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Abstract—Social media forms a central domain for the
production and dissemination of real-time information. Even
though such flows of information have traditionally been
thought of as diffusion processes over social networks, the
underlying phenomena are the result of a complex web of
interactions among numerous participants.

Here we develop aLinear Influence Model where rather
than requiring the knowledge of the social network and then
modeling the diffusion by predicting which node will influence
which other nodes in the network, we focus on modeling the
global influence of a node on the rate of diffusion through the
(implicit) network. We model the number of newly infected
nodes as a function of which other nodes got infected in the
past. For each node we estimate an influence function that
quantifies how many subsequent infections can be attributed
to the influence of that node over time. A nonparametric
formulation of the model leads to a simple least squares
problem that can be solved on large datasets.

We validate our model on a set of 500 million tweets and a
set of 170 million news articles and blog posts. We show that the
Linear Influence Model accurately models influences of nodes
and reliably predicts the temporal dynamics of information
diffusion. We find that patterns of influence of individual
participants differ significantly depending on the type of the
node and the topic of the information.

I. I NTRODUCTION

The information we experience comes to us continuously
over time, assembled from many small pieces, and conveyed
through social networks as well as other means. The merg-
ing of information, network structure, and flow over time
opens interesting questions about the large-scale behavior in
information networks.

Even though the diffusion of information has been an
active research area recently [7], [12], [26], [28], model-
ing the diffusion in social networks has proven to be a
challenging task. It is difficult to obtain large scale diffu-
sion data and to identify and track on a large scale the
elements, such as recommendations [25], links [27], [28],
tags [8], [7], topics [3], phrases or “memes” [26], that spread
and propagate through networks. Even if one does obtain
large scale real-world diffusion data, however, the issue of
modeling the underlying process still remains. Traditionally,
models of diffusion and cascading behavior have formalized
the spread of ideas, information and influence as processes
taking place on social and information networks [13], [15],
[31], where each individual node is eitheractive (infected,

influenced) orinactive, and active nodes can then spread
the contagion (information, influence, disease) along the
edges of the underlying network. Parameter estimation of
such models is challenging due to the heterogeneity of the
nodes and data sparsity. Only recently has the availabilityof
large social network and corresponding diffusion data made
it possible to estimate such models in practice [14], [30].

When using such models and fitting them to real-world
data one makes several assumptions: (a) complete network
data is available, (b) contagion can only spread over the
edges of the underlying network, (c) the structure of the
network itself is sufficient to explain the observed behav-
ior. However, in many scenarios, the network over which
diffusion takes place is in fact implicit or even unknown.
Commonly, we only observe when nodes got “infected” but
not who infected them. In case of information propagation,
people usually discover new information without explicitly
acknowledging the source. In word of mouth and viral mar-
keting settings, we only observe people purchasing products
or adopting new behaviors without explicitly knowing who
was the influencer that caused the adoption or the purchase.
Similarly, in virus propagation, we observe people getting
infected without knowing who infected them. Moreover,
many times an activation of a node is not just a function of
the social network but also depends on many other factors
like imitation and recency. For example, people prefer the
most recent information, and they discover new information
or make decisions by using many different means, like the
search engines, media sites, online forums and blogs or
employing their social networks. Thus, even though flows of
information and influence have traditionally been thought of
as diffusion processes over underlying social networks [13],
[15], [29], [31] existing models and formulations may be
too constrained to capture the complexity of the underlying
phenomena.

Modeling diffusion and temporal variation. Here we
address the above issues by developing a model of diffusion
where no explicit knowledge of the network is necessary.
Rather than predicting which node in the network will
infect which other nodes, we focus on modeling the global
influence a node has on the rate of diffusion through the
(implicit) network. Models of diffusion generally ignore time
and operate in discrete epochs. Instead, we accurately model



not only the influence each node has on the diffusion but also
how the diffusion unfolds over time.

Consider the diffusion of information in online media,
where no explicit network of who spreads the information
to whom exists. As the information propagates, a blogger or
a website gets “infected” when it mentions the information.
In such cases individuals and websites may act in diverse
ways: News wire services play an amplifying role, blogs
can serve both as early detectors and elaborators (or echo
chambers), while the mainstream media imparts a dominant
force in the direction the news cycle takes [23], [16]. For
example, some websites may act as “influentials” or early
adopters [32]. Bloggers and mainstream media are pushing
new content into the system in different manners [22], [11],
and often the content generated by blogs is regarded to be
more credible than that from the mainstream media [21].

In this paper we aim to develop an understanding of the
mechanisms by which the rate of diffusion rises and decays
over time. What causes certain information cascades to grow
large and why others remain small? And, what are the roles
of different participants in the dynamics of diffusion?

Linear Influence Model (LIM). We consider the temporal
variation in a diffusion-based framework and build on the
view adopted by the literature on social influence [10], [20].
We formulate theLinear Influence Model (LIM)by starting
with the assumption that the number of newly infected nodes
depends on which other nodes got infected in the past. We
then model the number of newly infected nodes as a function
of the times when other nodes got infected in the past. In this
model, each node has aninfluence functionassociated with
it. Then the number of newly infected nodes at timet is a
function of influences of nodes that got infected before time
t. Going back to our example of information diffusion, we
assume that the number of websites (i.e., nodes) that mention
particular information depends on which other websites
mentioned the information beforehand. Then one can view
the website’s influence function as follows: after website
u mentions the information at timet, this causes additional
Iu(1) other sites to mention the information in the next time
step,Iu(2) new mentions after two time steps, and so on.

We show that node influence functions can be efficiently
estimated by formulating a regression task where the goal is
to learn an influence functionIu(t) for each nodeu such that
the overall number of newly infected nodes at timet is the
sum of influences of previously infected nodes. We model
influence functions in a non-parametric way and show that
they can be estimated using a simple least squares procedure.

We experiment on two massive real world datasets: a
corpus of 500 million Twitter posts, and a set of 172
million news articles. We model the information diffusion in
these two datasets by estimating node influence functions.
Experiments show that our model outperforms standard time
series forecasting methods when predicting the magnitude

and the rate of information diffusion. We find that influence
functions exhibit distinct shapes depending on the node type
(newspaper, news agency, blog), and the topic of informa-
tion. We also find that Twitter users who have the most
followers are not the most influential in terms of information
propagation.

Applications. Estimating the influence of a node on the
diffusion process is important as it gives us a direct way
to quantify patterns of influence and roles different nodes
play in the diffusion of various types of contagions (topics
of information, types of products). The model allows us to
predict the future adoption of the contagion and to quantify
the relative influence of nodes, and thus helps us answer
questions such as: What is the influence of a particular node?
How does its influence change over time?

Even though we present our model in the context of
the information diffusion and adoption in social media,
our work is also applicable to many other settings. Most
generally, we can think of a contagion (information, virus,
innovation) that is spreading through the network but we
only observe its volume (the number of newly infected
nodes) over time. Now, based on the times when a small
number of nodes got infected by the contagion we model
the influence of these nodes on the overall volume and the
temporal dynamics of the diffusion. This setting naturally
applies to viral marketing [6], [18], where we observe people
purchasing products or adopting particular behavior without
explicitly knowing who was the influencer. Thus, for viral
marketing, estimating the influence functions (i.e., how many
subsequent purchases a node influences) is of considerable
interest. Similarly, in epidemiology and virus propagation,
we observe people getting sick without usually knowing how
they got infected [4]. Here our model allows us to estimate
the number of subsequent infections produced by each node
without the knowledge of the network.

II. PROPOSEDMETHOD

Next we formally introduce theLinear Influence Model
(LIM). Even though our model is widely applicable, we
restrict our discussion to the setting of information diffusion
in online media, where we track nodes (blogs, mainstream
media, or users on Twitter) mentioning particular pieces of
information (Twitter hashtags, or short textual phrases).

Model formulation. Consider a set of nodes that participate
in a diffusion process. As the information diffuses, nodes be-
come “infected” when they adopt (mention) the information.
We consider the setting where we observe only the timetu
when a particular nodeu mentioned the information and
do not require the knowledge of the underlying network.
We define thevolume, V (t), as the number of nodes that
mention the information at timet. We aim to model the
volume over time as a function of which other nodes have
mentioned the information beforehand.



Figure 1. The Linear Influence Model models the volume of diffusion
over time as a sum of influences of nodes that got “infected” beforehand.

We posit that each nodeu has a particular non-negative
influence functionIu(l) associated with it. One can simply
think of Iu(l) as the number of followup mentionsl time
units after nodeu adopted the information. Or equivalently,
after nodeu mentions the information, this triggers an
additional Iu(1) mentions in the next time step,Iu(2)
mentions after two time steps, and so on. Now, we aim
to model the relation between the volumeV (t), and the
influence functions of nodesu that mention the information
at times tu (tu < t). We simply assume that the volume
V (t) is the sum of properly aligned influence functions of
nodesu:

V (t+ 1) =
∑

u∈A(t)

Iu(t− tu)

whereA(t) denotes the set of already active (infected, in-
fluenced) nodesu that got activated prior to timet (tu ≤ t).

Figure 1 illustrates the model. The curve on the top
represents the volumeV (t) over time, andtu, tv, and tw
denote the times when nodes,u, v and w, got infected.
After the nodes got infected, they each influence additional
Iu(t − tu), Iv(t − tv) and Iw(t − tw) infections at timet.
So the volumeV (t) at time t is the sum of the influences
of the three nodes.

A natural question then is how to model the individual
influence functionsIu(l). There are two general approaches.
The first is a parametric approach, where one could as-
sume that functionsIu(l) follow a certain parametric form,
such as an exponentialIu(l) = cue

−λul or a power law
Iu(l) = cul

−αu with parameters depending on the nodeu.
Although such a model would be very clean and simple, it
has an important drawback, as it assumes that the influence
functions of all nodes follow the same parametric form. This
assumption may be too simplistic to capture the complex dy-

namics of diffusion. This is especially true in online media,
where a diverse set of participants (blogs, newspapers, TV
stations, news agencies) play very different roles and have
very different impacts on the overall dynamics of diffusion.

To account for this diversity we use a non-parametric
approach. This way we do not make any assumptions about
the shape of the influence functions and we let the model
estimation procedure find the most appropriate shapes. We
achieve this by considering the time to increase in discrete
intervals (e.g., one hour). Then we can represent an influence
function Iu(l) as a non-negative vector of lengthL, where
lth value represents the value ofIu(l). Setting the length of
vector Iu to L simply means that the influence of a node
drops to zero afterL time units.

Such non-parametric formulation of the Linear Influence
Model makes no assumptions about the shape of individual
influence functions. This offers great modeling flexibility, as
different nodes can have very different patterns of influence.
Furthermore, we can study how the shape of the influence
functions varies for different types of nodes or for different
types of contagions (e.g., textual phrases of different topics).
Finally, nodes can be grouped based on the shape of their
influence functions to gain further insights into the roles
different nodes play in the diffusion process.

Model parameter estimation.Next we present an efficient
procedure to estimate parameters (i.e., influence functions)
of the LIM model. Consider a set ofN nodes and the data on
howK different contagions diffused between the nodes over
time, where each contagion can infect any arbitrary subset
of nodes. We then represent this data as a large indicator
functionMu,k(t), whereMu,k(t) = 1 if nodeu got infected
by contagionk at time t, and 0 otherwise. Note that the
volumeVk(t) of contagionk at time t is simply defined as
the number of nodes that got infected byk at timet. We then
model the volumeVk(t) as a sum of influences of nodesu
that got infectedbeforetime t:

Vk(t+ 1) =
u=N
∑

u=1

l=L−1
∑

l=0

Mu,k(t− l)Iu(l + 1) (1)

The first summation goes over all the nodes, while the
second goes over the time-length of influence functions.
Given the current timet we first check whether nodeu
got infected with contagionk l-time units ago. If so, then
Mu,k(t−l) = 1 and nodeu contributes its influence ofIu(l)
to the total volume.

Next, we show how to estimate the influence functions
Iu(t) that most accurately predict volumeVk(t + 1) given
the particular other nodes that got infected in the past. Gen-
erally, we will not be interested in estimating the influence
functions of all the nodes but will rather model the total
volume V (t) as a function of a small set ofN nodes of
interest. Thus,V (t) models the total volume over the whole
universe of nodes (all online media, all Twitter users, etc.),



(a) Volume vectorVk of length T , influence vectorIu of
lengthL, and aT×L lower-triangular blockMu,k of influence
indicator matrixM

(b) Vector V of length K · T , vector I of length L · N , and an
influence indicator matrixM of sizeK · T ×N · L.

Figure 2. The structure of the matrix equationV = M · I

while N denotes a small subset of nodes of interest (e.g.,
only newspapers, or a small subset of most active Twitter
users). We also assume that the number of contagions is
larger than the number of nodes of interest (K > N ).

Since timet increases in discrete intervals, we represent
Vk(t), Mu,k(t), and Iu(l) as vectors and matrices, and
formulate a least squares-like problem, where for each node
of interestu the goal is to estimateL values of its influence
function, Iu(1), . . . , Iu(L). We show that valuesIu(l) can
be estimated by a simple matrix equation using the fact that
volumeVk(t) is a linear function of influenceIu(l) (Eq. 1).

To formulate the matrix equation we first define the
volume vectorV, the influence vectorI , and theinfluence
indicator matrixM (Figure 2). We compose a column vector
V of lengthK ·T by simply thinking of volumeVk(t) of each
contagionk as a vectorVk of lengthT indexed byt, and then
concatenating the contagions fork = 1, . . . ,K. Second, we
compose an influence vectorI of lengthN ·L by considering
eachIu(l) as a vectorIu of lengthL indexed byl, and then
concatenating them. Last, we compose a binary influence
indicator matrix M of K · T rows andN · L columns.
Consider that nodeu, got infected with contagionk at timet.
Then we set entries(i, j) of matrix M to 1 for i = kT (t+ l)

andj = uL(t+ l+1), wherel = 0, . . . ,min(L− 1, T − t).
Note that matrixM has a block structure where every block
Mu,k represents a node–contagion pair, and if a nodeu got
infected by contagionk at time t this creates a diagonal
stripe of ones in a blockMu,k, i.e., Mu,k[t + l, l + 1] = 1,
for l = 0, . . . , L−1 (Fig. 2(a)). This way theT rows ofMu,k

account for time and theL columns for how the influence
of a node changes (up toL time units) after it got infected.

Now our aim is to solve a matrix equationV = M ·I where
we aim to estimate values of the influence vectorI given the
values of the volume vectorV and the influence indicator
matrixM . However, due to noise and the fact that the system
is over-determined (K · T � N · L) we do not expect that
an exact solution exists. Thus we aim to find theI that
minimizes the prediction error measured by the Euclidean
distance between the true and the predicted volume:

minimize ||V − M · I ||22
subject to I ≥ 0

where|| · ||22 denotes the squared Euclidean norm.
The above optimization problem is called a non-negative

least squares (NNLS) problem [24] and can be solved
efficiently even for a large number of nodes and contagions.
The sparse nature of the influence indicator matrixM helps
to further expedite the calculation. We use the Reflective
Newton Method [9] which takes less than a second to
solve a problem withK = 1,000, L = 10, T = 120,
and N = 100. In practice we also apply the Tikhonov
regularization [19], which has the effect of smoothing the
non-parametric estimates.

Extensions: Accounting for novelty. So far, we have
assumed that a node has the same influence regardless of
how early or late in the diffusion they appear. This means
that the influence of a node is same even if it mentions
the information very early or very late. However, nodes are
more likely to adopt novel and recent information while
ignoring old and obsolete information. In order to account
for this effect of recency and novelty [33] we introduce a
multiplicative factorα(t) that models how much more/less
influential a node is at the time when it mentions the
information. We refer to this model asα-LIM:

Vk(t+ 1) = α(t)
u=N
∑

u=1

l=L−1
∑

l=0

Mu,k(t− l)Iu(l + 1)

Note thatα(t) is the same over all contagions. We expect
α(t) to start low, quickly peak and then slowly decay. The
influence of nodes just before the peak attention will be
boosted simply because the information is new and nobody
knows about it yet. As time goes by the novelty decays and
the benefit of appearing early in the diffusion wears off (α(t)
decreases).

In order to estimateIu(l) and theT values of vector
α(t) we observe that the resulting matrix equation is convex



both in Iu(l) whenα(t) is fixed and inα(t), whenIu(l) is
fixed. Thus we use a coordinate descent procedure, where
we iterate between fixingα(t) and solving forIu(l), then
fixing Iu(l) and solving forα(t).

Extensions: Accounting for imitation. Another aspect of
information diffusion and adoption is the effect of imi-
tation [26], where nodes imitate one another because the
information is popular and everyone talks about it. We refer
to the contribution of the imitation as thelatent volumein
a sense that this volume is caused not by influence, but by
other factors. We model the latent volume with an additive
factor b(t) and refer to the model as the B-LIM model:

Vk(t+ 1) = b(t) +

u=N
∑

u=1

l=L−1
∑

l=0

Mu,k(t− l)Iu(l + 1)

B-LIM is linear in Iu(l) and b(t), and thus we can use a
matrix formulation similar to the one in Figure 2.

Discussions and further extensions.Another direction
for extensions is to introduce an additional parameter for
each contagion to explicitly model for the attractiveness
of different contagions, arguing that some contagions are
a priori more interesting, attractive and easier to diffuse. An
alternative approach would be for nodes to have multiple
influence functions depending on the type or topic of the
contagion.

Last, we note that our model can be used for “prediction”
and as well as “explanation.” So far we have introduced the
model in the prediction setting, where we observe a small
subset ofN nodes that got infected up to timet and want to
predict the total volume overall nodes in the future timet+
1. However, we can also use the model for explanation in the
sense that we observe a small number of nodesN that got
infected up to timet, and we are then interested in predicting
the total volume at the current timet. This formulation does
not predict (forecast) the total volume in next time step but
it rather predicts the total volume at the current time step
based on which nodes are currently infected. We consider
both formulations to be interesting and valid; however, in the
rest of the paper we only consider the predictive formulation,
where we aim to predict the future total volume at timet+1
based on observing which nodes got infected in the past.

III. E XPERIMENTS

In this section, we evaluate the performance of LIM on
two different datasets. We first describe the datasets and the
experimental setup, and then evaluate LIM on a time series
prediction problem.

Dataset description.First, we consider modeling the diffu-
sion of short textual phrases over the online media space.
We apply the Memetracker [26] methodology and extract
343 million short textual phrases from a set of 172 million
news articles and blog posts collected from more than 1

million online sources between September 1 2008 to August
31 2009. To ensure that we observe the complete lifetime
of a phrase, we only keep phrases that first appeared after
September 5. We choose 1,000 phrases with highest volume
in a 5 day window around their peak volume. For each
phrase, we track which websites mention it during 5 days
around its peak volume.

Second, we analyze the diffusion of hashtags on Twit-
ter. Twitter users often tag posts with “hashtags” (e.g.,
#iknowsomeonethat, #ilovelifebecause). The emergence
and adoption of hashtags create global cascades in the
Twitter network. We collect a stream of 580 million Twitter
posts (40-50% of all posts) between June 2009 and February
2010. We identify 6 million different hashtags, and then
discard hashtags that do not experience a significant peak in
their volume (e.g.,]musicmondayand ]goodmorning). We
then select 1,000 highest total volume hashtags during the
5 days around their peak volume. As Twitter users adopt at
most1% of the hashtags, we mitigate this data sparsity issue
by grouping users into groups of 100 users. We consider 100
groups and model each group as a node. We then model
the collective behavior of each group by aggregating all the
mentions within the group.

Experimental setup. Volume Vk(t) of a contagionk can
naturally be viewed as a time series. We thus evaluate our
LIM model on a time series prediction task, where we
observe the nodes that got infected withk up to timet and
aim to predict the volumeVk(t + 1) of the contagionk at
future timet+ 1.

To evaluate the model we employ 10-fold cross validation.
We split contagions (hashtags, memes) into 10 folds, use 9
folds to estimate the model parameters and evaluate on the
remaining fold. For each contagionk in the evaluation fold,
we predict the volumêVk(t+1) of contagionk at timet+1.
We then measure the difference between the true volume and
predicted volume,Ek(t+ 1) = Vk(t + 1)− V̂k(t+ 1), and
report the relative error

√

∑

k,t Ek(t)2/
√

∑

k,t Vk(t)2.

In all of our experiments, we useK = 1, 000 contagions,
one hour as the time unit, and setL = 10 (i.e., influence of
a node decays to zero after 10 hours). Since contagions have
very short life spans, we set the length of the volume time
series to 5 days (i.e,T = 120). For each contagion, we set
the start (t = 0) of Vk(t) to be first time when the volume
of the contagion is twice the average volume in previous
5 time-steps. This has the effect that we start to observe
the volume of the time series just before it starts to peak
(see Figure 5(a) for example). We also allow each node to
mention the phrase or hashtag multiple times during a time
unit, i.e.,Mu,k(t) can be more than1.

We model the total volumeVk(t) of a contagion based
on the influence ofN = 100 nodes. Note that this is an
extremely small fraction of the total number of nodes. In
Memetracker, for example, we have more than 1 million



Model ALL

AR 6.82% 7.08% 8.43% 7.21% 8.47% 8.30% 7.41%
ARMA 6.65% 7.71% 8.29% 6.85% 8.07% 8.71% 7.75%

LIM 13.89% 12.42% 11.41% 20.06% 6.22% 6.24% 14.31%
B-LIM 15.38% 15.19% 12.24% 21.27% 8.15% 6.99% 15.71%
α-LIM 15.50% 14.59% 11.50% 20.08% 7.13% 6.71% 15.26%

Table I
REDUCTION IN PREDICTION ERROR OVER1-TIME LAG PREDICTOR ONMEMETRACKER DATA FOR SIX TYPES OF SHAPES OF VOLUME OVER TIME.

different websites (nodes) that participate in the diffusion
and we aim to model the total number of sites that will
mention the phrase based on the information about mentions
from only 100 highest volume sites. Similarly, in Twitter we
model the hashtag volume over the 25 million active users
based only on the information about 10,000 users, which is
only 0.04% of the total active users.

Baseline methods.We compare the performance of LIM
with three time series prediction methods. First, a 1-time lag
predictor simply takes the volume at the current time as the
prediction for the volume at the next time,V̂k(t+1) = Vk(t).
We also consider two standard time series regression meth-
ods: the Autoregressive Model (AR), and the Autoregressive
Moving Average Model (ARMA) [5] both of orderL. The
AR model is equivalent to a special case of LIM where we
assume that all the nodes have the same influence function.
ARMA uses AR with an additional ingredient, the moving
average model. We use training folds to estimate model
parameters, and then evaluate on the test fold, where we
predict the volume at timet + 1 given the time series of
volumeVk(t) up to timet.

Time series prediction problem. We evaluate our LIM
model on the task of predicting the volume of a conta-
gion over time. We evaluate three versions of the LIM
model (i.e., LIM, B-LIM, and α-LIM) and compare the
performance with the three time series forecasting methods
(1-time lag predictor, AR and ARMA). The purpose of
these experiments is not to build a perfect time series
predictor. Rather, we aim to evaluate whether the modeling
assumptions of LIM are reasonable and to what degree the
observed dynamics of diffusion can be attributed to the
influence of nodes.

Table I shows the relative reduction in error over the 1-
time lag predictor on the Memetracker data for all phrases,
and also for phrases grouped based on the shape of the
volume over time [2]. While AR and ARMA give 7.5%
improvement, LIM and its variants outperform AR and
ARMA by a factor of two. We find the results to be similar
for predicting the adoption of Twitter hashtags (table not
shown for brevity) where AR and ARMA give about 1%
improvement over 1-time lag predictor, while LIM gives
6.1% error reduction (B-LIM 6.3%,α-LIM 3.5%).

There are several interesting observations about these

results. First, notice that AR is equivalent to LIM with the
same influence function for all nodes. Our results suggest
that nodes have very different levels of influence and that
we obtain a substantial benefit from the non-parametric
approach. Moreover, we also observe that LIM gives better
results for modeling the adoption of textual phrases in online
media than for modeling the adoption of Twitter hashtags.
These results suggest that there are a relatively small number
of media sites that have large influence on the adoption of
textual phrases, while the influence of top Twitter users on
the adoption of Twitter hashtags is smaller. These results
align well with the two-step theory of information flow [22],
which has been developed in sociology to reconcile the role
of the media with the observation that in many scenarios
individuals are influenced by the neighbors in their social
networks as well as by the mainstream media. The theory
is called a “two-step flow” as the information and influence
“flows” from the mass media through opinion leaders to the
public. In our context here, the results suggest that while
the media space is occupied by relatively few very influential
media sites (LIM predicts well the diffusion of Memetracker
phrases), the most active Twitter users have less influence
on the overall adoption of hashtags. In addition, notice that
α-LIM and B-LIM further increase the performance over
the LIM on the Memetracker dataset. This means that the
novelty of a phrase and imitation are important factors in
the diffusion of textual phrases. On Twitter B-LIM slightly
outperforms LIM, while α-LIM performs poorly, which
hints that diffusion of hashtags is also driven by imitation,
while recency does not play much role.

Table I also shows the performance of models based on
the shape of the volume over time. Our previous research
found that there are 6 distinct types of temporal variation
in online media [2]. We cluster the volume curves into 6
clusters and Table I plots the temporal pattern of the centroid
of each cluster. We note that AR and ARMA give even
performance improvement over all types of volume curves,
while the family of LIM models performs particularly well
on phrases that exhibit a very abrupt spike in their volume.
LIM can accurately model sudden spikes in adoption of
textual phrases that are influenced by large media sites.

Analysis of influence functions.Our experiments so far
demonstrated that LIM reasonably models information dif-
fusion in online media. We now proceed to investigate how
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Figure 3. Average influence functions of five types of websites: Newspapers (News), Professional Blogs (PB), Television(TV), News Agencies (Agency),
and Personal Blogs (Blogs). The number in brackets denotes the total influence of a media type.

the influence of various types of nodes changes depending
on the topic of the information and the type of a node.

Memetracker dataset consists of a wide range of media
sites from traditional mass media such as newspapers, na-
tionwide TV stations and press agencies, to modern online
independent news sites, professional and personal blogs.
Since the credibility of information depends on the type of
the source [21], we are interested in estimating the influence
of a different types of media on the diffusion and adoption
of textual phrases. Similarly to having different types of
media, we also have different types of textual phrases. The
intuition here is that different participants in online media
discourse may have different influences depending on the
topic of the debate [11]. In this respect we categorize textual
phrases into six different topics. For each topic, we then
estimate the influence functions of various types of sites
(blogs, newspapers, etc.).

For the purpose of the experiment, we identify five types
of media: Newspapers (New York Times, USA Today), Pro-
fessional blogs (Salon, Huffingtonpost), TV stations (ABC,
CBS), News agencies (AP, Reuters) and (personal) Blogs.
In total we select 22 sites, and group them in the above five
groups (the extended version of the paper [1] gives a full
list). In order to find topics of textual phrases, we notice that
several news sites specify the topic of an article in the URL.
For each phrase, we simply list the URLs of all the articles
that mention the phrase, and count which of the topic names
(Politics, Nation, Entertainments, Business, Technologyand
Sports) appears in the URLs. When a single topic dominates,
we consider the phrase to belong to that particular topic.

Now, we estimate the influence functions of 22 media sites
(N = 22) on each of the six topics, by fitting LIM with the
phrases in the topic. We plot the average influence function
of sites of that particular type. Note that the influence
functions model the influence per mention, whereas we are
interested in the amount of total influence that each type of
media has on the diffusion of phrases. In order to obtain
the total influence, therefore, we normalize the influence
functions of each type with the average number of the
mentions of phrases on particular topic.

Figure 3 gives the influence functions for the five types
of media and six topics. In the legend of the figure, we also
compute the total influence of a media type by summing the
values of their influence functions. Notice that in general
influence functions tend to decay rapidly over time. While
the decay is particularly pronounced for business and poli-
tics, for entertainment or sports the influence seems to last
somewhat longer. Similarly, the influence of bloggers tends
to be lower at start, but tends to last longer (in particular for
entertainment and technology). This confirms the intuition
that blogs tend to be echo chambers while mainstream
media play the dominant force in the news cycle [23].
This is further confirmed by the fact that politics, business,
technology and the nation tend to be dominated by news
agencies. Professional blogs are the second in terms of total
influence in politics and national news, newspapers are the
second in business, and personal blogs are in technology. In
entertainment and sports, the situation is somewhat reverse.
For entertainment it is the personal blogs that are the most
influential, while for sports it is the professional blogs
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Figure 4. Influence functions of the New York Times (NYT), theWall Street Journal (WSJ), and USA Today (USA).

followed by the newspapers.

We repeat the same experiment with different setting
where we model the total volume over time based only on
three major U.S. newspapers: The New York Times (NYT),
The Wall Street Journal (WSJ), and USA Today. Note that
this model is particularly simplistic as it tries to model the
diffusion of a textual phrase across the entire news media
space based only on the information about three (i.e,N = 3)
media sites. Figure 4 gives the influence functions for the
three newspapers on the six topics. The USA Today is the
most influential for sports and entertainment. However, we
find the strong influence of the USA Today on technol-
ogy somewhat surprising. While the New York Times has
influence mostly in politics and business, the Wall Street
Journal has more influence in national news, surprisingly in
entertainment but not much in business.

All in all, these results agree with the intuition and are
also consistent with the two-step flow model, coming from
sociology and political science. Moreover, it is interesting
that our model is able to detect and distinguish the fine
differences between the roles that different types of media
play in disseminating information of different topics.

Accounting for imitation. As we noted in the time series
prediction task (Table I), the variants of the linear influence
model that explicitly account for imitation (B-LIM) and
recency (α-LIM) tend to perform slightly better than the
straight LIM model. This is particularly the case in diffusion
and adoption of textual phrases related to news, where
imitation and recency play important roles.

We first explore the imitation. As before we takeK =

1, 000 highest volume textual phrases andN = 100 websites
that mentioned most of these phrases. We then fit the B-LIM
model, and in Figure 5(a) we plot the latent volumeb(t) as
a function oft. On the plot we also show the appropriately
scaled average phrase volume,V̄ (t) = (1/K)

∑

k Vk(t).
Here, we index the timet so that the chronological median
of the mentions of each phrase occurs att = 0. Notice that
the latent volume tightly follows the average volume over
time, especially on the upward part. We also observe that the
imitation effect reaches its maximum just before the phrase
has its peak volume (i.e.,b(t) peaks just beforēV (t) does).

Given these results we also compute an average number of
mentions of a phrase per website,M̄u(t) =

∑

k Mu,k(t). We
then find the media site with the highest correlation of the
number of mentionsM̄u(t) with the imitationb(t). We find
that it is the Associated Press (AP) that best approximates
the amount of imitation over time,b(t). This confirms that
articles that appear on AP are automatically distributed over
hundreds of sites (that subscribe to AP’s news feed) within
a few hours.

Accounting for novelty. We also evaluate the effects of
recency and novelty on the diffusion of textual phrases in
online media. We fitα-LIM which estimates the recency
factorα(t) as well as the individual influence functions.

Figure 5(b) plots the recency factorα(t) as a function
of t. We observe some volatility in the recency factor
long before its peak. Our intuition is that, in this period,
the information is still developing with additional events,
controversies and other external factors that makeα(t)
unpredictable. However, the rest of the recency factorα(t)
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Figure 5. Latent volumeb(t) and the recency factorα(t).

can be very nicely explained. We notice that, for about ten
hours, the effect of recency is the strongest and only later
starts to slowly decay, with slower decay than the uptake.

To gain further insights into how effects of recency and
novelty decay over time, we fit an exponential decaying
functionα(t) ≈ ce−λt, and findc = 0.93 andλ = 0.0215 to
give the best fit. As shown in Figure 5(b), the exponential
decay function very closely approximatesα(t). Based on
the value of decay parameterλ, we can estimate the half-
life time τ such thatα(τ) is a half of α(0). We find the
half-life to be 32.2 hours, which is about a day and a half
and suggests that people consume news on daily basis.

Influence of users on Twitter.Last we explore the influence
functions of Twitter users. Since the Twitter data is very
sparse in a sense that each user mentions relatively few
different tags, we consider a set 10,000 Twitter users, and
aggregate them into 100 groups of 100 users. We consider
two different types of grouping. First, we order users by the
amount of their activity (hashtag volume) and second we
order them based on the number of their followers. We fit
B-LIM and examine the relation between the hashtag volume
and the influence they have on the adoption of hashtags
across the whole Twitter network.

Figure 6(a) shows the amount of influence of users
grouped based on their total volume. All groups tend to
have similar form of total influence. The group with the
third largest volume has the most total influence, while the
highest volume group has the lowest. Similarly, Figure 6(b)
shows the influence functions of users grouped based on
their total number of followers (i.e., in-degree) in the Twitter
social network. Surprisingly, we find that the Twitter users
with the intermediate number of followers have much higher
influence than the highest in-degree nodes. While our results
are somewhat different from literature in viral marketing and
word of mouth [32], [25] which often assumes nodes with
the highest follower count to be most influential, our results
are consistent with the recent findings [7] which suggest
that users with the highest follower count are not the most
influential in terms of information diffusion. Rather, users
with the number of followers of around 1,000 tend to be
most effective in diffusion and adoption of hashtags.

The results on Twitter nicely align with the experiments
on Memetracker data. As the Memetracker experiments
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Figure 6. Influence functions of groups of Twitter users.

focused on online media and adoption of short textual
phrases, we find that the mainstream media holds the most
influential position in the dissemination of news content. On
the other hand, hashtags on Twitter are a very different type
of contagions. Hashtags are not news but rather socially con-
tagious tags that are adopted in a distributed manner without
a central supervision. Therefore, the diffusion of hashtags is
mostly governed by the Twitter social/information network.
This way Twitter users with “too high” number of followers,
which usually correspond to celebrities and organizations,
may be very influential in propagating the “information”
contagions such as news, but not in diffusing more “social”
contagions such as hashtags.

IV. CONCLUSION

We started with an assumption that the diffusion of infor-
mation and other contagions is governed by the influence
of individual nodes. Instead of focusing on the network
topology and formulating a problem of predicting which
node will infect which other individual nodes, we develop
a Linear Influence model, where the influence functions of
individual nodes govern the overall rate of diffusion through
the network. We developed an efficient model parameter
estimation method that is based on simple least squares-
like formulation. Adopting a non-parametric modeling of
the influence functions allowed us to accurately model and
predict how diffusion unfolds over time.

We experimented with a set of 500 million tweets and a set
of 170 million news media articles. Besides demonstrating
that LIM outperforms classical time series prediction meth-
ods, we also gain a number of insights. For example, we
identified influence functions of various websites and found
that they heavily depend on the type of the website and
the topic of the information. Furthermore, we also observed
that the imitation and novelty have a strong force on the
adoption of short textual phrases in online news media. As
the adoption of short, news-related textual phrases appears to
be highly governed by the influence of the few large media
websites, the adoption of Twitter hashtags is governed by a
much larger set of active users, each of which has relatively
less influence. Moreover, we also observe that users with the
most followers are not the most influential in propagating
hashtags.



Our work opens up a new framework for the analysis
of the dynamics of the information diffusion and influence
in (implicit) social and information networks. Our models
are broadly applicable to general diffusion process, as they
do not require knowledge of the underlying network. An
interesting venue for future work is to extend the model to
allow for non-linear effects and to automatically discover
the types of roles different participants have in the diffusion
of information.
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Cluster ALL

AR -3.14% 0.69% 1.13% 1.48% 0.76% 0.11% -1.86%
ARMA 1.40% 0.11% 0.83% 2.65% -0.12% -0.09% 0.87%
LIM 15.16% -25.50% -19.03% -15.47% -18.50% -9.64% 6.21%
B-LIM 15.36% -25.74% -19.08% -15.38% -18.12% -10.77% 6.22%
ALIM 7.63% -25.67% -21.02% -13.84% -26.18% -18.75% 3.53%

LIM + AR -0.87% -0.58% 0.91% 1.03% 0.75% -1.54% -2.41%

Table II
REDUCTION IN PREDICTION ERROR OVER1-TIME LAG PERDICTOR ONTWITTER DATA FOR SIX TYPES OF SHAPES OF VOLUME OVER TIME. SEE THE

MAIN TEXT FOR THE DESCRIPTION FOR MODELS.

Type Website

nytimes.com
online.wsj.com

Newspaper washingtonpost.com
usatoday.com
boston.com

Professional blog huffingtonpost.com
salon.com

TV cbs.com
abc.com

News Agency reuters.com
ap.org
wikio.com
forum.prisonplanet.com
blog.taragana.com
freerepublic.com

Blogs gather.com
blog.myspace.com
leftword.blogdig.net
bulletin.aarp.org
forums.hannity.com
wikio.co.uk
instablogs.com

Table III
FIVE TYPES OF WEBSITES.

APPENDIX

Details for some websites in Table III.Counting the men-
tions from Associated Press (AP) is tricky as AP transmits its
article to other websites before it posts on its site. We count
the mentions from ”breitbart.com” as the surrogate of the
mentions from AP, because a mention from ”breitbart.com”
is the duplicate of an AP article in most cases, and it
precedes other duplicates of the AP article. For the TV
stations (ABC and CBS), we aggregate all the mentions from
their local affiliates.


