Support Vector Machines
Which is best linear separator?

Data:

- Examples:
 - \((x_1, y_1), \ldots, (x_n, y_n)\)
- Example i:
 - \(x_i = (x_1^{(1)}, \ldots, x_1^{(d)})\)
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 - \(w \cdot x = \sum_j x^{(j)} w^{(j)}\)
Largest Margin
Prediction = \text{sign}(w \cdot x + b)

“Confidence” = (w \cdot x + b) y

For i-th datapoint:
\gamma_i = (w \cdot x_i + b) y_i

Want to solve:
\max_w \min_i \gamma_i

Can rewrite as
\max_{w,\gamma} \gamma

s.t. \forall i, y_i \cdot (w \cdot x_i + b) \geq \gamma
Maximize the margin:

- Good according to intuition, theory & practice

\[
\max_{w,\gamma} \gamma \\
\text{s.t. } \forall i, y_i \cdot (w \cdot x_i + b) \geq \gamma
\]

- This notion of the margin is not well defined yet:
 - Can arbitrarily scale \(w \):
 - Let \((w \cdot x + b) y = \gamma \) then e.g. \(2(w \cdot x + b) y = 2 \gamma \)
What is the margin?

What is relation between x_1 and x_2?

$x_1 = x_2 + 2\gamma \frac{w}{\|w\|}$

We also know:

$w \cdot x_1 + b = +1$ \[1\]

Then:

$w \cdot \left(x_2 + 2\gamma \frac{w}{\|w\|}\right) + b = +1$

$\Rightarrow \gamma = \frac{\|w\|}{w \cdot w} = \frac{1}{\|w\|^2}$

Note $w \cdot w = \|w\|^2$
Maximizing the Margin

- We started with:
 \[\max_{w, \gamma} \gamma \]

 \[
 s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq \gamma
 \]

 But \(w \) can be arbitrarily large

- We normalized and:
 \[
 \max \gamma = \max \frac{1}{\|w\|} = \min \|w\| = \min \|w\|^2
 \]

- Then:
 \[
 \min_{w} \frac{1}{2} \|w\|^2
 \]

 \[
 s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1
 \]

SVM with “hard” constraints
Support Vector Machines

\[\min_w \frac{1}{2} \| w \|^2 \]

s.t. \(\forall i, y_i \cdot (x_i \cdot w + b) \geq 1 \)

- How to solve?
 - Quadratic programming
 - Hyperplane is defined by the support vectors
 - Points on +/- planes from solution. If you knew these points, you could ignore the rest
 - If no degeneracies, \(d+1 \) support vectors (for \(d \) dim. data)
If data is not separable introduce penalty
\[
\min_w \frac{1}{2} \|w\|^2 + C \cdot \# \text{number of mistakes}
\]
\[
s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1
\]
- Minimize \(\|w\|^2 \) and number of training mistakes
- Set C using cross validation
- How to penalize mistakes?
 - All mistakes are not equally bad!
Support Vector Machines

- Introduce slack variables ξ:
 $$\min_{w,b,\xi_i > 0} \frac{1}{2}\|w\|^2 + C \sum_{i=1}^{n} \xi_i$$
 \[s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i\]

- If point x_i is on the wrong side incur the penalty ξ_i

- Slack penalty C:
 - $C=\infty$: only want to w,b that separate the data
 - $C=0$: can set ξ_i to anything, $w=0$, ignores data

For each datapoint:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Support Vector Machines

- SVM in the “natural” form

\[
\text{arg min}_{w,b} \quad \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i \cdot (x_i \cdot w + b)\}
\]

Margin

Regularization parameter

Empirical loss (how well we fit the data)

- SVM uses Hinge Loss:

\[
\min_{w,b} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

s.t. \(\forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i\)

0/1 loss

Hinge loss: \(\max\{0, 1 - z\}\)

\(z = y_i \cdot (x_i \cdot w + b)\)
SVM: How to estimate w?

- Use quadratic solver:
 - Minimize quadratic function
 - Subject to linear constraints
- Want to minimize \(f(w,b) \):
 \[
 f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^j)^2 + C \cdot \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} x_i^j w^j + b \right) \right\}
 \]
- How to minimize functions?
 - Gradient descent: \(\min_z f(z) \)
 Iterate: \(z \leftarrow z - \eta f'(z) \)
Want to minimize $f(w,b)$:

$$f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^j)^2 + C \cdot \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} x_i^j w^j + b \right) \right\}$$

- Take the gradient w.r.t w:

$$\nabla_j = \frac{\partial f(w,b)}{\partial w^j} = w^j + C \cdot \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^j}$$

- Gradient descent:

- Iterate:
 - For $j = 1 \ldots m$
 - Evaluate ∇_j (takes $O(n)$ time!)
 - Update: $w^j \leftarrow w^j - \eta \nabla_j$
SVM: How to estimate w?

- **Stochastic gradient descent:**
 - Instead of evaluating gradient over all examples
 - Evaluate it for each individual example

$$\nabla_{j,i} = w^j + C \frac{\partial L(x_i, y_i)}{\partial w^j}$$

- **Stochastic gradient descent:**
 - Iterate:
 - For $i = 1 \ldots n$
 - For $j = 1 \ldots m$
 - Evaluate $\nabla_{j,i}$
 - Update: $w^j \leftarrow w^j - \eta \nabla_{j,i}$

Before we had

$$\nabla_j = w^j + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^j}$$

Use decreasing learning rate: $\eta = c / (t + t_0)$
Example: Text categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 - $N = 781k$ training examples, 23k test examples
 - $d = 50k$ features

- Training time:

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Training Time</th>
<th>Value of $f(w,b)$</th>
<th>Test Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMLight</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>SVMPerf</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>
Optimization Accuracy

\[f(w,b) - f_{\text{optimal}}(w,b) \]
Subsampling

- What if we subsample the dataset?
 - **SGD** on full dataset vs.
 - **Conjugate gradient** on a sample of \(n \) training examples

Average Test Loss

![Graph showing time vs. average test loss for different sample sizes (n=10000, n=100000, n=300000, n=3000000). The graph compares the performance of stochastic and full dataset SGD.]
Practical Considerations

- Need to choose learning rate η:

 $$w_{t+1} \leftarrow w_t - \eta_t \frac{\partial L(x_i, y_i)}{\partial w}$$

- Leon suggests:
 - Select small subsample
 - Try various rates η (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the loss
 - Use η for next 100k iterations on the full dataset
Practical Considerations

- **Stopping criteria:**
 How many iterations of SGD?
 - Early stopping with cross validation
 - Create validation set
 - Monitor cost function on the validation set
 - Stop when loss stops decreasing
 - Early stopping
 - Extract two disjoint subsamples A and B of training data
 - Train on A, stop by validating on B
 - Number of epochs is an estimate of k
 - Train for k epochs on the full dataset
What about multiple classes?

- **One against all:**
 Learn 3 classifiers
 - + vs. \{0, -\}
 - - vs. \{0, +\}
 - o vs. \{+, -\}

 Obtain:
 \[w_+ b_+, w_- b_-, w_o b_o \]

- **How to classify?**
 - Return class \(c \)
 \[\text{arg max}_c w_c x + b_c \]
Learn 1 classifier: Multiclass SVM

- Learn 3 sets of weights simultaneously
 - For each class c estimate w_c, b_c
 - Want the correct class to have highest margin:
 $$w_{y_i}x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i \ , \ \forall i$$
Optimization problem:

\[
\begin{align*}
\min_{w,b} \quad & \frac{1}{2} \sum_{c} \|w_c\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{subject to} \quad & w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i, \quad \forall c \neq y_i, \forall i \\
& \xi_i \geq 0, \forall i
\end{align*}
\]

To obtain parameters \(w_c, b_c\) (for each class \(c\)) we can use similar techniques as for 2 class SVM.