Decision Trees on MapReduce
Decision Trees

- Input features:
 - N features: X_1, X_2, \ldots, X_N
 - Each X_j has domain D_j
 - Categorical: $D_j = \{\text{red, blue}\}$
 - Numerical: $D_j = (0, 10)$
 - Y is output variable with domain D_Y:
 - Categorical: Classification
 - Numerical: Regression

- Task:
 - Given input data vector x_i predict y_i
Decision Trees (1)

- **Decision trees:**
 - Split the data at each internal node
 - Each leaf node makes a prediction

- **Lecture today:**
 - Binary splits: $X_j < v$
 - Numerical attrs.
 - Regression

![Decision Tree Diagram]

A

- **yes** $X_1 < v_1$
- **no**

Y = 0.42

D

- $X_2 < v_2$

F

- $X_3 < v_4$

I

- $X_2 < v_5$

G

H
How to make predictions?

- **Input**: Example x_i
- **Output**: Predicted y_i'
- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits

\[
Y = 0.42
\]
How to construct a tree?

- Training dataset D^*, $|D^*| = 100$ examples

![Diagram of a tree with labeled nodes and edge traversal counts.](image)
How to construct a tree?

- Alternative view:
How to construct a tree?

Algorithm 1 InMemoryBuildNode

Require: Node n, Data \(D \subseteq D^* \)

1: \((n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)\)
2: if StoppingCriteria(\(D_L\)) then
3: \(n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)\)
4: else
5: \(\text{InMemoryBuildNode}(n \rightarrow \text{left}, D_L)\)
6: if StoppingCriteria(\(D_R\)) then
7: \(n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)\)
8: else
9: \(\text{InMemoryBuildNode}(n \rightarrow \text{right}, D_R)\)

- Requires at least a single pass over the data!
How to construct a tree?

- **How to split?**
 - Pick attribute & value that optimizes some criterion I:
 - \[\max I(D) - (I(D_L) + I(D_R)) \]
 - D, D_L, D_R: parent, left, right child datasets

- **When to stop?**
 - When the leaf is “pure”:
 - E.g., $\text{Var}(y_i) < \varepsilon$
 - When # of examples in the leaf is too small:
 - E.g., $|D| \leq 10$

- **How to predict?**
 - Predictor: avg. y_i of the examples in the leaf
Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!

General considerations:
- Tree is small (can keep it memory):
 - Shallow (~10 levels)
- Dataset too large to keep in memory
- Dataset too big to scan over on a single machine
- MapReduce to the rescue!

Algorithm 1 FindBestSplit

```
Require: Node n, Data D ⊆ D*
1: (n → split,DL,DR) = FindBestSplit(D)
2: if StoppingCriteria(DL) then
3:   n → left_prediction = FindPrediction(DL)
4: else
5:   FindBestSplit(n → left,DL)
6: if StoppingCriteria(DR) then
7:   n → right_prediction = FindPrediction(DR)
8: else
9:   FindBestSplit(n → right,DR)
```
MapReduce

Can use a secondary key to control ordering in which reducers see key-value pairs
Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ‘09]

- A sequence of MapReduce jobs that build the decision tree

- Setting:
 - Hundreds of numerical (discrete & continuous) attributes
 - Target (class) is numerical: regression
 - Splits are binary: $X_j < v$
 - Decision tree is small enough for each Mapper to keep it in memory
 - Data too large to keep in memory
Components of PLANET:

- **Master:**
 - Monitors and controls everything (runs multiple MapReduce jobs)

- **MapReduce Initialization Task:**
 - For each attribute identify values to be considered for splits

- **MapReduce FindBestSplit Task:**
 - MapReduce job to find best split when there is too much data to fit in memory

- **MapReduce InMemoryBuild Task:**
 - Similar to FindBestSplit
 - Grows an entire sub-tree once the data for it fits in memory

- **Model file**
 - A file describing the state of the model

Algorithm 1: FindBestSplit

```
Require: Node $n$, Data $D \subseteq D^*$
1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
2: if StoppingCriteria($D_L$) then
3: \hspace{1em} $n \rightarrow \text{left prediction} = \text{FindPrediction}(D_L)$
4: else
5: \hspace{2em} $\text{FindBestSplit}(n \rightarrow \text{left}, D_L)$
6: if StoppingCriteria($D_R$) then
7: \hspace{2em} $n \rightarrow \text{right prediction} = \text{FindPrediction}(D_R)$
8: else
9: \hspace{3em} $\text{FindBestSplit}(n \rightarrow \text{right}, D_R)$
```

Hardest part
PLANET Architecture

Input data → Model

Attribute metadata → Model

Master → FindBestSplit → InMemoryGrow → Master

Intermediate results
Initialization: Attribute metadata

- Identifies all the attribute values which need to be considered for splits
- Splits for numerical attributes:
 - Would like to consider very possible value \(v \in D \)
 - Compute an approximate equi-depth histogram on \(D^* \)
 - Idea: Select buckets such that counts per bucket are equal
 - Boundary points of histogram used for potential splits
- Generates an “attribute metadata” to be loaded in memory by other tasks
Goal:

- Equal number of elements per bucket (B buckets total)
- Construct by first sorting and then taking B-1 equally-spaced splits

Faster construction:
Sample & take equally-spaced splits in sample
- Nearly equal buckets
PLANET: Master

- Controls the entire process
- Determine the state of the tree and grows it:
 - Decides if nodes should be split
 - If there’s little data entering a node, runs an InMemory-Build MapReduce job to grow the entire subtree
 - For larger nodes, launches MapReduce to find candidates for best split
 - Collects results from MapReduce jobs and chooses the best split for a node
 - Updates model
- Periodically checkpoints system
Mapste keeps two node queues:

- **MapReduceQueue (MRQ)**
 - Contains nodes for which D is too large to fit in memory

- **InMemoryQueue (InMemQ)**
 - Contains nodes for which the data D in the node fits in memory

Two MapReduce jobs:

- **FindBestSplit**: Processes nodes from the MRQ
 - For a given set of nodes S, computes a candidate of good split predicate for each node in S

- **InMemoryBuild**: Processes nodes from the InMemQ
 - For a given set of nodes S, completes tree induction at nodes in S using the InMemoryBuild algorithm

Start by executing FindBestSplit on full data D*
MapReduce job to find best split when there is too much data to fit in memory

Goal: For a particular split node find attribute X_j and value v that maximize:

$$|D| \times \text{Var}(D) - (|D_L| \times \text{Var}(D_L) + |D_R| \times \text{Var}(D_R))$$

- D ... training data (x_i, y_i) reaching the node
- D_L ... training data x_i, where $x_{i,j} < v$
- D_R ... training data x_i, where $x_{i,j} \geq v$
- $\text{Var}(D) = 1/(n-1) \sum_i y_i^2 - (\sum_i y_i)^2/n$

Note: Can be computed from sufficient statistics: $\sum y_i$, $\sum y_i^2$
FindBestSplit: Map

- Mapper:
 - Initialize by loading from Initialization task
 - Current Model (to find which node each x_i ends up)
 - Attribute metadata (all split points for each attribute)
 - For each record run the Map algorithm
 - For each node output to all reducers
 - $<\text{Node.Id}, \{ \Sigma y, \Sigma y^2, \Sigma 1 \} >$
 - For each split output:
 - $<\text{Split.Id}, \{ \Sigma y, \Sigma y^2, \Sigma 1 \} >$
 - Split.Id = (node, feature, split value)
FindBestSplit: Map

- Requires: Split node set S, Model file M, Training record \((x_i, y_i)\)

Node = TraverseTree(M, x)

if Node \(n \in S\):

Update \(T_n \leftarrow y_i\) //stores \(\{\Sigma y, \Sigma y^2, \Sigma 1\}\) for each node

for \(j = 1 \ldots N\): //\(N\)... number of features

\(v = \) value of feature \(X_j\) of example \(x_i\)

for each split point \(s\) of feature \(X_j\), s.t. \(s < v\):

Update \(T_{n,j}[s] \leftarrow y_i\) //stores \(\{\Sigma y, \Sigma y^2, \Sigma 1\}\) for each (node, feature, split)

- MapFinalize: Emit

- <Node.Id, \{ \(\Sigma y, \Sigma y^2, \Sigma 1\) \}> // sufficient statistics (so we can later

- <Split.Id, \{ \(\Sigma y, \Sigma y^2, \Sigma 1\) \}> // compute variance reduction
Reducer:

1) Load all the <Node_Id, List {Σy, Σy², Σ1}> pairs and aggregate the per_node statistics
2) For each <Split_Id, List {Σy, Σy², Σ1}> run the reduce algorithm

For each Node_Id, output the best split found:

Reduce(Split_Id, values):
 split = NewSplit(Split_Id)
 best = BestSplitSoFar(split.node.id)
 for stats in values
 split.stats.AddStats(stats)
 left = GetImpurity(split.stats)
 right = GetImpurity(split.node.stats–split.stats)
 split.impurity = left + right
 if split.impurity < best.impurity:
 UpdateBestSplit(Split.Node.Id, split)
Back to the Master

- Collects outputs from FindBestSplit Reducers
 `<Split.Node.Id, feature, value, impurity>`
- For each node decides the best split
 - If data in D_L/D_R is small enough put B/C in InMemoryQueue
 - to later run InMemoryBuild on the node
 - Else put B/C into MapReduceQueue
InMemoryBuild: Map and Reduce

- **Task:** Grow an entire subtree once the data for it fits in memory
- **Mapper:**
 - Initialize by loading current model file
 - For each record identify the node it falls under and if that node is to be grown, output `<Node_Id, Record>`
- **Reducer:**
 - Initialize by loading attribute file from Initialization task
 - For each `<Node_Id, List{Record}>` run the basic tree growing algorithm on the records
 - Output the best splits for each node in the subtree

Algorithm 1 InMemoryBuildNode

```
Require: Node n, Data \( D \subseteq D^* \)
1: \((n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)\)
2: if StoppingCriteria\((D_L)\) then
3: \( n \rightarrow \text{left\_prediction} = \text{FindPrediction}(D_L)\)
4: else
5: \ InMemoryBuildNode\( (n \rightarrow \text{left}, D_L) \)
6: if StoppingCriteria\((D_R)\) then
7: \( n \rightarrow \text{right\_prediction} = \text{FindPrediction}(D_R)\)
8: else
9: \ InMemoryBuildNode\( (n \rightarrow \text{right}, D_R) \)
```
Master:
- need to split nodes F, G, H, I
- D_1, D_4 small, run InMemoryGrow
- D_2, D_3 too big, run FindBestSplit({G, H}):
 - FindBestSplit::Map (each mapper)
 - Load the current model M
 - Drop every example x_i down the tree
 - If it hits G or H, update in-memory hash tables:
 - For each node: $T_n: (\text{node}) \rightarrow \{\Sigma y, \Sigma y^2, \Sigma 1\}$
 - For each split, node: $T_{n,j,s}: (\text{node, attribute, split_value}) \rightarrow \{\Sigma y, \Sigma y^2, \Sigma 1\}$
 - Map::Finalize: output the key-value pairs from above hashtables
 - FindBestSplit::Reduce (each reducer)
 - Collect:
 - $T1: <\text{node, List}\{\Sigma y, \Sigma y^2, \Sigma 1\}> \rightarrow <\text{node, }\{\Sigma \Sigma y, \Sigma \Sigma y^2, \Sigma \Sigma 1\}>$
 - $T2: <(\text{node, attr. split}), \text{List}\{\Sigma y, \Sigma y^2, \Sigma 1\}> \rightarrow <(\text{node, attr. split}), \{\Sigma \Sigma y, \Sigma \Sigma y^2, \Sigma \Sigma 1\}>$
 - Compute impurity for each node using $T1$, $T2$
 - Return best split to Master (that decides on the globally best split)
Practical considerations

- **Set up and Tear down**
 - Per-MapReduce overhead is significant
 - Reduce tear-down cost by polling for output instead of waiting for a task to return
 - Reduce start-up cost through forward scheduling
 - Maintain a set of live MapReduce jobs and assign them tasks instead of starting new jobs from scratch

- **Very high dimensional data**
 - If the number of splits is too large the Mapper might run out of memory
 - Instead of defining split tasks as a set of nodes to grow, define them as a set of nodes to grow and a set of attributes to explore
Google: Bounce rate of ad = fraction of users who **bounced from ad landingpage**
- Clicked on ad and quickly moved on to other tasks
- Bounce rate high --> users not satisfied

Prediction goal:
- Given an new add and a query
- Predict bounce rate using query/ad features

Feature sources:
- Query
- Ad keyword
- Ad creative
- Ad landing page
Experimental Setup

- **MapReduce Cluster**
 - 200 machines
 - 768MB RAM, 1GB Disk per machine
 - 3 MapReduce jobs forward-scheduled

- **Full Dataset:** 314 million records
 - 6 categorical features, cardinality varying from 2-500
 - 4 numeric features

- Compare performance of PLANET on whole data with R on sampled data
 - R model trains on 10 million records (~ 2GB)
 - Single machine: 8GB, 10 trees, each of depth 1-10
 - Peak RAM utilization: 6GB
Results:

- Prediction accuracy (RMSE) of PLANET on full data better than R on sampled data