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Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.

Most real networks typically contain parts in which the nodes
(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.

In general, each node i of a network can be characterized by a
membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sov
a;b nodes, which we define as the overlap size between these

communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcom

a : Finally, the
size scom

a of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution
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Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.
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functions denoted by P(m), P(sov), P(d com) and P(s com). For the
overlap size, for example, P(sov) means the proportion of those
overlaps that are larger than sov. Further relevant statistical features
will be introduced later.

The basic observation on which our community definition relies is
that a typical community consists of several complete (fully con-
nected) subgraphs that tend to share many of their nodes. Thus, we
define a community, or more precisely a k-clique community, as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques (where
adjacency means sharing k 2 1 nodes)21–23. This definition seeks to
represent the fact that it is an essential feature of a community that its
members can be reached through well-connected subsets of nodes.
There are other parts of the whole network that are not reachable
from a particular k-clique, but they potentially contain further
k-clique communities. In turn, a single node can belong to several
communities. All these can be explored systematically and can result
in many overlapping communities (illustrated in Fig. 1c). In most
cases, relaxing this definition (for example, by allowing incomplete
k-cliques) is practically equivalent to decreasing k. For finding
meaningful communities, the way in which they are identified is
expected to satisfy several basic requirements: it cannot be too
restrictive, it should be based on the density of links, it is required
to be local, it should not yield any cut-node or cut-link (whose
removal would disjoin the community) and, of course, it should
allow overlaps. We employ the community definition specified
above, because none of the others in the literature satisfy all these
requirements simultaneously21,24.

Although the numerical determination of the full set of k-clique
communities is a polynomial problem, we use an algorithm (which
can be downloaded from http://angel.elte.hu/clustering/) that is
exponential, because it is significantly more efficient for the graphs
corresponding to real data. This method is based on first locating all
cliques (maximal complete subgraphs) of the network and then
identifying the communities by carrying out a standard component
analysis of the clique–clique overlap matrix21. More details about the
method and its speed are given in Supplementary Information.

We use our method for binary networks (that is, with undirected
and unweighted links). An arbitrary network can always be trans-
formed into a binary one by ignoring any directionality in the links
and keeping only those that are stronger than a threshold weight w*.
Changing the threshold is like changing the resolution (as in a
microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
increasing k makes the communities smaller and more disintegrated
but also at the same time more cohesive.

When we are interested in the community structure around a
particular node, it is advisable to scan through some ranges of k and
w* and monitor how its communities change. As an illustration, in
Fig. 2 we show diagrams of the communities of three selected nodes
of three large networks: the social network of scientific collabo-
rators25 (Fig. 2a), the network of word associations26 related to
cognitive sciences (Fig. 2b) and the molecular-biological network
of protein–protein interactions27 (Fig. 2c). These pictures can serve as
tests or validations of the efficiency of our algorithm. In particular,

Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
‘bright’ in the South Florida Free Association norms list (for w* ¼ 0.025)
represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.
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the communities of G. Parisi (whose contributions in different fields
of physics are well known) shown in Fig. 2a are associated with his
fields of interest, as can be deduced from the titles of the papers
involved. The four-clique communities of the word ‘bright’ (Fig. 2b)
correspond to the various meanings of this word. An important
biological application is finding the communities of proteins, based
on their interactions. Indeed, most proteins in the communities
shown in Figs 2c and 3 can be associated with either protein
complexes or certain functions, as can be looked up by using the
GO-TermFinder package28 and the online tools of the Saccharomyces
Genome Database (SGD)29. For some proteins no function is yet
available. Thus, the fact that they show up in our approach as
members of communities can be interpreted as a prediction of
their functions. One such example can be seen in the enlarged

portion of Fig. 3. For the protein Ycr072c, which is required for
the viability of the cell and appears in the dark green community on
the right, SGD provides no biological process (function). By far the
most significant GO term for the biological process of this commu-
nity is ‘ribosome biogenesis/assembly’. We can therefore infer that
Ycr072c is likely to be involved in this process. In addition, new
cellular processes can be predicted if as yet unknown communities
are found with our method.

These examples (and further examples included in Supplementary
Information) show the advantages of our approach over the existing
divisive and agglomerative methods recently used for large real
networks. Divisive methods cut the network into smaller and smaller
pieces, and each node is forced to remain in only one community and
be separated from its other communities, most of which then
necessarily fall apart and disappear. This happens, for example,
with the word ‘bright’ when we apply the method described in ref.
16: it tends to stay together mostly with the words of the community
related to ‘light’, while most of its other communities (for example,
those related to ‘colours’; see Fig. 2b) completely disintegrate (‘green’
becomes associated with the vegetables, ‘orange’ with the fruits, and
so on). Agglomerative methods do the same, but in the reverse
direction. For example, when we applied the agglomerative method
of ref. 18, at some point ‘bright’, as a single word, joined a ‘commu-
nity’ of 890 other words. In addition, such methods inevitably lead to
a tree-like hierarchical rendering of the communities, whereas our
approach allows the construction of an unconstrained network of
communities.

The networks chosen above have been constructed in the following
ways. In the co-authorship network of the Los Alamos e-print
archives25 each article contributes a value 1/(n 2 1) to the weight
of the link between every pair of its n authors. In the South Florida
Free Association norms list26 the weight of a directed link from one
word to another indicates the frequency with which the people in the
survey associated the end point of the link with its starting point. For
our purposes these directed links have been replaced by undirected
ones with a weight equal to the sum of the weights of the correspond-
ing two oppositely directed links. In the Database of Interacting
Proteins (DIP) core list of the protein–protein interactions of
Saccharomyces cerevisiae27 each interaction represents an unweighted
link between the interacting proteins. These networks are very large,
consisting of 30,739, 10,617 and 2,609 nodes and 136,065, 63,788 and
6,355 links, respectively.

Although different values of k and w* might be optimal for the
local community structure around different nodes, we should set
some global criterion to fix their values if we wish to analyse the
statistical properties of the community structure of the entire net-
work. The criterion we use is based on finding a community structure
that is as highly structured as possible. In the related percolation
phenomena23 a giant component appears when the number of links is
increased above some critical point. Therefore, to approach this
critical point from below, for each selected value of k (typically
between 3 and 6) we lower the threshold w* until the largest
community becomes twice as big as the second largest one. In this
way we ensure that we find as many communities as possible, without
the negative effect of having a giant community that would smear out
the details of the community structure by merging many smaller
communities. We denote by f* the fraction of links stronger than w*,

Figure 3 |Network of the 82 communities in theDIP core list of the protein–
protein interactions of S. cerevisiae for k 5 4. The areas of the circles and
the widths of the links are proportional to the size of the corresponding
communities (scoma ) and to the size of the overlaps (sova;b), respectively. The
coloured communities (top) are cut out and magnified to reveal their
internal structure (bottom): the nodes and links of the original network have
the same colour as their communities, those that are shared by more than
one community are emphasized in red, and the grey links are not part of
these communities. The areas of the circles and the widths of the links are
proportional to the total number of communities they belong to.

Table 1 | Statistical properties of the network of communities

Network N com kdcoml kCcoml krl

Co-authorship 2,450 12.10 0.44 0.58
Word association 670 11.33 0.56 0.72
Protein interaction 82 1.54 0.17 0.26

Ncom is the number of communities, kdcoml is the average community degree, kCcoml is the
average clustering coefficient of the network of communities, and krl is the average fraction
of shared nodes in the communities.
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and use only those values of k for which f * is not too small (not
smaller than 0.5). This has led us to k ¼ 6 and k ¼ 5 with f* ¼ 0.93
and 0.75, respectively, for the collaboration network, and k ¼ 4 with
f* ¼ 0.67 for the word-association network. For the former network
both sets of parameters result in very similar communities (see
Supplementary Information). Because for unweighted networks no
threshold weight can be set, for these we simply select the smallest
value of k for which no giant community appears. For the protein
interaction network this gives k ¼ 4, resulting in 82 communities.
Because of this relatively low number, we can depict the entire
network of protein communities as in Fig. 3.

The four distributions characterizing the global community
structure of these networks are shown in Fig. 4. Although the scaling
of the size of non-overlapping communities has already been shown

for social networks17,18, it is striking to observe how this aspect of
large real networks is preserved even when a more complete picture
(allowing overlaps) is investigated. In Fig. 4a the power-law depen-
dence P(s com) / (s com)2t with an exponent ranging between t ¼ 1
and t ¼ 1.6 is well pronounced and is valid over nearly the entire
range of community sizes.

It is well known2–4 that the nodes of large real networks have a
power-law degree distribution. Will the same kind of distribution
hold when we move to the next level of organization and consider the
degrees of the communities? We find that it is not so. The community
degrees (Fig. 4b) have a unique distribution, consisting of two
distinct parts: an exponential decay PðdcomÞ/ expð2dcom=dcom

0 Þ
with a characteristic community degree dcom

0 (which is of the order
of kd coml shown in Table 1), followed by a power-law tail pro-
portional to (d com)2t. This new kind of behaviour is consistent with
the community size distribution if we assume that, on average, each
node of a community has a contribution d to the community degree.
The tail of the community degree distribution is therefore simply
proportional to that of the community size distribution. At the first
part of P(d com), in contrast, a characteristic scale dcom

0 < kd appears,
because most of the communities have a size of the order of k (see
Fig. 4a) and their distribution around dcom

0 dominates this part of the
curve. Thus, the degree to which P(d com) deviates from a simple
scaling depends on k or, in other words, on the prescribed minimum
cohesiveness of the communities.

The extent to which different communities overlap is also a
relevant property of a network. Although the range of overlap sizes
is limited, the behaviour of the cumulative overlap size distribution
P(sov), shown in Fig. 4c, is close to a power law for each network, with
a rather large exponent. We can conclude that there is no character-
istic overlap size in the networks. Finally, in Fig. 4d we display the
cumulative distribution of the membership number P(m). These
plots demonstrate that a node can belong to several communities. In
the collaboration and word-association networks there seems to be
no characteristic value for the membership number: the data are
close to a power-law dependence, with a large exponent. However, in
the protein interaction network the largest membership number is
only 4, which is consistent with the also rather short distribution of
its community degree. To show that the communities we find are not
due to an artefact of our method, we have also determined the above
distributions for ‘randomized’ graphs with parameters (size, degree
sequence, k and f*) the same as in our three examples but with
links stochastically redistributed between the nodes. We have found
that the distributions are indeed extremely truncated, signifying a
complete lack of the rich community structure determined for the
original data.

In Table 1 we have collected a few statistical properties of the
network of communities. It should be pointed out that the average
clustering coefficients kC coml are relatively high, indicating that two
communities overlapping with a given community are likely to
overlap with each other as well, mostly because they all share the
same overlapping region. The high fraction of shared nodes is yet
another indication of the importance of overlaps between the
communities.

The specific scaling of the community degree distribution is a
hitherto undescribed signature of the hierarchical nature of the
systems we study. We find that if we consider the network of
communities instead of the nodes themselves, we still observe a
degree distribution with a fat tail, but a characteristic scale appears,
below which the distribution is exponential. This is consistent with
our understanding of a complex system having different levels of
organization with units specific to each level. In the present case the
principle of organization (scaling) is preserved (with some specific
modifications) when going to the next level, in good agreement with
the recent finding of the self-similarity of many complex networks30.

With recent technological advances, huge sets of data are accumu-
lating at a tremendous pace in various fields of human activity

  

  

Figure 4 | Statistics of the k-clique communities for three large
networks. The networks are the co-authorship network of the Los Alamos
Condensed Matter archive (triangles, k ¼ 6, f* ¼ 0.93), the word-
association network of the South Florida Free Association norms (squares,
k ¼ 4, f* ¼ 0.67), and the protein interaction network of the yeast S.
cerevisiae from the DIP database (circles, k ¼ 4). a, The cumulative
distribution function of the community size follows a power law with
exponents between 21 (upper line) and 21.6 (lower line). b, The
cumulative distribution of the community degree starts exponentially and
then crosses over to a power law (with the same exponent as for the
community size distribution). c, The cumulative distribution of the overlap
size. d, The cumulative distribution of the membership number.
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(including telecommunications, the Internet and stock markets) and
in many areas of life and social sciences (such as biomolecular assays,
genetic maps and groups of World Wide Web users). Understanding
both the universal and specific features of the networks associated
with these data has become a significant task. The knowledge of
the community structure enables the prediction of some essential
features of the systems under investigation. For example, because
with our approach it is possible to ‘zoom’ in on a single unit in a
network and uncover its communities (and the communities con-
nected to these, and so on), we provide a tool with which to interpret
the local organization of large networks and can predict how the
modular structure of the network changes if a unit is removed (for
example, in a gene knockout experiment). A unique feature of our
method is that we can simultaneously look at the network at a higher
level of organization and locate the communities that have a key role
within the web of communities. Among the many possible appli-
cations is a more sophisticated approach to the spreading of
infections (for example, real or computer viruses) or information
in highly modular complex systems.
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