Mining Data Streams (Part 1)
In many data mining situations, we know the entire data set in advance.

Stream Management is important when the input rate is controlled externally:
- Google queries
- Twitter or Facebook status updates
The Stream Model

- Input tuples enter at a rapid rate, at one or more input ports
- The system cannot store the entire stream accessibly
- How do you make critical calculations about the stream using a limited amount of (secondary) memory?
Ad-Hoc Queries

Processor

Standing Queries

Output

Streams Entering:

1, 5, 2, 7, 0, 9, 3

a, r, v, t, y, h, b

0, 0, 1, 0, 1, 1, 0

time

Limited Working Storage

Archival Storage
Applications – (1)

- **Mining query streams**
 - Google wants to know what queries are more frequent today than yesterday

- **Mining click streams**
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

- **Mining social network news feeds**
 - E.g., Look for trending topics on Twitter, Facebook
Applications – (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks
Problems on Data Streams

- Sampling data from a stream
- Filtering a data stream
- Queries over sliding windows
- Counting distinct elements
- Estimating moments (avg., std. dev., ...)
- Finding frequent elements
- Frequent itemsets
Since we can not store the entire stream, one obvious approach is to store a sample.

Two different problems:

- Sample a fixed proportion of elements in the stream (say 1 in 10)
- Maintain a random sample of fixed size over a potentially infinite stream
Scenario: Search engine query stream

- **Stream of tuples:** (user, query, time)
- **Answer questions such as:** How often did a user run the same query on two different days?
- **Have space to store 1/10th of query stream**

Naïve solution:
- Generate a random integer in [0..9] for each query
- Store query if the integer is 0, otherwise discard
Consider the question: What fraction of queries by an average user are duplicates?

Suppose each user issues s queries once and d queries twice (total of $s+2d$ queries)

- Correct answer: $d/(s+2d)$
- Sample will contain $s/10$ of the singleton queries and $2d/10$ of the duplicate queries at least once
- But only $d/100$ pairs of duplicates
- So the sample-based answer is: $d/(10s+20d)$
Solution: Sample Users

- Pick $1/10^{th}$ of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets
Stream of tuples with keys:

- Key is some subset of each tuple’s components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of size a/b:

- Hash each tuple’s key uniformly into b buckets
- Pick the tuple if its hash value is at most a
Suppose we need to maintain a sample of size exactly s
- E.g., main memory size constraint
- **Why?** Don’t know length of stream in advance
- In fact, stream could be infinite
- Suppose at time t we have seen n items
- Ensure each item is in the sample with equal probability s/n
Store all the first s elements of the stream

Suppose we have seen $n-1$ elements, and now the n^{th} element arrives ($n > s$)

- With probability s/n, pick the n^{th} element, else discard it
- If we picked the n^{th} element, then it replaces one of the s elements in the sample, picked uniformly at random

Claim: This algorithm maintains a sample with the desired property
Proof: By Induction

- Assume that after n elements, the sample contains each element seen so far with probability s/n
- When we see element $n+1$, it gets picked with probability $s/(n+1)$
- For elements already in the sample, probability of remaining in the sample is:

$$
\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}
$$

- Element $n+1$ discarded
- Element $n+1$ not discarded
- Element in the sample not picked
A useful model of stream processing is that queries are about a window of length N – the N most recent elements received.

Interesting case: N is so large it cannot be stored in memory, or even on disk.
- Or, there are so many streams that windows for all cannot be stored.
Sliding Window: 1 Stream

$qwertyuiopasdfghjklzxcvbnm$

$qwertyuiopasdfghjklzxcvbnm$

$qwertyuiopasdfghjklzxcvbnm$

$qwertyuiopasdfghjklzxcvbnm$

← Past Future →
Counting Bits – (1)

Problem:
- Given a stream of 0’s and 1’s (WLOG)
- Be prepared to answer queries of the form “how many 1’s in the last k bits?” where $k \leq N$

Obvious solution:
- Store the most recent N bits
- When new bit comes in, discard the $N + 1^{st}$ bit
You can not get an exact answer without storing the entire window.

Real Problem:
What if we cannot afford to store N bits?
- E.g., we’re processing 1 billion streams and $N = 1$ billion

But we are happy with an approximate answer.
DGIM Method

- Store $O(\log^2 N)$ bits per stream
- Gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits
Solution That Doesn’t (Quite) Work:

- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point as a larger region

We can construct the count of the last N bits, except we are not sure how many of the last 6 are included.
What’s Good?

- Stores only $O(\log^2 N)$ bits
 - $O(\log N)$ counts of $\log_2 N$ bits each

- Easy update as more bits enter

- Error in count no greater than the number of 1s in the “unknown” area
As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%

But it could be that all the 1s are in the unknown area at the end

In that case, the error is unbounded
Fixup: DGIM method

- Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s.
 - Let the block “sizes” (number of 1s) increase exponentially

- When there are few 1s in the window, block sizes stay small, so errors are small
Each bit in the stream has a timestamp, starting 1, 2, ...

Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(\log_2 N)$ bits
A bucket in the DGIM method is a record consisting of:

1. The timestamp of its end \([O(\log N) \text{ bits}]\)
2. The number of 1s between its beginning and end \([O(\log \log N) \text{ bits}]\)

Constraint on buckets:

Number of 1s must be a power of 2

- That explains the \(O(\log \log N)\) in \((2)^{26}\)
Either one or two buckets with the same power-of-2 number of 1s

Buckets do not overlap in timestamps

Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets.

Buckets disappear when their end-time is $> N$ time units in the past
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.

2 of size 8

2 of size 4

1 of size 2

2 of size 1

N
When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time

If the current bit is 0, no other changes are needed
If the current bit is 1:
1. Create a new bucket of size 1, for just this bit
 - End timestamp = current time
2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2.
3. If there are now three buckets of size 2, combine the oldest two into a bucket of size 4.
4. And so on ...
Example: Updating Buckets

```
1001010110001011 010101010101011 0101010101011 0101010110101 000 1011 100 10
001010110001011 010101010101011 0101010101011 0101010110101 000 1011 100 101
001010110001011 010101010101011 0101010101011 0101010110101 000 1011 100 101
010110001011 0101010101011 01010101011 0101010110101 000 1011 100 101
010110001011 0101010101011 01010101011 0101010110101 000 1011 100 101
010110001011 0101010101011 01010101011 0101010110101 000 1011 100 101
2/28/2011
Jure Leskovec, Stanford C246: Mining Massive Datasets
```
To estimate the number of 1s in the most recent N bits:

1. Sum the sizes of all buckets but the last
2. Add half the size of the last bucket

Remember: We do not know how many 1s of the last bucket are still within the window
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.

N
Error Bound

- Suppose the last bucket has size 2^k.
- Then by assuming 2^{k-1} of its 1s are still within the window, we make an error of at most 2^{k-1}.
- Since there is at least one bucket of each of the sizes less than 2^k, the true sum is at least $1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1$.
- Thus, error at most 50%
Can we use the same trick to answer queries “How many 1’s in the last \(k \)” where \(k < N \)?

- A: Find earliest bucket \(B \) that at overlaps with \(k \). Number of 1s is the sum of sizes of more recent buckets + \(\frac{1}{2} \) size of \(B \)

Can we handle the case where the stream is not bits, but integers, and we want the sum of the last \(k \) elements?
Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either \(r - 1 \) or \(r \) for \(r > 2 \)
 - Except for the largest size buckets; we can have any number between 1 and \(r \) of those

- Error is at most by \(1/(r-1) \)

- By picking \(r \) appropriately, we can tradeoff between number of bits and error