Recap: Finding similar documents

- **Goal:** Given a large number (N in the millions or billions) of text documents, find pairs that are “near duplicates”

- **Application:**
 - Detect mirror and approximate mirror sites/pages:
 - Don’t want to show both in a web search

- **Problems:**
 - Many small pieces of one doc can appear out of order in another
 - Too many docs to compare all pairs
 - Docs are so large or so many that they cannot fit in main memory
Recap: 3 Essential Steps

1. **Shingling**: Convert documents to large sets of items

2. **Minhashing**: Convert large sets into short signatures, while preserving similarity

3. **Locality-sensitive hashing**: Focus on pairs of signatures likely to be from similar documents
The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity.
Recap: Shingles

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the document

- **Example:** *k*=2; \(D_1 = \text{abcab} \)
 Set of 2-shingles: \(S(D_1) = \{\text{ab, bc, ca}\} \)

- Represent a doc by the set of hash values of its *k*-shingles

- A natural similarity measure is the Jaccard similarity:
 \[
 \text{Sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]
Recap: Min-hashing

- Prob. $h_{\pi}(C_1) = h_{\pi}(C_2)$ is the same as $Sim(C_1, C_2)$:
 \[\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = Sim(C_1, C_2) \]
Recap: LSH

- Hash cols of signature matrix M. Similar columns likely hash to the same bucket.
 - Cols. x and y are a candidate pair if $M(i, x) = M(i, y)$ for at least frac. s values of i.
 - Divide matrix M into b bands of r rows.

- $\text{Sim}(C_1, C_2) = s$
- Prob. that at least 1 band identical $= 1 - (1 - s^r)^b$
- Given s, tune r and b to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

$b=20, r=5$

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

1/19/2011
S-curves as a func. of b and r

![Graphs showing probability of sharing a bucket as a function of similarity for different values of r and b.]
The set of strings of length k that appear in the document

Signatures:
short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity.

Theory of LSH
Theory of LSH

- We have used LSH to find similar documents
 - In reality, columns in large sparse matrices with high Jaccard similarity
 - e.g., customer/item purchase histories

- Can we use LSH for other distance measures?
 - e.g., Euclidean distances, Cosine distance
 - Let’s generalize what we’ve learned!
For min-hash signatures, we got a min-hash function for each permutation of rows.

An example of a family of hash functions:

- A “hash function” is any function that takes two elements and says whether or not they are “equal”
 - **Shorthand**: \(h(x) = h(y) \) means “\(h \) says \(x \) and \(y \) are equal.”
- A **family** of hash functions is any set of hash functions
 - A set of related hash functions generated by some mechanism
- We should be able to efficiently pick a hash function at random from such a family
Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance measure d

- A family H of hash functions is said to be (d_1, d_2, p_1, p_2)-sensitive if for any x and y in S:
 1. If $d(x, y) \leq d_1$, then the probability over all $h \in H$, that $h(x) = h(y)$ is at least p_1
 2. If $d(x, y) \geq d_2$, then the probability over all $h \in H$, that $h(x) = h(y)$ is at most p_2
A (d_1, d_2, p_1, p_2)-sensitive function

High probability; at least p_1

Low probability; at most p_2
Let:

- S = sets,
- d = Jaccard distance,
- H is family of minhash functions for all permutations of rows

Then for any hash function $h \in H$:

$$\Pr[h(x)=h(y)] = 1-d(x,y)$$

Simply restates theorem about min-hashing in terms of distances rather than similarities.
Claim: H is a $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3})$-sensitive family for S and d.

If distance $\leq \frac{1}{3}$ (so similarity $\geq \frac{2}{3}$) then probability that min-hash values agree is $\geq \frac{2}{3}$

For Jaccard similarity, minhashing gives us a $(d_1, d_2, (1-d_1), (1-d_2))$-sensitive family for any $d_1 < d_2$

Theory leaves unknown what happens to pairs that are at distance between d_1 and d_2

Consequence: No guarantees about fraction of false positives in that range
Can we reproduce the “S-curve” effect we saw before for any LS family?

The “bands” technique we learned for signature matrices carries over to this more general setting.

Two constructions:
- **AND** construction like “rows in a band”
- **OR** construction like “many bands”
AND of Hash Functions

- Given family H, construct family H' consisting of r functions from H

- For $h = [h_1, ..., h_r]$ in H', $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for all i

- Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$-sensitive

- Proof: Use the fact that h_i's are independent
Given family H, construct family H' consisting of b functions from H.

For $h = [h_1, ..., h_b]$ in H', $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for at least 1 i.

Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$-sensitive.

Proof: Use the fact that h_i’s are independent.
Effect of AND and OR Constructions

- **AND** makes all probs. shrink, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not.
- **OR** makes all probs. grow, but by choosing b correctly, we can make the upper prob. approach 1 while the lower does not.

$$y = 1 - (1 - x^r)^b$$
Composing Constructions

- \(r \)-way AND followed by \(b \)-way OR construction
 - Exactly what we did with min-hashing
 - If bands match in all \(r \) values hash to same bucket
 - Cols that are hashed into at least 1 common bucket → Candidate
 - Take points \(x \) and \(y \) s.t. \(\Pr[h(x) = h(y)] = p \)
 - \(H \) will make \((x,y)\) a candidate pair with prob. \(p \)
 - Construction makes \((x,y)\) a candidate pair with probability \(1-(1-p^r)^b \)
 - The S-Curve!

- **Example**: Take \(H \) and construct \(H' \) by the AND construction with \(r = 4 \). Then, from \(H' \), construct \(H'' \) by the OR construction with \(b = 4 \)
Table for Function $1-(1-p^4)^4$

<table>
<thead>
<tr>
<th>p</th>
<th>$1-(1-p^4)^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.0064</td>
</tr>
<tr>
<td>.3</td>
<td>.0320</td>
</tr>
<tr>
<td>.4</td>
<td>.0985</td>
</tr>
<tr>
<td>.5</td>
<td>.2275</td>
</tr>
<tr>
<td>.6</td>
<td>.4260</td>
</tr>
<tr>
<td>.7</td>
<td>.6666</td>
</tr>
<tr>
<td>.8</td>
<td>.8785</td>
</tr>
<tr>
<td>.9</td>
<td>.9860</td>
</tr>
</tbody>
</table>

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.
Apply a b-way OR construction followed by an r-way AND construction

Transforms probability p into $(1-(1-p)^b)^r$.

- The same S-curve, mirrored horizontally and vertically

Example: Take H and construct H' by the OR construction with $b = 4$. Then, from H', construct H'' by the AND construction with $r = 4$.
Table for Function $(1-(1-p)^4)^4$

<table>
<thead>
<tr>
<th>p</th>
<th>$(1-(1-p)^4)^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.0140</td>
</tr>
<tr>
<td>.2</td>
<td>.1215</td>
</tr>
<tr>
<td>.3</td>
<td>.3334</td>
</tr>
<tr>
<td>.4</td>
<td>.5740</td>
</tr>
<tr>
<td>.5</td>
<td>.7725</td>
</tr>
<tr>
<td>.6</td>
<td>.9015</td>
</tr>
<tr>
<td>.7</td>
<td>.9680</td>
</tr>
<tr>
<td>.8</td>
<td>.9936</td>
</tr>
</tbody>
</table>

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family.
Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction

Transforms a (0.2,0.8,0.8,.02)-sensitive family into a (0.2,0.8,0.9999996,0.0008715)-sensitive family

Note this family uses 256 (=4*4*4*4) of the original hash functions
Pick any two distances \(x < y \)

Start with a \((x, y, (1-x), (1-y))\)-sensitive family

Apply constructions to produce \((x, y, p, q)\)-sensitive family, where \(p\) is almost 1 and \(q\) is almost 0

The closer to 0 and 1 we get, the more hash functions must be used
For cosine distance,
\[d(A, B) = \theta = \arccos\left(\frac{A \cdot B}{\|A\|\|B\|}\right) \]
there is a technique called
Random Hyperplanes
- Technique similar to minhashing

A \(d_1,d_2,(1-d_1/180),(1-d_2/180)\)-sensitive family for any \(d_1\) and \(d_2\).

Reminder: \((d_1,d_2,p_1,p_2)\)-sensitive

1. If \(d(x,y) \leq d_1\), then prob. that \(h(x) = h(y)\) is at least \(p_1\)
2. If \(d(x,y) \geq d_2\), then prob. that \(h(x) = h(y)\) is at most \(p_2\)
Random Hyperplanes

- Pick a random vector \(v \), which determines a hash function \(h_v \) with two buckets

- \(h_v(x) = +1 \) if \(v \cdot x > 0 \); \(= -1 \) if \(v \cdot x < 0 \)

- LS-family \(\mathbf{H} \) = set of all functions derived from any vector

- **Claim:** For points \(x \) and \(y \),
 \[
 \Pr[h(x) = h(y)] = 1 - \frac{d(x,y)}{180}
 \]
Proof of Claim

Look in the plane of x and y.

Hyperplane normal to ν

$h(x) = h(y)$

$\text{Prob[Red case]} = \frac{\theta}{180}$

Hyperplane normal to ν

$h(x) \neq h(y)$
Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of +1’s and –1’s for each data point
- Can be used for LSH like the minhash signatures for Jaccard distance
- Amplified using AND and OR constructions
How to pick random vectors?

- Expensive to pick a random vector in M dimensions for large M
 - M random numbers

- A more efficient approach
 - It suffices to consider only vectors ν consisting of $+1$ and -1 components
 - Why is this more efficient?
LSH for Euclidean Distance

- **Simple idea**: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close; distant points are rarely in the same bucket
Points at distance \(d \)

If \(d \ll a \), then the chance the points are in the same bucket is at least \(1 - \frac{d}{a} \).
If $d >> a$, θ must be close to 90° for there to be any chance points go to the same bucket.
If points are distance $d \leq a/2$, prob. they are in same bucket $\geq 1 - d/a = \frac{1}{2}$

If points are distance $> 2a$ apart, then they can be in the same bucket only if $d \cos \theta \leq a$

- $\cos \theta \leq \frac{1}{2}$
- $60 \leq \theta \leq 90$
- I.e., at most $1/3$ probability.

Yields a $(a/2, 2a, 1/2, 1/3)$-sensitive family of hash functions for any a

Amplify using AND-OR cascades
For previous distance measures, we could start with an \((x, y, p, q)\)-sensitive family for any \(x < y\), and drive \(p\) and \(q\) to 1 and 0 by AND/OR constructions.

Here, we seem to need \(y \geq 4x\).
But as long as \(x < y \), the probability of points at distance \(x \) falling in the same bucket is greater than the probability of points at distance \(y \) doing so.

Thus, the hash family formed by projecting onto lines is an \((x, y, p, q)\)-sensitive family for some \(p > q \).

Then, amplify by AND/OR constructions.