
 

Abstract – Efficient data retrieval in a peer-to-peer system like 
Freenet is a challenging problem. In this paper we study the 
impact of cache replacement policy on the performance of 
Freenet. We find that, with Freenet’s LRU cache replacement, 
there is a steep reduction in the hit ratio with increasing load. 
Based on intuition from the small-world models and the recent 
theoretical results by Kleinberg, we propose an enhanced-
clustering cache replacement scheme for use in place of LRU. 
Such a replacement scheme forces the routing tables to 
resemble neighbor relationships in a small-world acquaintance 
graph -- clustering with light randomness. In our simulation 
this new scheme improved the request hit ratio dramatically 
while keeping the small average hops per successful request 
comparable to LRU. A simple, highly idealized model of 
Freenet under clustering with light randomness proves that the 

expected message delivery time in Freenet is O( n2log ) if the 

routing tables satisfy the small-world model and have the size 

)(log 2 nθ .  

I. INTRODUCTION 
 
    A peer−to−peer networked system is a collaborating group 
of Internet nodes which overlay their own special−purpose 
network on top of the Internet. Such a system performs 
application−level routing on top of IP routing. These systems 
share some of the same characteristics as the Internet in that 
they can grow to be quite large, may need to utilize distributed 
control and configuration, usually employ a naming scheme 
that allows them to address a node without knowing its exact 
whereabouts, and possess a routing mechanism that allows 
each node to meaningfully communicate with the rest of the 
system. Typically a peer−to−peer network performs a very 
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specific function such as distributed data storage, cache 
replication, multicasting etc. and uses normal Internet 
functionality for all other purposes. These systems are diverse 
enough that it would not be desirable to make modifications to 
the IP routing/naming protocols to support each instance of 
such a system.  
    Peer−to−peer systems such as Napster [1] and Gnutella [2] 
have, of late, received a fair amount of attention in the 
non−technical literature. Perhaps proving that there is more to 
this technology than the hype surrounding it would suggest, 
several research groups have recently designed a variety of 
peer−to−peer systems: systems that provide infrastructure for 
flexibly evolving the Internet [3][4], and systems for 
large−scale network storage [5], anonymous publishing [6], 
and application−level multicast [7][8][9].  
    At the core of many of these systems [3][4][5][6] lie 
innovative and novel distributed algorithms for disseminating 
content. These systems can be modeled as distributed 
hash­tables; they essentially distribute 〈 key, data 〉  tuples 

across various nodes in a large network in a manner that 
facilitates scalable access to these tuples using the key. We 
taxonomize these systems into two categories: structured 
systems where the assignment of a key to the node on which 
its corresponding data is stored is determined by the structure 
of the key space, and unstructured systems where no such 
assignment exists. Systems like CAN [3], CHORD [4], and 
OceanStore [5] are examples of the former, and Freenet [6] is 
an instance of the latter. 
    Such systems can have interesting and unanticipated 
properties. In this paper we study the performance of an 
unstructured system, namely Freenet. We find that the hit 
ratio (the likelihood of finding the datum associated with a key 
within a fixed number of network hops) in Freenet is crucially 
dependent on the local policy used to manage the cache of 
data (called datastore in Freenet) and the routing table. A 
standard LRU−like cache replacement policy can result in 
significantly low hit ratio under high load (i.e. when the 
number of files stored in the network is high). This is an 
important finding. While memory is cheap these days, Freenet-
like peer-to-peer systems will always have limits on cache 
sizes.  Thus, examining the performance degradation of such 
systems under high load becomes important, especially, for 
example, in the context of understanding the immunity of these 
systems to denial-of-service attacks. 
    We observe that this particular performance degradation in 
Freenet results from the fact that LRU cache replacement 
results in routing tables that are not highly clustered. This is 
undesirable since the success and efficiency of the Freenet 
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routing algorithm relies on a high degree of clustering of the 
routing table entries. Our solution to this performance 
degradation relies on two observations. First, we observe that 
the routing tables can be shaped by changing the cache 
replacement policy at each node; this need not include any 
changes to the Freenet routing protocol and is therefore 
incrementally deployable. Second, we use intuition from the 
small world model [10][11][16] which says that the routing 
distance in a graph is small if each node has pointers to its 
geographical neighbors (causing clustering) as well as some 
randomly chosen far away nodes. This intuition leads us to 
propose a simple clustered cache replacement scheme with a 
small amount of randomization.  
    We then perform a simulation study to compare the two 
schemes under high loads. Our proposed cache replacement 
scheme results in a significantly higher hit ratio compared to 
LRU, and also a significantly small number of average hops 
per request. The proposed scheme and LRU result in similar 
values for the average number of hops per successful request. 
It is interesting that such a small change in the system can 
lead to a significant improvement.  
    We also develop an idealized model of Freenet under our 
cache replacement scheme. We prove that the expected 

message delivery time in this idealized model is O( n2log ), 

provided we have O( n2log ) amount of memory per node. 

Here n is the number of nodes in the system. More structured 
systems such as CAN or CHORD [3][4]achieve a delivery time 
of O(log n) with O(log n) memory. It is surprising that an 
unstructured system such as Freenet can come so close to the 
structured systems, even in a highly idealized model. We 
believe that a theoretical understanding of unstructured 
systems in more realistic models is an important open problem. 
    The paper is organized as follows: In Section II we give a 
brief description of Freenet and the small-world model. In 
Section III we describe the preliminary simulation results for 
the original Freenet protocol. In section IV a simple enhanced-
clustering cache replacement scheme is proposed and the 
simulation results show that the enhanced-clustering caching 
with random shortcuts outperformed both LRU caching and 
the enhanced-clustering caching without random shortcuts. 
Section V presents our analytical results and section VI 
concludes the paper. 
 

II. FREENET AND THE SMALL-WORLD MODEL 
 
    In this section we briefly describe Freenet and the well-
known small-world model.  
 
A. Freenet 
 
    Freenet [6] is a distributed anonymous information storage 
& retrieval system. In Freenet, files are identified by binary file 
keys obtained by applying a hash function to a string that 
describes the contents of the file. For this reason, we use the 
words key, file, and data  interchangeably in this paper. Each 
node maintains a routing table which is a set of 〈 key, 

pointer 〉  pairs, where pointer points to a node that has a 

copy of the file associated with key. A steepest-ascent hill-
climbing search with backtracking is used to locate a 
document. Loop detection and a HopsToLive (Freenet’s TTL ) 
counter are added to this basic scheme to avoid request 
looping and exhaustive searching. Fig. 1 shows a typical 
sequence of request messages. A request for key 8 is initiated 
at node A. Node A forwards the request to node B, which 
forwards it to node C since in B’s routing table C is the node 
who has the cloestest key to key 8. Node C is unable to 
contact any other nodes and returns a backtracking ``request 
failed'' message to B. Node B then tries its second choice, D. 
Node D finds key 8 in its routing table and forwards the 
request to the corresponding node - E. The data is returned 
from E via D and B back to A, which ends this request 
sequence. The data is cached on D, B and A. An entry for key 
8 is also created in the routing tables of D, B and A. Data 
inserts follow a similar strategy to requests [6]. 
    In this alogrithm, there is no global consensus on where a 
document should be stored. Freenet chose an unstructured 
key space architecture due to the robustness and security 
considerations. The main premise behind Freenet is that, 
gradually the key space becomes more and more structured 
automatically due to the data request mechanism and the 
routing tables converge to a state where most of the queries 
are answered successfully and quickly. Freenet pays a lot of 
attention to anonymity and deniability, and replication is an 
integral part of the architecture.  
     In addition to the routing table, each Freenet node has a 
datastore. When a file is ultimately returned (forwarded) for a 
successful retrieval (insertion), the node  passes the data to 
the upstream (downstream) requester, caches the file in its 
own datastore, and creates a new entry in its routing table 
associating the actual data source with the requested key. 
When a new file arrives (from either a new insert or a 
successful request) which would cause the datastore to 
exceed the designated size, the Least Recently Used (LRU) 
files are evicted in order until there is room. Routing table 
entries are also eventually replaced using an LRU policy as 
the table fills up. Note that although datastore cache 
replacement and route replacement are logically separate 
mechanisms, they both decide the content in the routing table. 
Cache replacement scheme decides which 〈 key, pointer 〉  

pairs are put into the routing table by choosing the files to be 
cached and then generating the corresponding 〈 key, 

pointer〉  pairs. Route replacement policy decides which 

〈 key, pointer〉  pairs are chosen to be deleted from the 

routing table when the routing table fills up. The size of the 
routing table is chosen with the intention that the entry for a 
file will be retained longer than the file itself.  
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Fig.1 An example of a search in a Freenet network. Node A searches 
for Key 8 and finally finds it in E. 
 
B. Small-world model 
 
    The small-world phenomenon is pervasive in networks 
arising from society, nature and technology. In many such 
networks, empirical observations suggest that any two 
individuals in the network are likely to be connected through a 
short sequence of intermediate acquaintances [10][12]. One 
network construction that gives rise to small-world behavior is  
where each node in the network knows its physical neighbors, 
as well as a small number of randomly chosen distant nodes. 
The latter represent shortcuts in the network. It has been 
shown that this construction leads to graphs with small 
diameter, leading to a small routing distance between any two 
individuals [10][16]. Kleinberg [12] defined an infinite family of 
network models that naturally generalized the model in [16] 
and then proved that there is exactly one model within this 
family for which a decentralized algorithm exists to find short 
paths with high probability. In this model, the probability of a 
random shortcut being a distance x away from the source is 
proportional to 1/x in one dimension, proportional to 1/x2 in 
two dimensions, and so on. 
 
C. Freenet and the small-world phenomenon 
 
    An earlier study argued that a Freenet network evolve into a 
network with small-world characteristics [13]. In particular, the 
study showed that the median path length in a Freenet 
network scales logarithmically with the size of the network and 
its clustering coefficient is high, both defining characteristics 
of small-world networks. We did a similar simulation like that 
in [13] with our own simulator and validated the logarithmical 
relation between the average hops per request and the 
network size in Freenet under low load. 
   However, those simulations were conducted under low load. 
In their 1000-node simulation, the average number of files 
inserted into the network by one node is only 2.5. Under 
heavy load, more frequent local caching actions could break 
up clusters caused by the Freenet routing mechanism and 
cause these networks to evolve in a fashion that might not 
satisfy the small-world hypothesis. 

    We explore the behavior of Freenet under high load in the 
next section. Then, we use intuition from the small-world 
model to design a cache replacement scheme that attempts to 
preserve Freenet’s small-world property even under high load.  
 

III. SIMULATING FREENET PERFORMANCE UNDER 
HEAVY LOAD 

 
     Freenet’s design focus on anonymity makes it hard to 
measure the global network directly, a fact already observed 
by the designers of Freenet [13]. For this reason, we resort to 
simulation to study the performance of Freenet. We 
implemented a stand-alone simulator† that mimics document 
generation, storage, routing, and retrieval in Freenet. In this 
section, we state the assumptions made in our simulation, 
define the metrics that we use in our evaluation of Freenet and 
present our simulation results. 
    Much of this paper is devoted to the study of Freenet under 
high “load”. Our measure of load is the average number of 
files inserted by a node into the system, since we are 
interested in investigating the impact of cache replacement 
strategies.   
 
A. Simulation Assumptions 
 
    Lacking data about actual file insertion workloads, we 
assume that all nodes generate data files and send requests at 
the same rate. Furthermore, we assume that all nodes have the 
same size of datastore and routing table, and that all data files 
are of the same size. While thses assumptions are somewhat 
unrealistic, they enable us to understand the impact of cache 
limits more easily. We believe that a more heterogeneous 
workload, or a more heterogeneous node capacity will not 
qualitatively affect our results. 
    In our simulations, we do not model the impact of node 
failures. Node failures are somewhat orthogonal to the impact 
of cache limits. 
  
B. Performance Metrics 
 
    Intuitively, the performance of a routing system such as 
Freenet is well captured by the average path length required to 
access a data item. In practice, Freenet imposes a HopsToLive 
on data accesses. Therefore, the performance of the system is 
better represented by two metrics: the request hit ratio and 
the average hops per request. 
    The former is defined as the ratio of the number of 
successful requests to the total number of requests made. For 
reasons that will become later, we define two variants of the 
latter metric. The average hops per request is the ratio of the 
total number of hops incurred across all requests to the 
number of all requests. When a request fails, it is deemed to 
have incurred HopsToLive number of hops. The average hops 
per successful request is defined similarly, but only for 
requests that are successful.  

                                                                 
† The simulator can be downloaded from 
http://netweb.usc.edu/~huizhang/freenet.html 



 
 
C. Freenet Performance under Varying Loads 
 
    In this section, we illustrate the performance of Freenet 
under heavy load using a simple simulation. The duration of 
the simulation was 12,000 time steps, and the network had 300 
nodes. Each node had a datastore limit of 40 files, a routing 
table limit of 90 files. The initial topology of the system is a 
ring: each node has pointer to two neighbors. This initial 
topolgy is imposed by Freenet routing tables, and need not 
have any relation to the underlying physical Internet 
topology. Each request is limited to 40 hops. Each node 
randomly generates and inserts a key (i.e., a file) with 
probability K per time step in the first 200 time steps (K varies 
in the range [0.005, 0.13]). All insertions are stopped after time 
200. Each node generates a request for a random key with 
probability R=0.002 per time step throughout the whole 
simulation.  
    The simulation result in Fig. 2 shows that request hit ratio 
decreases significantly with an increase in the load in the 
network. To check whether this behavior was primarily due to 
cache limits, we repeated the above simulation but increased 
the datastore size  to 200 and routing table size to 250. The 
simulation result in Fig. 3 shows a curve with the same shape.  
    In an attempt to understand this steep degradation, we plot 
the typical key distribution (at the end of the simulation) in 
Freenet node’s datastore under light and heavy loads (Fig. 4 
& Fig. 5, in which retrieved times is the times that the 
corresponding file is retrieved from this node due to the data 
requests from the other nodes. A value of 0 means this file is 
cached by the node but never requested by other nodes). Fig. 
4 shows that under light load, local clustering is obvious. But 
this clustering characteristic vanishes with an increase in the 
number of files (keys) generated by this node (as shown in 
Fig. 5); the few big clusters under light load become lots of 
small clusters.  
    This disappearance of  high local clustering appears to be 
responsible for the significantly low hit ratio. The HopsToLive 
mechanism prevents exhaustive search and Freenet nodes 
depend on local clustering to provide the direction to key-
searching. If this were indeed true, we would expect that a 
cache management strategy that preserves key clustering 
under high load would exhibit a much more graceful system 
degradation. We investigate such a strategy in the next 
section. 
 

   Fig. 2.  The curve of hit ratio Vs. Load for Freenet with LRU scheme 
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   Fig.3. Simulation with a larger datastore and routing table. We see  the hit 
   ratio still decreased rapidly with the increasing of the load.  
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Fig.4. The files stored in the datastore cluster around the two keys 
generated by the node itself. Local clustering is obvious under light 
load (in this case average number of keys generated per node =2)  
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Fig.5. Due to the large number of keys generated by the node itself, 
the local clustering phenomenon becomes weak under heavy load 
(in this case average number of keys generated per node =20) 
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IV. ENHANCED-CLUSTERING CACHE REPLACEMENT 

SCHEME 
 
    We are now left with an interesting problem: how can we  
improve the routing performance of the Freenet protocol 
efficiently without affecting its design goals? Increasing the 
cache size or HopsToLive value may not always be possible 
or desirable. The cache-size is locally administered since it 
depends on individual system resources. Increasing the 



 
HopsToLive value could increase the hit ratio, at the expense 
of significantly increased access latency. From Fig.6, the 
crucial observation is that we can achieve our performance 
goals by preserving key clustering in the cache and this can 
be done passively by changing the cache replacement policy 
without changing the Freenet routing protocol or sacrificing 
anonymity and deniability. Recall that when a datastore is full 
at a node, the node discards the least recently used files and 
creates a new 〈 key, pointer〉  tuple in the routing table for the 

new file to be cached. In order to shape the routing table, we 
use the following cache replacement scheme instead of LRU 
(note that LRU is still used for routing table replacement). 

Fig.6. For the routing table at node x to conform to the small-world 
model, we need a set of key entries clustered around some key s(x) 
and one or more randomly chosen shortcut keys 
 
A. Enhanced-clustering Cache Replacement Scheme 
  
    The enhanced-clustering cache replacement scheme 
consists of two parts: 
1. Each node x chooses a seed s(x) randomly from the key 

space S when it joins the system.  
2.   When the datastore at a node is full and a new file with key 

u arrives (from either a new insertion or a successful 
request), the node finds out in the current datastore the 
file with key v farthest from the seed in terms of the 
distance in the key space S.  

Distance (v, seed) = DatastorewMax ∈  Distance (w, s(x)) 

(a) If Distance(u, seed) ≤ Distance (v, seed), cache u and 
evict v. Create an entry for u in the routing table. This has 
the effect of clustering the keys in the routing table 
around the seed of the node. 
(b) If Distance(u, seed) > Distance (v, seed), cache u, 
evict v and create an entry for u in the routing table with a 
probability p (randomness). This has the effect of creating 
a few random shortcuts. 

  
B. Comparison of Three Cache Replacement Schemes 
 
     We compare three cache replacement schemes: LRU, 
enforced-clustering, and enforced-clustering with random 
shortcuts. LRU always throws out the least recently used file 
from the datastore. The only difference between enforced-
clustering and enforced-clustering with random shortcuts is 
the value of the randomness p. Enforced-clustering 

implements the scheme outlined above with p=0 and therefore 
always throws out the key furthest from the seed of the node. 
It actually shapes the routing table to make the network 
conform to the regular-graph model. Enforced-clustering with 
random shortcuts implements the scheme outlined above with 
p = 0.03 and therefore still keeps small number of random 
shortcuts in the routing table. Intuitively, this scheme should 
make Freenet look more like a small-world network. The 
probability p=0.03 was chosen in order to achieve the highest 
hit ratio and the fewest Average hops per request for the 
range 0≤ p≤1 in simulation. It remains an interesting open 
problem to determine the best value of p as a function of the 
network and load characteristics. 
 
1) Performance under Heavy Load  
 
     We repeated the simulation in Section. III with datastore 
size =40 . Fig. 7 shows the availability of the system (i.e. the 
request hit ratio) as the load increases. Fig. 8 shows the 
average hops per request. As is obvious from Fig. 7 and 8, 
enforced-clustering results in higher availability and lower 
average hops per request compared to LRU. Also, the cache 
replacement scheme motivated by the small-world example 
(enforced-clustering with random shortcuts) significantly 
outperforms both LRU and enforced-clustering. Fig. 9 
illustrates another interesting phenomenon. In this figure, we 
plot the average number of hops per successful request. The 
original simple LRU scheme performs much better than 
enforced-clustering in this metric. However, enforced-
clustering with random shortcuts matches the performance of 
LRU for this metric. 
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2) Evolution of Routing Performance with time 
 
    To see how network performance evolved with time, we 
repeated the simulation for using a load of 10 keys per node 
with 60000 time steps to make sure the network performance 
was stable at the end of the simulation. Fig. 10 and 11 shows 
the hit ratio and average hops per successful request in 
different time phase for those three schemes. Again, we note 
that enhanced-clustering with random shortcuts resulted in a 
significantly better hit ratio than LRU while keeping the 
average number of hops roughly the same as LRU. In addition, 
only enhanced-clustering with random shortcuts showed an 
increasing in the hit ratio and a decreasing in Average hops 
per successful request along with the time simultaneously. 
 
3) Key Distribution in Routing Tables 
 
    Finally, we draw the typical key distribution (at the end of 
the simulation) in Freenet node’s routing table under heavy 
load for enforced-clustering and enforced-clustering with 
random shortcuts ( Fig. 12 & Fig. 13). Fig. 12 shows that the 
network under enforced-clustering can be modeled as a 
regular graph. Fig. 13 shows enforced-clustering with random 
shortcuts does shape the routing table to approximate the one 
in Fig. 6. 

 
4) Other Simulation Scenarios 
 
    We ran the simulations with different initial topologies 
(ring+random, tree, tree+random, star+random, random), 
varying number of nodes (300-3000), different values of 
HopsToLive (40-100) and varying cache sizes (50-200). All 
simulation results showed qualitatively similar trends. 
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Fig.12. The keys in the routing table cluster around the seed of 
this node. All keys generated by the node itself are removed in 
this graph. (in this case average number of keys generated per 
node =20) 
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5) Discussion 
 
    We now present some additional intuition about why the 
enhanced-clustering with random shortcuts performs well. Fig. 
5 shows that the routing table of Freenet is not very clustered 
when LRU is used as the cache-replacement scheme. This is 
analogous to random graphs. It is well known that random 
graphs have small diameters as long as the number of edges is 
sufficiently large [17]. However, since the edges are drawn at 
random, it is hard to use local rules to travel from a given node 
to the node which contains the desired key. Not surprisingly, 
under high load, LRU has a low hit ratio. Fig. 12 shows that 
the routing table for Freenet with Enhanced clustering (no 
shortcuts) is completely clustered. This corresponds to a 
highly regular graph, where each node is connected to its 
neighbors. It is very easy to get from a given node to a desired 
node in such a graph. However, the high clustering implies 
that each hop travels only a small distance in the key-space 
resulting in a high number of average hops. Fig.13 shows that 
the enhanced clustering with random shortcuts results in a 
small-world like graph. The high clustering in this graph makes 
it easy to use local rules to arrive at a desired node; at the 
same time, the random shortcuts sometimes allow us to travel 
large distances in the key-space using one hop. 
    Kleinberg showed that for efficient routing, a node needs to 
choose a shortcut at a distance x with probability proportional 
to 1/x [12]. This can also be implemented using the following 
local replacement rule: suppose there are two keys u and v 
which are contending for being the shortcut keys out of a 
Freenet node Y. Let xu and xv be their distances from the  seed 
key Y. Then we would keep u with probability xv/(xu+xv) and 
keep v with probability xu/(xu+xv). However, we have chosen to 
implement the simpler scheme outlined earlier in this section. 
    It is important to mention that several simple variants of our 
scheme should also give similar end results (clustering with 
light randomness). Also, LRU may well have other practical 
advantages that would override the improvements presented 
in this section. In addition, our workload may be biased 
against LRU because of our assumption about the uniformity 
of access to files. LRU might very well perform reasonably 
under a different workload where file "popularity" is Zipf 
distributed, for example. However, the point of the paper is 
that enhanced-clustering with light randomness enables the 

system to preserve its small-world property regardless of 
workload, and this is a desirable design. 
 

V. ANALYSIS 
 
    Our analytical results are an attempt to formally demonstrate 
that the small­world model can lead to good results in an 
idealized Freenet­like scenario. These results are not hard 
evidence of the superiority of our scheme. The analysis is a 
two-step procedure. First, we derive the expected number of 
hops for a request  in an idealized model for Freenet. Then we 
extend the idealized model by considering the effect of 
“misleading” links and show that the performance 
(polylogarithmic number of hops) can be kept as long as a 
polylogarithmic-sized routing table/datastore is provided in 
Freenet.  
 
A. An Idealized Network Model 
 
    We consider an idealized model of Freenet which assumes 
that the seeds are chosen so that they are distributed evenly 
in the key space and the routing tables are shaped to fit the 
small­world hypothesis, i.e., the routing tables at each node 
have the structure shown in Fig. 6. Assume each node has a 
(2K+1)-files-sized data store and a (2M+1)-entries routing 
table. M should be no less than K since the routing table 
should maintain at least the pointers to the (2K+1) files in the 
data store. In the idealized model each node X caches the files 
for the 2K keys centered at Seed(X) and a randomly chosen 
key. The routing table of X will keep entries for the 2M keys 
centered at Seed(X) and the randomly chosen key. Fig.14 
shows how the links are created from one node to another. 
The arrow from a key to a node means this node contains this 
key in its data store and therefore claims itself as the source of 
this key. The arrow from a node to a key means this node has 
an entry for this key in its routing table. A link exists from 
nodes X to node Y iff a transit key u exists between them and 
is called X→u→Y. For example, in Fig.14 Node X has a link to 
Y via the transit key v. When searching for a key k, a link 
X→u→Y is called a “misleading” link if u is the closest key to 
k in the routing table of X but Y can’t find a closer key v to k 
than u so that Y can forward the request to v’s corresponding 
node. “Misleading” links may exist in Freenet but we will not 
consider the effect of “misleading” links until the next 
subsection. Therefore, an idealized model from the node level 
is shown as Fig. 15. In Fig. 15 the solid links stands for the 
local contacts between each pair of neighbors via their 
overlapped routing tables and the dotted links stand for the 
random shortcuts the nodes choose. Each node has two 
pointers to its two neighbors and a link pointing to a node 
randomly chosen in the network. We assume that all nodes 
forget the initial inserters of the files after a long time. The 
source of any file(key) is known to everyone as the current 
holder of this file. 
    Theorem 1: In the idealized network model without the 
effect of “misleading” links, if each node x chooses its 
random shortcut so that the random shortcut has an 
endpoint y with probability proportional to 1/d where d = |sx 



 
- sy|, then the  expected number of hops required to find a 

document in this idealized system is n2log19  using 

Freenet’s search algorithm. Here n is the number of nodes in 
the system.  
    Proof: The idealized model without the effect of 
“misleading” links is actually a one-dimensional version of 
Kleinberg's model in [12]. The result follows from a similar 
theorem in [12].  

  g 
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Node  X Node Y  

2K keys clustering 
around Seed(Y)  
 

Shortcut of Y  

Node X  Node Y 

Fig.14. Node-to-node links are created by transit keys.  
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Fig. 15. An idealized model of Freenet from the node level. The long 
edges correspond to shortcut connections. 
 

B. Idealized Model with Misleading Links 
 
    Theorem 1 holds only if the distance from the request to 
target k decreases strictly in each step during the searching. 
However, this condition doesn’t exist when there are 
misleading links in Freenet. In this subsection we will consider 
the possibility that a “misleading” link will be chosen at each 
step of a search in Freenet. We assume that while searching 
for key k, some node X forwarded the request to Y. The node 
X must have had an entry of the form 〈 k’, Y〉  in its routing 

table. k’ must be one of the keys in Y’s data store. Let us 
assume that k’ can be any of the (2K+1) keys which are 
present in the data store of Y with equal probability. Clearly, Y 
will now find a tuple 〈 k*, V〉  in its routing table such that k* 

is closest to k, and then forward the request to node V. But 
there are two cases in which Y can’t find such a node V: 

1.  k’ is the shortcut of Y. In this case all other 2K keys may be 
far away from the target key k (shown in Fig.16 a);  
2.  k’ is the closest key to k in Y’s 2K clustered keys (shown in 
Fig.16 b).  
Then, the possibility that a “misleading” link is chosen is 
equal to 2/(2K+1) < 1/K. Next we will prove that Freenet’s 
performance (polylogarithmic number of hops) in Theorem 1 
can be kept even under the effect of “misleading” links as long 
as a polylogarithmic-sized routing table/datastore is provided 
in each node. The large constants in this theorem are an 
artifact of our analysis. Even with these large constants, we 
believe this analysis is interesting since it points towards the 
correct ballpark performance. 
   Theorem 2: In the idealized network model considering the 

effect of “misleading” links, if K= n2log76  and each node 

x chooses its random shortcut so that the random shortcut 
has an endpoint y with probability proportional to 1/d 
where d = |sx - sy|,, then the  expected number of hops 
required to find a document in this idealized system is 

O( n2log ) using Freenet’s search algorithm. Here n is the 

number of nodes in the system.  
    Proof: From Theorem.1 we know a search will end in at most 

n2log19  steps on the average when there is no effect of 

“misleading” links. We count n2log38  steps as one run. If 

no “misleading” links are encountered during a run, then 
using Theorem 1 and Markov’s inequality[18], we know that 
the probability of finding the key in that run is at least 1/2. Let 
q be the probability  of encountering no misleading link during 
a run, and let p be the probability that that run is successful 
under the effect of “misleading” links. Then p ≥  (q – 1/2).  
Also  

  q  ≥ nk
2log38)/11( −  

  ≥   1/ e  = 0.606    
   (n>>10) 
    Therefore, p ≥ 0.106. Let X denotes the total number of runs 
to find a document. We have 

E[X] = ∑∞

=
≥

1
]Pr[

i
iX  

       ≤∑∞

=1i
(1 - p)i-1 = 1/p ≈ 9.4 

     Therefore, expected number of hops to find a document is 
at most  

9.4*( n2log38 )= O( n2log ). 

  g 
 
    Theorems 1 and 2 state that, our replacement policy 
motivated by the small­world model gives a polylogarithmic 
number of hops on the average in our idealized model, both 
with and without  “misleading” links.  Here there is a 
requirement that the random shortcut be chosen from a 
specific distribution (called inverse rth-power distribution in 
[12]). It is possible to satisfy this requirement in our scheme 
by using different values of p depending on the distance of 
the candidate shortcut key from the seed key.  The datastore 
(and routing table size) required is also polylogarithmic in the 



 
size of the Freenet system.  Of course the size of the data store 
should be at least large enough to make sure that every key 
has a copy in some node. 
    To summarize, in this idealized model, a carefully configured 
unstructured system gives the same ballpark performance (i.e. 
polylogarithmic) in terms of the size of the data store/routing 
table and the average number of hops as the structured 
schemes. If Theorem 2 continues to hold in more realistic 
settings, then  it would be an important consideration in the 
design of peer-to-peer networked systems. 
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Fig. 16. Two cases in which the request is forwarded through a 
“misleading” link. 
 

VI.  CONCLUSIONS 
 
    In this paper we sketched some preliminary work we did 
towards improving the performance of unstructured systems 
such as Freenet by using intuition from the small−world 
model. We first gave a brief description of the Freenet 
protocol. We then sketched the main idea behind the 
small−world model and explained how we could use intuition 
gained from this model to influence Freenet performance. We 
presented a new but simple cache replacement scheme: 
enhanced−clustering with light randomness. Our simulations 
showed a significant increase in availability and a significant 
decrease in the average number of hops when we used the 
enhanced−clustering caching with random shortcuts rather 
than LRU or enhanced−clustering caching without random 
shortcuts. It is important to note that this change did not 

involve any modifications to the Freenet protocol, just to local 
user behavior when the datastore gets filled. Finally, we 
analyzed the latency of Freenet (with the modified cache 
replacement scheme) in an idealized model and proved that the 

average time to find a key in such a model is just O( n2log ) 

where n is the number of nodes in the system. In addition to 
being interesting in their own right, the results sketched in this 
paper also illustrate how theoretical techniques and insights 
can improve the performance of peer−to−peer systems. 
    One specific open problem motivated by this work is to find 
the best value of p as a function of the network and load 
characteristics. Als o, it would be interesting to do a more 
complete analysis of Freenet as a stochastic system as 
opposed to our simple idealized model. More generally, there 
is a need to take a principled look at the properties of various 
algorithms proposed in the peer−to−peer literature. 
Peer−to−peer networks have a rich theoretical structure, and 
sophisticated algorithmic techniques have been employed in 
the systems currently under development [3][4][5]. Some of 
the rich structure of this problem was exemplified by the 
pioneering work of Plaxton et al. [14], where they give an 
elegant scheme to achieve optimum latency in networks which 
follow power­law expansion [15]. This has recently been 
extended to all graphs, but with weaker performance 
guarantees [19]. Some of the specific questions that need to 
be addressed are understanding the fundamental bounds on 
the performance of peer−to−peer systems, designing 
algorithms that allow these systems to perform at peak 
availability and minimum latency, and understanding the role 
that the small­world model might play in improving the 
performance of the peer−to−peer systems.  
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