashes to freq. bucket in B1

Pass 3
- Count pairs \{i,j\} iff:
 - i,j are frequent,
 - \{i,j\} hashes to freq. bucket in B1
 - \{i,j\} hashes to freq. bucket in B2

Item counts
Freq. items
Bitmap 1
Freq. items
Bitmap 1
Counts of candidate pairs
Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:

1. Both \(i \) and \(j \) are frequent items
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.
Important Points

1. The two hash functions have to be independent.
2. We need to check both hashes on the third pass:
 - If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket.
Refinement: Multimash

- **Key idea:** Use several independent hash tables on the first pass
- **Risk:** Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes
Main-Memory: Multihash

- Item counts
- First hash table
- Second hash table
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs

Pass 1

Pass 2
Either multistage or multihash can use more than two hash functions

In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory

For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$
Frequent Itemsets in ≤ 2 Passes
Frequent Itemsets In ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- Can we use fewer passes?

- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (see textbook)
Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size

Copy of sample baskets

Space for counts

Main memory
Random Sampling (2)

- Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)

- But you don’t catch sets frequent in the whole but not in the sample
 - Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets
 - But requires more space
SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a candidate if it is found to be frequent in *any* one or more subsets of the baskets.
SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.

- **Key “monotonicity” idea:** An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON – Distributed Version

- SON lends itself to distributed data mining
- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates.
SON: Map/Reduce

- **Phase 1: Find candidate itemsets**
 - Map?
 - Reduce?

- **Phase 2: Find true frequent itemsets**
 - Map?
 - Reduce?