More algorithms for streams:

1. Filtering a data stream: *Bloom filters*
 - Select elements with property x from stream

2. Counting distinct elements: *Flajolet-Martin*
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: *AMS method*
 - Estimate std. dev. of last k elements

4. Counting frequent items
(1) Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which elements of stream have keys in S
- **Obvious solution:** Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering:**
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is NOT spam

- **Publish-subscribe systems:**
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest
Create a bit array B of n bits, initially all 0s

Choose a hash function h with range $[0,m)$

Hash each member of $s \in S$ to one of m buckets, and set that bit to 1, i.e., $B[h(s)]=1$

Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if $B[h(a)] == 1$
First Cut Solution – (2)

- **Creates false positives but no false negatives**
 - If the item is in S we surely output it, if not we may still output it
First Cut Solution – (3)

- $|S| = 1$ billion email addresses
 $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
Analysis: Throwing Darts

- More accurate analysis for the number of false positives

- Consider: If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items
We have m darts, n targets

What is the probability that a target gets at least one dart?

\[1 - (1 - 1/n)\]

Equals 1/e as $n \to \infty$

Equivalent

\[1 - e^{-m/n}\]
Analysis: Throwing Darts – (3)

- Fraction of 1s in the array B == probability of false positive == $1 - e^{-m/n}$

- **Example:** 10^9 darts, $8 \cdot 10^9$ targets
 - Fraction of 1s in B = $1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Consider: $|S| = m$, $|B| = n$

Use k independent hash functions h_1, \ldots, h_k

Initialization:
- Set B to all 0s
- Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)

Run-time:
- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$, then declare that x is in S
 - i.e., x hashes to a bucket set to 1 for every hash function $h_i()$
 - Otherwise discard the element x
What fraction of the bit vector \(B \) are 1s?

- Throwing \(k \cdot m \) darts at \(n \) targets
- So fraction of 1s is \((1 - e^{-km/n})\)

But we have \(k \) independent hash functions

So, false positive probability = \((1 - e^{-km/n})^k\)
m = 1 billion, n = 8 billion
- k = 1: \(1 - e^{-1/8}\) = 0.1175
- k = 2: \((1 - e^{-1/4})^2\) = 0.0493

What happens as we keep increasing k?

“Optimal” value of k: \(n/m \ln(2)\)
- E.g.: 8 \(\ln(2)\) = 5.54
Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks
- E.g., Google’s BigTable, Squid web proxy

Suitable for hardware implementation

- Hash function computations can be parallelized
New topic: Counting Distinct Elements

Problem:
- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach: Maintain the set of elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large
Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$

- $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$

Record $R =$ the maximum $r(a)$ seen

- $R = \max_a r(a)$, over all the items a seen so far

Estimated number of distinct elements $= 2^R$
The probability that a given $h(a)$ ends in at least r 0s is 2^{-r}

Probability of NOT seeing a tail of length r among m elements: $\left(1 - 2^{-r}\right)^m$
Why It Works – (2)

- Prob. of NOT finding a tail of length \(r \) is:
 - If \(m << 2^r \), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \to 0 \)
 - So, the probability of finding a tail of length \(r \) tends to 0
 - If \(m >> 2^r \), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \to \infty \)
 - So, the probability of finding a tail of length \(r \) tends to 1
- Thus, \(2^R \) will almost always be around \(m \)

- Note: \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}\)
One can also think of Flajolet-Martin the following way (roughly):

- $h(a)$ hashes item a with equal prob. to any of N values
- Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of a’s have a tail r zeros
 - 50% hashes end with ***0, 25% hashes end with **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen 4 distinct items so far
- So, in expectation it takes 2^r items before we see one with zero-suffix of length r
E\[^2^R\] is actually infinite
 - Probability halves when \(R \rightarrow R+1 \), but value doubles
 - Workaround involves using many hash functions and getting many samples

How are samples combined?
 - Average? What if one very large value?
 - Median? All estimates are a power of 2

Solution:
 - Partition your samples into small groups
 - Take the average of groups
 - Then take the median of the averages
Suppose a stream has elements chosen from a set of N values

Let m_a be the number of times value a occurs

The k^{th} moment is $\sum_a (m_a)^k$
Special Cases

- 0^{th} moment = number of distinct elements
 - The problem just considered

- 1^{st} moment = count of the numbers of elements = length of the stream.
 - Easy to compute

- 2^{nd} moment = surprise number = a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100; 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise # = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise # = 8,110
AMS Method

- Works for all moments
- Gives an unbiased estimate

- We will just concentrate on the 2nd moment

- Based on calculation of many random variables X:
 - For each rnd. var. X we store $X.el$ and $X.val$
 - Note this requires a count in main memory, so number of Xs is limited

[Alon, Matias, and Szegedy]
One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n
 - Pick a random time t to start, so that any time is equally likely
 - Let at time t the stream have element a (i.e., $X.el = a$)
 - Maintain count c ($X.val = c$) of the number a’s in the stream starting from the chosen time t

- Then the estimate of the 2nd moment is $n \times (2c - 1)$
 - Store n once, count a’s for each X
2nd moment is $\sum_a (m_a)^2$

c_t ... the number of times the stream element at time t appears from that time on

$E[X.val] = \frac{1}{n} \sum_{all times t} n \ (2 \ c_t \ - \ 1)$

$= \sum_a \ (\frac{1}{n}) \ (n) \ (1 + 3 + 5 + ... + 2m_a -1)$

$= \sum_a (m_a)^2$

Group times by the value seen

Time when the last a is seen

Time when the penultimate a is seen

Time when the first a is seen
In practice:

- Compute $n (2c - 1)$ for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Proper balance of group sizes and number of groups assures not only correct expected value, but expected error goes to 0 as number of samples gets large
Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable – the number of inputs seen so far.
Streams Never End: Fixups

1. The variables X have n as a factor – keep n separately; just hold the count in X

2. Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:**
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n.
 - If you choose it, throw one of the previously stored variables out, with equal probability.
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item
- $1 =$ item present; $0 =$ not present
- Use DGIM to estimate counts of 1’s for all items
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big
Exponentially decaying windows: A heuristic for selecting likely frequent itemsets

What are “currently” most popular movies?

- Instead of computing the raw count in last N elements
- Compute a smooth aggregation over the whole stream

If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:

$$= \sum_{i=1,2,\ldots,t} a_i e^{-c(t-i)} \quad \text{(or, } \sum_{i=1,\ldots,t} a_i (1-c)^{t-i})$$

- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
If each a_i is an “item” we can compute the characteristic function of each possible item x as an E.D.W.

That is: $\sum_{i=1,2,\ldots,t} \delta_i e^{-c(t-i)}$

- where $\delta_i = 1$ if $a_i = x$, and 0 otherwise

Call this sum the “weight” item x
Sliding Versus Decaying Windows

\[\frac{1}{C} \]
Suppose we want to find those items of weight at least $\frac{1}{2}$

Important property: Sum over all weights is $\frac{1}{1-e^{-c}}$ or very close to $\frac{1}{[1 - (1 - c)]} = \frac{1}{c}$

Thus:
At most $\frac{2}{c}$ items have weight at least $\frac{1}{2}$.
Extension to Larger Itemsets

- Count (some) itemsets in an E.D.W.
- When a basket B comes in:
 1. Multiply all counts by $(1-c)$;
 2. For uncounted items in B, create new count.
 3. Add 1 to count of any item in B and to any counted itemset contained in B.
 4. Drop counts $< \frac{1}{2}$.
 5. Initiate new counts (next slide).

* Informal proposal of Art Owen
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

- **Example:** Start counting $\{i, j\}$ iff both i and j were counted prior to seeing B

- **Example:** Start counting $\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
How Many Counts?

- Counts for single items < (2/c) times the average number of items in a basket

- Counts for larger itemsets = ???. But we are conservative about starting counts of large sets.
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts.