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Power laws, Pareto distributions and Zipf’s law

M. E. J. Newman

Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor,

MI 48109. U.S.A.

When the probability of measuring a particular value of some quantity varies inversely as a power
of that value, the quantity is said to follow a power law, also known variously as Zipf’s law or the
Pareto distribution. Power laws appear widely in physics, biology, earth and planetary sciences,
economics and finance, computer science, demography and the social sciences. For instance,
the distributions of the sizes of cities, earthquakes, solar flares, moon craters, wars and people’s
personal fortunes all appear to follow power laws. The origin of power-law behaviour has been
a topic of debate in the scientific community for more than a century. Here we review some of
the empirical evidence for the existence of power-law forms and the theories proposed to explain
them.

I. INTRODUCTION

Many of the things that scientists measure have a typ-
ical size or “scale”—a typical value around which in-
dividual measurements are centred. A simple example
would be the heights of human beings. Most adult hu-
man beings are about 180cm tall. There is some varia-
tion around this figure, notably depending on sex, but we
never see people who are 10cm tall, or 500cm. To make
this observation more quantitative, one can plot a his-
togram of people’s heights, as I have done in Fig. 1a. The
figure shows the heights in centimetres of adult men in
the United States measured between 1959 and 1962, and
indeed the distribution is relatively narrow and peaked
around 180cm. Another telling observation is the ratio of
the heights of the tallest and shortest people. The Guin-
ness Book of Records claims the world’s tallest and short-
est adult men (both now dead) as having had heights
272cm and 57cm respectively, making the ratio 4.8. This
is a relatively low value; as we will see in a moment,
some other quantities have much higher ratios of largest
to smallest.

Figure 1b shows another example of a quantity with
a typical scale: the speeds in miles per hour of cars on
the motorway. Again the histogram of speeds is strongly
peaked, in this case around 75mph.

But not all things we measure are peaked around a typ-
ical value. Some vary over an enormous dynamic range,
sometimes many orders of magnitude. A classic example
of this type of behaviour is the sizes of towns and cities.
The largest population of any city in the US is 8.00 mil-
lion for New York City, as of the most recent (2000) cen-
sus. The town with the smallest population is harder to
pin down, since it depends on what you call a town. The
author recalls in 1993 passing through the town of Mil-
liken, Oregon, population 4, which consisted of one large
house occupied by the town’s entire human population,
a wooden shack occupied by an extraordinary number
of cats and a very impressive flea market. According to
the Guinness Book, however, America’s smallest town is
Duffield, Virginia, with a population of 52. Whichever
way you look at it, the ratio of largest to smallest pop-

ulation is at least 150 000. Clearly this is quite different
from what we saw for heights of people. And an even
more startling pattern is revealed when we look at the
histogram of the sizes of cities, which is shown in Fig. 2.

In the left panel of the figure, I show a simple his-
togram of the distribution of US city sizes. The his-
togram is highly right-skewed, meaning that while the
bulk of the distribution occurs for fairly small sizes—
most US cities have small populations—there is a small
number of cities with population much higher than the
typical value, producing the long tail to the right of the
histogram. This right-skewed form is qualitatively quite
different from the histograms of people’s heights, but is
not itself very surprising. Given that we know there is a
large dynamic range from the smallest to the largest city
sizes, we can immediately deduce that there can only
be a small number of very large cities. After all, in a
country such as America with a total population of 300
million people, you could at most have about 40 cities the
size of New York. And the 2700 cities in the histogram
of Fig. 2 cannot have a mean population of more than
3 × 108/2700 = 110 000.

What is surprising on the other hand, is the right panel
of Fig. 2, which shows the histogram of city sizes again,
but this time replotted with logarithmic horizontal and
vertical axes. Now a remarkable pattern emerges: the
histogram, when plotted in this fashion, follows quite
closely a straight line. This observation seems first to
have been made by Auerbach [1], although it is often at-
tributed to Zipf [2]. What does it mean? Let p(x) dx
be the fraction of cities with population between x and
x + dx. If the histogram is a straight line on log-log
scales, then ln p(x) = −α lnx+ c, where α and c are con-
stants. (The minus sign is optional, but convenient since
the slope of the line in Fig. 2 is clearly negative.) Taking
the exponential of both sides, this is equivalent to:

p(x) = Cx−α, (1)

with C = ec.
Distributions of the form (1) are said to follow a power

law. The constant α is called the exponent of the power
law. (The constant C is mostly uninteresting; once α
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FIG. 1 Left: histogram of heights in centimetres of American males. Data from the National Health Examination Survey,
1959–1962 (US Department of Health and Human Services). Right: histogram of speeds in miles per hour of cars on UK
motorways. Data from Transport Statistics 2003 (UK Department for Transport).
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FIG. 2 Left: histogram of the populations of all US cities with population of 10 000 or more. Right: another histogram of the
same data, but plotted on logarithmic scales. The approximate straight-line form of the histogram in the right panel implies
that the distribution follows a power law. Data from the 2000 US Census.

is fixed, it is determined by the requirement that the
distribution p(x) sum to 1; see Section III.A.)

Power-law distributions occur in an extraordinarily di-
verse range of phenomena. In addition to city popula-
tions, the sizes of earthquakes [3], moon craters [4], solar
flares [5], computer files [6] and wars [7], the frequency of
use of words in any human language [2, 8], the frequency
of occurrence of personal names in most cultures [9], the
numbers of papers scientists write [10], the number of
citations received by papers [11], the number of hits on
web pages [12], the sales of books, music recordings and
almost every other branded commodity [13, 14], the num-
bers of species in biological taxa [15], people’s annual in-
comes [16] and a host of other variables all follow power-
law distributions.1

1 Power laws also occur in many situations other than the statis-

Power-law distributions are the subject of this arti-
cle. In the following sections, I discuss ways of detecting
power-law behaviour, give empirical evidence for power
laws in a variety of systems and describe some of the
mechanisms by which power-law behaviour can arise.

Readers interested in pursuing the subject further may
also wish to consult the reviews by Sornette [18] and
Mitzenmacher [19], as well as the bibliography by Li.2

tical distributions of quantities. For instance, Newton’s famous
1/r2 law for gravity has a power-law form with exponent α = 2.
While such laws are certainly interesting in their own way, they
are not the topic of this paper. Thus, for instance, there has
in recent years been some discussion of the “allometric” scal-
ing laws seen in the physiognomy and physiology of biological
organisms [17], but since these are not statistical distributions
they will not be discussed here.

2 http://linkage.rockefeller.edu/wli/zipf/.
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FIG. 3 (a) Histogram of the set of 1 million random numbers described in the text, which have a power-law distribution with
exponent α = 2.5. (b) The same histogram on logarithmic scales. Notice how noisy the results get in the tail towards the
right-hand side of the panel. This happens because the number of samples in the bins becomes small and statistical fluctuations
are therefore large as a fraction of sample number. (c) A histogram constructed using “logarithmic binning”. (d) A cumulative
histogram or rank/frequency plot of the same data. The cumulative distribution also follows a power law, but with an exponent
of α − 1 = 1.5.

II. MEASURING POWER LAWS

Identifying power-law behaviour in either natural or
man-made systems can be tricky. The standard strategy
makes use of a result we have already seen: a histogram
of a quantity with a power-law distribution appears as
a straight line when plotted on logarithmic scales. Just
making a simple histogram, however, and plotting it on
log scales to see if it looks straight is, in most cases, a
poor way proceed.

Consider Fig. 3. This example shows a fake data set:
I have generated a million random real numbers drawn
from a power-law probability distribution p(x) = Cx−α

with exponent α = 2.5, just for illustrative purposes.3

Panel (a) of the figure shows a normal histogram of the

3 This can be done using the so-called transformation method. If
we can generate a random real number r uniformly distributed in
the range 0 ≤ r < 1, then x = xmin(1 − r)−1/(α−1) is a random
power-law-distributed real number in the range xmin ≤ x < ∞
with exponent α. Note that there has to be a lower limit xmin

on the range; the power-law distribution diverges as x → 0—see
Section II.A.

numbers, produced by binning them into bins of equal
size 0.1. That is, the first bin goes from 1 to 1.1, the
second from 1.1 to 1.2, and so forth. On the linear scales
used this produces a nice smooth curve.

To reveal the power-law form of the distribution it is
better, as we have seen, to plot the histogram on logarith-
mic scales, and when we do this for the current data we
see the characteristic straight-line form of the power-law
distribution, Fig. 3b. However, the plot is in some re-
spects not a very good one. In particular the right-hand
end of the distribution is noisy because of sampling er-
rors. The power-law distribution dwindles in this region,
meaning that each bin only has a few samples in it, if
any. So the fractional fluctuations in the bin counts are
large and this appears as a noisy curve on the plot. One
way to deal with this would be simply to throw out the
data in the tail of the curve. But there is often useful in-
formation in those data and furthermore, as we will see
in Section II.A, many distributions follow a power law
only in the tail, so we are in danger of throwing out the
baby with the bathwater.

An alternative solution is to vary the width of the bins
in the histogram. If we are going to do this, we must
also normalize the sample counts by the width of the
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bins they fall in. That is, the number of samples in a bin
of width ∆x should be divided by ∆x to get a count per
unit interval of x. Then the normalized sample count
becomes independent of bin width on average and we are
free to vary the bin widths as we like. The most common
choice is to create bins such that each is a fixed multiple
wider than the one before it. This is known as loga-
rithmic binning. For the present example, for instance,
we might choose a multiplier of 2 and create bins that
span the intervals 1 to 1.1, 1.1 to 1.3, 1.3 to 1.7 and so
forth (i.e., the sizes of the bins are 0.1, 0.2, 0.4 and so
forth). This means the bins in the tail of the distribu-
tion get more samples than they would if bin sizes were
fixed, and this reduces the statistical errors in the tail. It
also has the nice side-effect that the bins appear to be of
constant width when we plot the histogram on log scales.

I used logarithmic binning in the construction of
Fig. 2b, which is why the points representing the individ-
ual bins appear equally spaced. In Fig. 3c I have done
the same for our computer-generated power-law data. As
we can see, the straight-line power-law form of the his-
togram is now much clearer and can be seen to extend for
at least a decade further than was apparent in Fig. 3b.

Even with logarithmic binning there is still some noise
in the tail, although it is sharply decreased. Suppose the
bottom of the lowest bin is at xmin and the ratio of the
widths of successive bins is a. Then the kth bin extends
from xk−1 = xminak−1 to xk = xminak and the expected
number of samples falling in this interval is

∫ xk

xk−1

p(x) dx = C

∫ xk

xk−1

x−α dx

= C
aα−1 − 1

α − 1
(xminak)−α+1. (2)

Thus, so long as α > 1, the number of samples per bin
goes down as k increases and the bins in the tail will have
more statistical noise than those that precede them. As
we will see in the next section, most power-law distribu-
tions occurring in nature have 2 ≤ α ≤ 3, so noisy tails
are the norm.

Another, and in many ways a superior, method of plot-
ting the data is to calculate a cumulative distribution
function. Instead of plotting a simple histogram of the
data, we make a plot of the probability P (x) that x has
a value greater than or equal to x:

P (x) =

∫

∞

x

p(x′) dx′. (3)

The plot we get is no longer a simple representation of
the distribution of the data, but it is useful nonetheless.
If the distribution follows a power law p(x) = Cx−α, then

P (x) = C

∫

∞

x

x′−α
dx′ =

C

α − 1
x−(α−1). (4)

Thus the cumulative distribution function P (x) also fol-
lows a power law, but with a different exponent α − 1,

which is 1 less than the original exponent. Thus, if we
plot P (x) on logarithmic scales we should again get a
straight line, but with a shallower slope.

But notice that there is no need to bin the data at
all to calculate P (x). By its definition, P (x) is well-
defined for every value of x and so can be plotted as a
perfectly normal function without binning. This avoids
all questions about what sizes the bins should be. It
also makes much better use of the data: binning of data
lumps all samples within a given range together into the
same bin and so throws out any information that was
contained in the individual values of the samples within
that range. Cumulative distributions don’t throw away
any information; it’s all there in the plot.

Figure 3d shows our computer-generated power-law
data as a cumulative distribution, and indeed we again
see the tell-tale straight-line form of the power law, but
with a shallower slope than before. Cumulative distribu-
tions like this are sometimes also called rank/frequency
plots for reasons explained in Appendix A. Cumula-
tive distributions with a power-law form are sometimes
said to follow Zipf’s law or a Pareto distribution, af-
ter two early researchers who championed their study.
Since power-law cumulative distributions imply a power-
law form for p(x), “Zipf’s law” and “Pareto distribu-
tion” are effectively synonymous with “power-law distri-
bution”. (Zipf’s law and the Pareto distribution differ
from one another in the way the cumulative distribution
is plotted—Zipf made his plots with x on the horizon-
tal axis and P (x) on the vertical one; Pareto did it the
other way around. This causes much confusion in the lit-
erature, but the data depicted in the plots are of course
identical.4)

We know the value of the exponent α for our artifi-
cial data set since it was generated deliberately to have
a particular value, but in practical situations we would
often like to estimate α from observed data. One way
to do this would be to fit the slope of the line in plots
like Figs. 3b, c or d, and this is the most commonly used
method. Unfortunately, it is known to introduce system-
atic biases into the value of the exponent [20], so it should
not be relied upon. For example, a least-squares fit of a
straight line to Fig. 3b gives α = 2.26 ± 0.02, which is
clearly incompatible with the known value of α = 2.5
from which the data were generated.

An alternative, simple and reliable method for extract-
ing the exponent is to employ the formula

α = 1 + n

[

n
∑

i=1

ln
xi

xmin

]

−1

. (5)

Here the quantities xi, i = 1 . . . n are the measured values
of x and xmin is again the minimum value of x. (As

4 See http://www.hpl.hp.com/research/idl/papers/ranking/

for a useful discussion of these and related points.
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discussed in the following section, in practical situations
xmin usually corresponds not to the smallest value of x
measured but to the smallest for which the power-law
behaviour holds.) An estimate of the expected statistical
error σ on (5) is given by

σ =
√

n

[

n
∑

i=1

ln
xi

xmin

]

−1

=
α − 1√

n
. (6)

The derivation of both these formulas is given in Ap-
pendix B.

Applying Eqs. (5) and (6) to our present data gives an
estimate of α = 2.500 ± 0.002 for the exponent, which
agrees well with the known value of 2.5.

A. Examples of power laws

In Fig. 4 we show cumulative distributions of twelve
different quantities measured in physical, biological, tech-
nological and social systems of various kinds. All have
been proposed to follow power laws over some part of
their range. The ubiquity of power-law behaviour in the
natural world has led many scientists to wonder whether
there is a single, simple, underlying mechanism link-
ing all these different systems together. Several candi-
dates for such mechanisms have been proposed, going by
names like “self-organized criticality” and “highly opti-
mized tolerance”. However, the conventional wisdom is
that there are actually many different mechanisms for
producing power laws and that different ones are appli-
cable to different cases. We discuss these points further
in Section IV.

The distributions shown in Fig. 4 are as follows.

(a) Word frequency: Estoup [8] observed that the
frequency with which words are used appears to fol-
low a power law, and this observation was famously
examined in depth and confirmed by Zipf [2].
Panel (a) of Fig. 4 shows the cumulative distribu-
tion of the number of times that words occur in a
typical piece of English text, in this case the text of
the novel Moby Dick by Herman Melville.5 Similar
distributions are seen for words in other languages.

(b) Citations of scientific papers: As first observed
by Price [11], the numbers of citations received by
scientific papers appear to have a power-law distri-
bution. The data in panel (b) are taken from the
Science Citation Index, as collated by Redner [22],
and are for papers published in 1981. The plot

5 The most common words in this case are, in order, “the”, “of”,
“and”, “a” and “to”, and the same is true for most written En-
glish texts. Interestingly, however, it is not true for spoken En-
glish. The most common words in spoken English are, in order,
“I”, “and”, “the”, “to” and “that” [21].

shows the cumulative distribution of the number of
citations received by a paper between publication
and June 1997.

(c) Web hits: The cumulative distribution of the
number of “hits” received by web sites (i.e., servers,
not pages) during a single day from a subset of the
users of the AOL Internet service. The site with
the most hits, by a long way, was yahoo.com. Af-
ter Adamic and Huberman [12].

(d) Copies of books sold: The cumulative distribu-
tion of the total number of copies sold in Amer-
ica of the 633 bestselling books that sold 2 million
or more copies between 1895 and 1965. The data
were compiled painstakingly over a period of sev-
eral decades by Alice Hackett, an editor at Pub-
lisher’s Weekly [23]. The best selling book dur-
ing the period covered was Benjamin Spock’s The
Common Sense Book of Baby and Child Care. (The
Bible, which certainly sold more copies, is not really
a single book, but exists in many different transla-
tions, versions and publications, and was excluded
by Hackett from her statistics.) Substantially bet-
ter data on book sales than Hackett’s are now avail-
able from operations such as Nielsen BookScan, but
unfortunately at a price this author cannot afford.
I should be very interested to see a plot of sales
figures from such a modern source.

(e) Telephone calls: The cumulative distribution of
the number of calls received on a single day by 51
million users of AT&T long distance telephone ser-
vice in the United States. After Aiello et al. [24].
The largest number of calls received by a customer
in that day was 375 746, or about 260 calls a minute
(obviously to a telephone number that has many
people manning the phones). Similar distributions
are seen for the number of calls placed by users and
also for the numbers of email messages that people
send and receive [25, 26].

(f) Magnitude of earthquakes: The cumulative dis-
tribution of the Richter (local) magnitude of earth-
quakes occurring in California between January
1910 and May 1992, as recorded in the Berkeley
Earthquake Catalog. The Richter magnitude is de-
fined as the logarithm, base 10, of the maximum
amplitude of motion detected in the earthquake,
and hence the horizontal scale in the plot, which
is drawn as linear, is in effect a logarithmic scale
of amplitude. The power law relationship in the
earthquake distribution is thus a relationship be-
tween amplitude and frequency of occurrence. The
data are from the National Geophysical Data Cen-
ter, www.ngdc.noaa.gov.

(g) Diameter of moon craters: The cumulative dis-
tribution of the diameter of moon craters. Rather
than measuring the (integer) number of craters of
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FIG. 4 Cumulative distributions or “rank/frequency plots” of twelve quantities reputed to follow power laws. The distributions
were computed as described in Appendix A. Data in the shaded regions were excluded from the calculations of the exponents
in Table I. Source references for the data are given in the text. (a) Numbers of occurrences of words in the novel Moby Dick

by Hermann Melville. (b) Numbers of citations to scientific papers published in 1981, from time of publication until June
1997. (c) Numbers of hits on web sites by 60 000 users of the America Online Internet service for the day of 1 December 1997.
(d) Numbers of copies of bestselling books sold in the US between 1895 and 1965. (e) Number of calls received by AT&T
telephone customers in the US for a single day. (f) Magnitude of earthquakes in California between January 1910 and May 1992.
Magnitude is proportional to the logarithm of the maximum amplitude of the earthquake, and hence the distribution obeys a
power law even though the horizontal axis is linear. (g) Diameter of craters on the moon. Vertical axis is measured per square
kilometre. (h) Peak gamma-ray intensity of solar flares in counts per second, measured from Earth orbit between February
1980 and November 1989. (i) Intensity of wars from 1816 to 1980, measured as battle deaths per 10 000 of the population of the
participating countries. (j) Aggregate net worth in dollars of the richest individuals in the US in October 2003. (k) Frequency
of occurrence of family names in the US in the year 1990. (l) Populations of US cities in the year 2000.
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a given size on the whole surface of the moon, the
vertical axis is normalized to measure number of
craters per square kilometre, which is why the axis
goes below 1, unlike the rest of the plots, since it is
entirely possible for there to be less than one crater
of a given size per square kilometre. After Neukum
and Ivanov [4].

(h) Intensity of solar flares: The cumulative dis-
tribution of the peak gamma-ray intensity of
solar flares. The observations were made be-
tween 1980 and 1989 by the instrument known
as the Hard X-Ray Burst Spectrometer aboard
the Solar Maximum Mission satellite launched
in 1980. The spectrometer used a CsI scin-
tillation detector to measure gamma-rays from
solar flares and the horizontal axis in the fig-
ure is calibrated in terms of scintillation counts
per second from this detector. The data are
from the NASA Goddard Space Flight Center,
umbra.nascom.nasa.gov/smm/hxrbs.html. See
also Lu and Hamilton [5].

(i) Intensity of wars: The cumulative distribution
of the intensity of 119 wars from 1816 to 1980. In-
tensity is defined by taking the number of battle
deaths among all participant countries in a war,
dividing by the total combined populations of the
countries and multiplying by 10 000. For instance,
the intensities of the First and Second World Wars
were 141.5 and 106.3 battle deaths per 10 000 re-
spectively. The worst war of the period covered
was the small but horrifically destructive Paraguay-
Bolivia war of 1932–1935 with an intensity of 382.4.
The data are from Small and Singer [27]. See also
Roberts and Turcotte [7].

(j) Wealth of the richest people: The cumulative
distribution of the total wealth of the richest people
in the United States. Wealth is defined as aggre-
gate net worth, i.e., total value in dollars at current
market prices of all an individual’s holdings, minus
their debts. For instance, when the data were com-
piled in 2003, America’s richest person, William H.
Gates III, had an aggregate net worth of $46 bil-
lion, much of it in the form of stocks of the company
he founded, Microsoft Corporation. Note that net
worth doesn’t actually correspond to the amount of
money individuals could spend if they wanted to:
if Bill Gates were to sell all his Microsoft stock, for
instance, or otherwise divest himself of any signif-
icant portion of it, it would certainly depress the
stock price. The data are from Forbes magazine, 6
October 2003.

(k) Frequencies of family names: Cumulative dis-
tribution of the frequency of occurrence in the US of
the 89 000 most common family names, as recorded
by the US Census Bureau in 1990. Similar distribu-
tions are observed for names in some other cultures

as well (for example in Japan [28]) but not in all
cases. Korean family names for instance appear to
have an exponential distribution [29].

(l) Populations of cities: Cumulative distribution
of the size of the human populations of US cities as
recorded by the US Census Bureau in 2000.

Few real-world distributions follow a power law over
their entire range, and in particular not for smaller val-
ues of the variable being measured. As pointed out in
the previous section, for any positive value of the expo-
nent α the function p(x) = Cx−α diverges as x → 0. In
reality therefore, the distribution must deviate from the
power-law form below some minimum value xmin. In our
computer-generated example of the last section we sim-
ply cut off the distribution altogether below xmin so that
p(x) = 0 in this region, but most real-world examples
are not that abrupt. Figure 4 shows distributions with
a variety of behaviours for small values of the variable
measured; the straight-line power-law form asserts itself
only for the higher values. Thus one often hears it said
that the distribution of such-and-such a quantity “has a
power-law tail”.

Extracting a value for the exponent α from distribu-
tions like these can be a little tricky, since it requires
us to make a judgement, sometimes imprecise, about the
value xmin above which the distribution follows the power
law. Once this judgement is made, however, α can be
calculated simply from Eq. (5).6 (Care must be taken to
use the correct value of n in the formula; n is the number
of samples that actually go into the calculation, exclud-
ing those with values below xmin, not the overall total
number of samples.)

Table I lists the estimated exponents for each of the
distributions of Fig. 4, along with standard errors and
also the values of xmin used in the calculations. Note
that the quoted errors correspond only to the statistical
sampling error in the estimation of α; they include no
estimate of any errors introduced by the fact that a single
power-law function may not be a good model for the data
in some cases or for variation of the estimates with the
value chosen for xmin.

In the author’s opinion, the identification of some of
the distributions in Fig. 4 as following power laws should
be considered unconfirmed. While the power law seems
to be an excellent model for most of the data sets de-
picted, a tenable case could be made that the distribu-
tions of web hits and family names might have two differ-
ent power-law regimes with slightly different exponents.7

6 Sometimes the tail is also cut off because there is, for one reason
or another, a limit on the largest value that may occur. An
example is the finite-size effects found in critical phenomena—
see Section IV.E. In this case, Eq. (5) must be modified [20].

7 Significantly more tenuous claims to power-law behaviour for
other quantities have appeared elsewhere in the literature, for
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minimum exponent
quantity xmin α

(a) frequency of use of words 1 2.20(1)

(b) number of citations to papers 100 3.04(2)

(c) number of hits on web sites 1 2.40(1)

(d) copies of books sold in the US 2 000 000 3.51(16)

(e) telephone calls received 10 2.22(1)

(f) magnitude of earthquakes 3.8 3.04(4)

(g) diameter of moon craters 0.01 3.14(5)

(h) intensity of solar flares 200 1.83(2)

(i) intensity of wars 3 1.80(9)

(j) net worth of Americans $600m 2.09(4)

(k) frequency of family names 10 000 1.94(1)

(l) population of US cities 40 000 2.30(5)

TABLE I Parameters for the distributions shown in Fig. 4.
The labels on the left refer to the panels in the figure. Expo-
nent values were calculated using the maximum likelihood
method of Eq. (5) and Appendix B, except for the moon
craters (g), for which only cumulative data were available. For
this case the exponent quoted is from a simple least-squares fit
and should be treated with caution. Numbers in parentheses
give the standard error on the trailing figures.

And the data for the numbers of copies of books sold
cover rather a small range—little more than one decade
horizontally. Nonetheless, one can, without stretching
the interpretation of the data unreasonably, claim that
power-law distributions have been observed in language,
demography, commerce, information and computer sci-
ences, geology, physics and astronomy, and this on its
own is an extraordinary statement.

B. Distributions that do not follow a power law

Power-law distributions are, as we have seen, impres-
sively ubiquitous, but they are not the only form of broad
distribution. Lest I give the impression that everything
interesting follows a power law, let me emphasize that
there are quite a number of quantities with highly right-
skewed distributions that nonetheless do not obey power
laws. A few of them, shown in Fig. 5, are the following:

(a) The abundance of North American bird species,
which spans over five orders of magnitude but is
probably distributed according to a log-normal. A
log-normally distributed quantity is one whose log-
arithm is normally distributed; see Section IV.G
and Ref. [32] for further discussions.

(b) The number of entries in people’s email address

instance in the discussion of the distribution of the sizes of elec-
trical blackouts [30, 31]. These however I consider insufficiently
substantiated for inclusion in the present work.
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FIG. 5 Cumulative distributions of some quantities whose
distributions span several orders of magnitude but that
nonetheless do not follow power laws. (a) The number of
sightings of 591 species of birds in the North American Breed-
ing Bird Survey 2003. (b) The number of addresses in the
email address books of 16 881 users of a large university com-
puter system [33]. (c) The size in acres of all wildfires occur-
ring on US federal land between 1986 and 1996 (National Fire
Occurrence Database, USDA Forest Service and Department
of the Interior). Note that the horizontal axis is logarithmic
in frames (a) and (c) but linear in frame (b).

books, which spans about three orders of magni-
tude but seems to follow a stretched exponential.

A stretched exponential is curve of the form e−axb

for some constants a, b.

(c) The distribution of the sizes of forest fires, which
spans six orders of magnitude and could follow a
power law but with an exponential cutoff.

This being an article about power laws, I will not discuss
further the possible explanations for these distributions,
but the scientist confronted with a new set of data having
a broad dynamic range and a highly skewed distribution
should certainly bear in mind that a power-law model is
only one of several possibilities for fitting it.

III. THE MATHEMATICS OF POWER LAWS

A continuous real variable with a power-law distribu-
tion has a probability p(x) dx of taking a value in the
interval from x to x + dx, where

p(x) = Cx−α, (7)
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with α > 0. As we saw in Section II.A, there must be
some lowest value xmin at which the power law is obeyed,
and we consider only the statistics of x above this value.

A. Normalization

The constant C in Eq. (7) is given by the normalization
requirement that

1 =

∫

∞

xmin

p(x)dx = C

∫

∞

xmin

x−α dx =
C

1 − α

[

x−α+1
]

∞

xmin

.

(8)
We see immediately that this only makes sense if α >
1, since otherwise the right-hand side of the equation
would diverge: power laws with exponents less than unity
cannot be normalized and don’t normally occur in nature.
If α > 1 then Eq. (8) gives

C = (α − 1)xα−1
min , (9)

and the correct normalized expression for the power law
itself is

p(x) =
α − 1

xmin

(

x

xmin

)

−α

. (10)

Some distributions follow a power law for part of their
range but are cut off at high values of x. That is, above
some value they deviate from the power law and fall off
quickly towards zero. If this happens, then the distribu-
tion may be normalizable no matter what the value of
the exponent α. Even so, exponents less than unity are
rarely, if ever, seen.

B. Moments

The mean value of our power-law distributed quan-
tity x is given by

〈x〉 =

∫

∞

xmin

xp(x) dx = C

∫

∞

xmin

x−α+1 dx

=
C

2 − α

[

x−α+2
]

∞

xmin

. (11)

Note that this expression becomes infinite if α ≤ 2.
Power laws with such low values of α have no finite mean.
The distributions of sizes of solar flares and wars in Ta-
ble I are examples of such power laws.

What does it mean to say that a distribution has an
infinite mean? Surely we can take the data for real solar
flares and calculate their average? Indeed we can and
necessarily we will always get a finite number from the
calculation, since each individual measurement x is itself
a finite number and there are a finite number of them.
Only if we had a truly infinite number of samples would
we see the mean actually diverge.

However, if we were to repeat our finite experiment
many times and calculate the mean for each repetition,

then the mean of those many means is itself also for-
mally divergent, since it is simply equal to the mean we
would calculate if all the repetitions were combined into
one large experiment. This implies that, while the mean
may take a relatively small value on any particular repe-
tition of the experiment, it must occasionally take a huge
value, in order that the overall mean diverge as the num-
ber of repetitions does. Thus there must be very large
fluctuations in the value of the mean, and this is what
the divergence in Eq. (11) really implies. In effect, our
calculations are telling us that the mean is not a well
defined quantity, because it can vary enormously from
one measurement to the next, and indeed can become
arbitrarily large. The formal divergence of 〈x〉 is a signal
that, while we can quote a figure for the average of the
samples we measure, that figure is not a reliable guide to
the typical size of the samples in another instance of the
same experiment.

For α > 2 however, the mean is perfectly well defined,
with a value given by Eq. (11) of

〈x〉 =
α − 1

α − 2
xmin. (12)

We can also calculate higher moments of the distribu-
tion p(x). For instance, the second moment, the mean
square, is given by

〈

x2
〉

=
C

3 − α

[

x−α+3
]

∞

xmin

. (13)

This diverges if α ≤ 3. Thus power-law distributions in
this range, which includes almost all of those in Table I,
have no meaningful mean square, and thus also no mean-
ingful variance or standard deviation. If α > 3, then the
second moment is finite and well-defined, taking the value

〈

x2
〉

=
α − 1

α − 3
x2

min. (14)

These results can easily be extended to show that in
general all moments 〈xm〉 exist for m < α − 1 and all
higher moments diverge. The ones that do exist are given
by

〈xm〉 =
α − 1

α − 1 − m
xm

min. (15)

C. Largest value

Suppose we draw n measurements from a power-law
distribution. What value is the largest of those measure-
ments likely to take? Or, more precisely, what is the
probability π(x) dx that the largest value falls in the in-
terval between x and x + dx?

The definitive property of the largest value in a sample
is that there are no others larger than it. The probability
that a particular sample will be larger than x is given by
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the quantity P (x) defined in Eq. (3):

P (x) =

∫

∞

x

p(x′) dx′ =
C

α − 1
x−α+1 =

(

x

xmin

)

−α+1

,

(16)
so long as α > 1. And the probability that a sample is
not greater than x is 1−P (x). Thus the probability that
a particular sample we draw, sample i, will lie between
x and x + dx and that all the others will be no greater
than it is p(x)dx× [1−P (x)]n−1. Then there are n ways
to choose i, giving a total probability

π(x) = np(x)[1 − P (x)]n−1. (17)

Now we can calculate the mean value 〈xmax〉 of the
largest sample thus:

〈xmax〉 =

∫

∞

xmin

xπ(x)dx = n

∫

∞

xmin

xp(x)[1−P (x)]n−1 dx.

(18)
Using Eqs. (10) and (16), this is

〈xmax〉 = n(α − 1) ×
∫

∞

xmin

(

x

xmin

)

−α+1[

1 −
(

x

xmin

)

−α+1]n−1

dx

= nxmin

∫ 1

0

yn−1

(1 − y)1/(α−1)
dy

= nxmin B
(

n, (α − 2)/(α − 1)
)

, (19)

where I have made the substitution y = 1−(x/xmin)
−α+1

and B(a, b) is Legendre’s beta-function,8 which is defined
by

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
, (20)

with Γ(a) the standard Γ-function:

Γ(a) =

∫

∞

0

ta−1e−t dt. (21)

The beta-function has the interesting property that
for large values of either of its arguments it itself fol-
lows a power law.9 For instance, for large a and fixed b,
B(a, b) ∼ a−b. In most cases of interest, the number n
of samples from our power-law distribution will be large
(meaning much greater than 1), so

B
(

n, (α − 2)/(α − 1)
)

∼ n−(α−2)/(α−1), (22)

and

〈xmax〉 ∼ n1/(α−1). (23)

8 Also called the Eulerian integral of the first kind.

9 This can be demonstrated by approximating the Γ-functions of
Eq. (20) using Sterling’s formula.

Thus, as long as α > 1, we find that 〈xmax〉 always in-
creases as n becomes larger.10

D. Top-heavy distributions and the 80/20 rule

Another interesting question is where the majority of
the distribution of x lies. For any power law with expo-
nent α > 1, the median is well defined. That is, there is
a point x1/2 that divides the distribution in half so that
half the measured values of x lie above x1/2 and half lie
below. That point is given by

∫

∞

x1/2

p(x) dx = 1
2

∫

∞

xmin

p(x) dx, (24)

or

x1/2 = 21/(α−1)xmin. (25)

So, for example, if we are considering the distribution
of wealth, there will be some well-defined median wealth
that divides the richer half of the population from the
poorer. But we can also ask how much of the wealth
itself lies in those two halves. Obviously more than half
of the total amount of money belongs to the richer half of
the population. The fraction of the money in the richer
half is given by

∫

∞

x1/2

xp(x) dx
∫

∞

xmin

xp(x) dx
=

(

x1/2

xmin

)

−α+2

= 2−(α−2)/(α−1), (26)

provided α > 2 so that the integrals converge. Thus,
for instance, if α = 2.1 for the wealth distribution, as
indicated in Table I, then a fraction 2−0.091 ≃ 94% of the
wealth is in the hands of the richer 50% of the population,
making the distribution quite top-heavy.

More generally, the fraction of the population whose
personal wealth exceeds x is given by the quantity P (x),
Eq. (16), and the fraction of the total wealth in the hands
of those people is

W (x) =

∫

∞

x x′p(x′) dx′

∫

∞

xmin

x′p(x′) dx′
=

(

x

xmin

)

−α+2

, (27)

assuming again that α > 2. Eliminating x/xmin be-
tween (16) and (27), we find that the fraction W of the
wealth in the hands of the richest P of the population is

W = P (α−2)/(α−1), (28)

10 Equation (23) can also be derived by a simpler, although less
rigorous, heuristic argument: if P (x) = 1/n for some value of x
then we expect there to be on average one sample in the range
from x to ∞, and this of course will the largest sample. Thus a
rough estimate of 〈xmax〉 can be derived by setting our expression
for P (x), Eq. (16), equal to 1/n and rearranging for x, which
immediately gives 〈xmax〉 ∼ n1/(α−1).
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FIG. 6 The fraction W of the total wealth in a country held by
the fraction P of the richest people, if wealth is distributed fol-
lowing a power law with exponent α. If α = 2.1, for instance,
as it appears to in the United States (Table I), then the richest
20% of the population hold about 86% of the wealth (dashed
lines).

of which Eq. (26) is a special case. This again has a
power-law form, but with a positive exponent now. In
Fig. 6 I show the form of the curve of W against P for
various values of α. For all values of α the curve is con-
cave downwards, and for values only a little above 2 the
curve has a very fast initial increase, meaning that a large
fraction of the wealth is concentrated in the hands of a
small fraction of the population. Curves of this kind are
called Lorenz curves, after Max Lorenz, who first studied
them around the turn of the twentieth century [34].

Using the exponents from Table I, we can for example
calculate that about 80% of the wealth should be in the
hands of the richest 20% of the population (the so-called
“80/20 rule”, which is borne out by more detailed obser-
vations of the wealth distribution), the top 20% of web
sites get about two-thirds of all web hits, and the largest
10% of US cities house about 60% of the country’s total
population.

If α ≤ 2 then the situation becomes even more ex-
treme. In that case, the integrals in Eq. (27) diverge
at their upper limits, meaning that in fact they depend
on the value of the largest sample, as described in Sec-
tion III.B. But for α > 1, Eq. (23) tells us that the
expected value of xmax goes to ∞ as n becomes large,
and in that limit the fraction of money in the top half
of the population, Eq. (26), tends to unity. In fact, the
fraction of money in the top anything of the population,
even the top 1%, tends to unity, as Eq. (27) shows. In
other words, for distributions with α < 2, essentially all
of the wealth (or other commodity) lies in the tail of the
distribution. The distribution of family names in the US,
which has an exponent α = 1.9, is an example of this type

of behaviour. For the data of Fig. 4k, about 75% of the
population have names in the top 15 000. Estimates of
the total number of unique family names in the US put
the figure at around 1.5 million. So in this case 75% of
the population have names in the most common 1%—
a very top-heavy distribution indeed. The line α = 2
thus separates the regime in which you will with some
frequency meet people with uncommon names from the
regime in which you will rarely meet such people.

E. Scale-free distributions

A power-law distribution is also sometimes called a
scale-free distribution. Why? Because a power law is the
only distribution that is the same whatever scale we look
at it on. By this we mean the following.

Suppose we have some probability distribution p(x) for
a quantity x, and suppose we discover or somehow deduce
that it satisfies the property that

p(bx) = g(b)p(x), (29)

for any b. That is, if we increase the scale or units by
which we measure x by a factor of b, the shape of the dis-
tribution p(x) is unchanged, except for an overall multi-
plicative constant. Thus for instance, we might find that
computer files of size 2kB are 1

4 as common as files of
size 1kB. Switching to measuring size in megabytes we
also find that files of size 2MB are 1

4 as common as files
of size 1MB. Thus the shape of the file-size distribution
curve (at least for these particular values) does not de-
pend on the scale on which we measure file size.

This scale-free property is certainly not true of most
distributions. It is not true for instance of the exponen-
tial distribution. In fact, as we now show, it is only true
of one type of distribution, the power law.

Starting from Eq. (29), let us first set x = 1, giving
p(b) = g(b)p(1). Thus g(b) = p(b)/p(1) and (29) can be
written as

p(bx) =
p(b)p(x)

p(1)
. (30)

Since this equation is supposed to be true for any b, we
can differentiate both sides with respect to b to get

xp′(bx) =
p′(b)p(x)

p(1)
, (31)

where p′ indicates the derivative of p with respect to its
argument. Now we set b = 1 and get

x
dp

dx
=

p′(1)

p(1)
p(x). (32)

This is a simple first-order differential equation which has
the solution

ln p(x) =
p(1)

p′(1)
lnx + constant. (33)
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Setting x = 1 we find that the constant is simply ln p(1),
and then taking exponentials of both sides

p(x) = p(1)x−α, (34)

where α = −p(1)/p′(1). Thus, as advertised, the power-
law distribution is the only function satisfying the scale-
free criterion (29).

This fact is more than just a curiosity. As we will
see in Section IV.E, there are some systems that become
scale-free for certain special values of their governing pa-
rameters. The point defined by such a special value is
called a “continuous phase transition” and the argument
given above implies that at such a point the observable
quantities in the system should adopt a power-law dis-
tribution. This indeed is seen experimentally and the
distributions so generated provided the original motiva-
tion for the study of power laws in physics (although
most experimentally observed power laws are probably
not the result of phase transitions—a variety of other
mechanisms produce power-law behaviour as well, as we
will shortly see).

F. Power laws for discrete variables

So far I have focused on power-law distributions for
continuous real variables, but many of the quantities we
deal with in practical situations are in fact discrete—
usually integers. For instance, populations of cities, num-
bers of citations to papers or numbers of copies of books
sold are all integer quantities. In most cases, the distinc-
tion is not very important. The power law is obeyed only
in the tail of the distribution where the values measured
are so large that, to all intents and purposes, they can be
considered continuous. Technically however, power-law
distributions should be defined slightly differently for in-
teger quantities.

If k is an integer variable, then one way to proceed is
to declare that it follows a power law if the probability pk

of measuring the value k obeys

pk = Ck−α, (35)

for some constant exponent α. Clearly this distribution
cannot hold all the way down to k = 0, since it diverges
there, but it could in theory hold down to k = 1. If we
discard any data for k = 0, the constant C would then
be given by the normalization condition

1 =
∞
∑

k=1

pk = C
∞
∑

k=1

k−α = Cζ(α), (36)

where ζ(α) is the Riemann ζ-function. Rearranging, we
find that C = 1/ζ(α) and

pk =
k−α

ζ(α)
. (37)

If, as is usually the case, the power-law behaviour is seen
only in the tail of the distribution, for values k ≥ kmin,
then the equivalent expression is

pk =
k−α

ζ(α, kmin)
, (38)

where ζ(α, kmin) =
∑

∞

k=kmin
k−α is the generalized or

incomplete ζ-function.
Most of the results of the previous sections can be gen-

eralized to the case of discrete variables, although the
mathematics is usually harder and often involves special
functions in place of the more tractable integrals of the
continuous case.

It has occasionally been proposed that Eq. (35) is not
the best generalization of the power law to the discrete
case. An alternative and often more convenient form is

pk = C
Γ(k)Γ(α)

Γ(k + α)
= C B(k, α), (39)

where B(a, b) is, as before, the Legendre beta-function,
Eq. (20). As mentioned in Section III.C, the beta-
function behaves as a power law B(k, α) ∼ k−α for large k
and so the distribution has the desired asymptotic form.
Simon [35] proposed that Eq. (39) be called the Yule dis-
tribution, after Udny Yule who derived it as the limiting
distribution in a certain stochastic process [36], and this
name is often used today. Yule’s result is described in
Section IV.D.

The Yule distribution is nice because sums involving it
can frequently be performed in closed form, where sums
involving Eq. (35) can only be written in terms of special
functions. For instance, the normalizing constant C for
the Yule distribution is given by

1 = C

∞
∑

k=1

B(k, α) =
C

α − 1
, (40)

and hence C = α − 1 and

pk = (α − 1)B(k, α). (41)

The first and second moments (i.e., the mean and mean
square of the distribution) are

〈k〉 =
α − 1

α − 2
,

〈

k2
〉

=
(α − 1)2

(α − 2)(α − 3)
, (42)

and there are similarly simple expressions corresponding
to many of our earlier results for the continuous case.

IV. MECHANISMS FOR GENERATING POWER-LAW
DISTRIBUTIONS

In this section we look at possible candidate mech-
anisms by which power-law distributions might arise in
natural and man-made systems. Some of the possibilities
that have been suggested are quite complex—notably the
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physics of critical phenomena and the tools of the renor-
malization group that are used to analyse it. But let us
start with some simple algebraic methods of generating
power-law functions and progress to the more involved
mechanisms later.

A. Combinations of exponentials

A much more common distribution than the power law
is the exponential, which arises in many circumstances,
such as survival times for decaying atomic nuclei or the
Boltzmann distribution of energies in statistical mechan-
ics. Suppose some quantity y has an exponential distri-
bution:

p(y) ∼ eay. (43)

The constant a might be either negative or positive. If
it is positive then there must also be a cutoff on the
distribution—a limit on the maximum value of y—so that
the distribution is normalizable.

Now suppose that the real quantity we are interested in
is not y but some other quantity x, which is exponentially
related to y thus:

x ∼ eby, (44)

with b another constant, also either positive or negative.
Then the probability distribution of x is

p(x) = p(y)
dy

dx
∼ eay

beby
=

x−1+a/b

b
, (45)

which is a power law with exponent α = 1 − a/b.
A version of this mechanism was used by Miller [37] to

explain the power-law distribution of the frequencies of
words as follows (see also [38]). Suppose we type ran-
domly on a typewriter,11 pressing the space bar with
probability qs per stroke and each letter with equal prob-
ability ql per stroke. If there are m letters in the alpha-
bet then ql = (1− qs)/m. (In this simplest version of the
argument we also type no punctuation, digits or other
non-letter symbols.) Then the frequency x with which
a particular word with y letters (followed by a space)
occurs is

x =

[

1 − qs

m

]y

qs ∼ eby, (46)

where b = ln(1− qs)− lnm. The number (or fraction) of
distinct possible words with length between y and y +dy
goes up exponentially as p(y) ∼ my = eay with a = lnm.

11 This argument is sometimes called the “monkeys with typewrit-
ers” argument, the monkey being the traditional exemplar of a
random typist.

Thus, following our argument above, the distribution of
frequencies of words has the form p(x) ∼ x−α with

α = 1 − a

b
=

2 lnm − ln(1 − qs)

lnm − ln(1 − qs)
. (47)

For the typical case where m is reasonably large and qs

quite small this gives α ≃ 2 in approximate agreement
with Table I.

This is a reasonable theory as far as it goes, but real
text is not made up of random letters. Most combina-
tions of letters don’t occur in natural languages; most are
not even pronounceable. We might imagine that some
constant fraction of possible letter sequences of a given
length would correspond to real words and the argument
above would then work just fine when applied to that
fraction, but upon reflection this suggestion is obviously
bogus. It is clear for instance that very long words sim-
ply don’t exist in most languages, although there are ex-
ponentially many possible combinations of letters avail-
able to make them up. This observation is backed up
by empirical data. In Fig. 7a we show a histogram of
the lengths of words occurring in the text of Moby Dick,
and one would need a particularly vivid imagination to
convince oneself that this histogram follows anything like
the exponential assumed by Miller’s argument. (In fact,
the curve appears roughly to follow a log-normal [32].)

There may still be some merit in Miller’s argument
however. The problem may be that we are measuring
word “length” in the wrong units. Letters are not really
the basic units of language. Some basic units are letters,
but some are groups of letters. The letters “th” for ex-
ample often occur together in English and make a single
sound, so perhaps they should be considered to be a sep-
arate symbol in their own right and contribute only one
unit to the word length?

Following this idea to its logical conclusion we
can imagine replacing each fundamental unit of the
language—whatever that is—by its own symbol and then
measuring lengths in terms of numbers of symbols. The
pursuit of ideas along these lines led Claude Shannon
in the 1940s to develop the field of information the-
ory, which gives a precise prescription for calculating the
number of symbols necessary to transmit words or any
other data [39, 40]. The units of information are bits and
the true “length” of a word can be considered to be the
number of bits of information it carries. Shannon showed
that if we regard words as the basic divisions of a mes-
sage, the information y carried by any particular word
is

y = −k lnx, (48)

where x is the frequency of the word as before and k is
a constant. (The reader interested in finding out more
about where this simple relation comes from is recom-
mended to look at the excellent introduction to informa-
tion theory by Cover and Thomas [41].)

But this has precisely the form that we want. Inverting
it we have x = e−y/k and if the probability distribution of
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FIG. 7 (a) Histogram of the lengths in letters of all distinct
words in the text of the novel Moby Dick. (b) Histogram of
the information content a la Shannon of words in Moby Dick.
The former does not, by any stretch of the imagination, follow
an exponential, but the latter could easily be said to do so.
(Note that the vertical axes are logarithmic.)

the “lengths” measured in terms of bits is also exponen-
tial as in Eq. (43) we will get our power-law distribution.
Figure 7b shows the latter distribution, and indeed it
follows a nice exponential—much better than Fig. 7a.

This is still not an entirely satisfactory explanation.
Having made the shift from pure word length to informa-
tion content, our simple count of the number of words of
length y—that it goes exponentially as my—is no longer
valid, and now we need some reason why there should be
exponentially more distinct words in the language of high
information content than of low. That this is the case is
experimentally verified by Fig. 7b, but the reason must
be considered still a matter of debate. Some possibilities
are discussed by, for instance, Mandelbrot [42] and more
recently by Mitzenmacher [19].

Another example of the “combination of exponentials”
mechanism has been discussed by Reed and Hughes [43].
They consider a process in which a set of items, piles or
groups each grows exponentially in time, having size x ∼
ebt with b > 0. For instance, populations of organisms
reproducing freely without resource constraints grow ex-
ponentially. Items also have some fixed probability of
dying per unit time (populations might have a stochas-
tically constant probability of extinction), so that the
times t at which they die are exponentially distributed
p(t) ∼ eat with a < 0.

These functions again follow the form of Eqs. (43)
and (44) and result in a power-law distribution of the
sizes x of the items or groups at the time they die. Reed
and Hughes suggest that variations on this argument may
explain the sizes of biological taxa, incomes and cities,
among other things.

B. Inverses of quantities

Suppose some quantity y has a distribution p(y) that
passes through zero, thus having both positive and neg-
ative values. And suppose further that the quantity we
are really interested in is the reciprocal x = 1/y, which
will have distribution

p(x) = p(y)
dy

dx
= −p(y)

x2
. (49)

The large values of x, those in the tail of the distribution,
correspond to the small values of y close to zero and thus
the large-x tail is given by

p(x) ∼ x−2, (50)

where the constant of proportionality is p(y = 0).
More generally, any quantity x = y−γ for some γ will

have a power-law tail to its distribution p(x) ∼ x−α, with
α = 1+1/γ. It is not clear who the first author or authors
were to describe this mechanism,12 but clear descriptions
have been given recently by Bouchaud [44], Jan et al. [45]
and Sornette [46].

One might argue that this mechanism merely generates
a power law by assuming another one: the power-law re-
lationship between x and y generates a power-law distri-
bution for x. This is true, but the point is that the mecha-
nism takes some physical power-law relationship between
x and y—not a stochastic probability distribution—and
from that generates a power-law probability distribution.
This is a non-trivial result.

One circumstance in which this mechanism arises is
in measurements of the fractional change in a quantity.
For instance, Jan et al. [45] consider one of the most
famous systems in theoretical physics, the Ising model of
a magnet. In its paramagnetic phase, the Ising model has
a magnetization that fluctuates around zero. Suppose we
measure the magnetization m at uniform intervals and
calculate the fractional change δ = (∆m)/m between
each successive pair of measurements. The change ∆m
is roughly normally distributed and has a typical size set
by the width of that normal distribution. The 1/m on the
other hand produces a power-law tail when small values
of m coincide with large values of ∆m, so that the tail of
the distribution of δ follows p(δ) ∼ δ−2 as above.

In Fig. 8 I show a cumulative histogram of mea-
surements of δ for simulations of the Ising model on a
square lattice, and the power-law distribution is clearly
visible. Using Eq. (5), the value of the exponent is
α = 1.98 ± 0.04, in good agreement with the expected
value of 2.

12 A correspondent tells me that a similar mechanism was described
in an astrophysical context by Chandrasekhar in a paper in 1943,
but I have been unable to confirm this.
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FIG. 8 Cumulative histogram of the magnetization fluctu-
ations of a 128 × 128 nearest-neighbour Ising model on a
square lattice. The model was simulated at a tempera-
ture of 2.5 times the spin-spin coupling for 100 000 time
steps using the cluster algorithm of Swendsen and Wang [47]
and the magnetization per spin measured at intervals of
ten steps. The fluctuations were calculated as the ratio
δi = 2(mi+1 − mi)/(mi+1 + mi).

C. Random walks

Many properties of random walks are distributed ac-
cording to power laws, and this could explain some
power-law distributions observed in nature. In particu-
lar, a randomly fluctuating process that undergoes “gam-
bler’s ruin”,13 i.e., that ends when it hits zero, has a
power-law distribution of possible lifetimes.

Consider a random walk in one dimension, in which a
walker takes a single step randomly one way or the other
along a line in each unit of time. Suppose the walker
starts at position 0 on the line and let us ask what the
probability is that the walker returns to position 0 for the
first time at time t (i.e., after exactly t steps). This is the
so-called first return time of the walk and represents the
lifetime of a gambler’s ruin process. A trick for answering
this question is depicted in Fig. 9. We consider first the
unconstrained problem in which the walk is allowed to
return to zero as many times as it likes, before returning
there again at time t. Let us denote the probability of
this event as ut. Let us also denote by ft the probability
that the first return time is t. We note that both of these
probabilities are non-zero only for even values of their

13 Gambler’s ruin is so called because a gambler’s night of betting
ends when his or her supply of money hits zero (assuming the
gambling establishment declines to offer him or her a line of
credit).
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FIG. 9 The position of a one-dimensional random walker (ver-
tical axis) as a function of time (horizontal axis). The proba-
bility u2n that the walk returns to zero at time t = 2n is equal
to the probability f2m that it returns to zero for the first time

at some earlier time t = 2m, multiplied by the probability
u2n−2m that it returns again a time 2n − 2m later, summed
over all possible values of m. We can use this observation
to write a consistency relation, Eq. (51), that can be solved
for ft, Eq. (59).

arguments since there is no way to get back to zero in
any odd number of steps.

As Fig. 9 illustrates, the probability ut = u2n, with n
integer, can be written

u2n =

{

1 if n = 0,
∑n

m=1 f2mu2n−2m if n ≥ 1,
(51)

where m is also an integer and we define f0 = 0 and
u0 = 1. This equation can conveniently be solved for f2n

using a generating function approach. We define

U(z) =

∞
∑

n=0

u2nzn, F (z) =

∞
∑

n=1

f2nzn. (52)

Then, multiplying Eq. (51) throughout by zn and sum-
ming, we find

U(z) = 1 +

∞
∑

n=1

n
∑

m=1

f2mu2n−2mzn

= 1 +

∞
∑

m=1

f2mzm
∞
∑

n=m

u2n−2mzn−m

= 1 + F (z)U(z). (53)

So

F (z) = 1 − 1

U(z)
. (54)

The function U(z) however is quite easy to calculate.
The probability u2n that we are at position zero after 2n
steps is

u2n = 2−2n

(

2n

n

)

, (55)
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so14

U(z) =

∞
∑

n=0

(

2n

n

)

zn

4n
=

1√
1 − z

. (56)

And hence

F (z) = 1 −
√

1 − z. (57)

Expanding this function using the binomial theorem
thus:

F (z) = 1
2z +

1
2 × 1

2

2!
z2 +

1
2 × 1

2 × 3
2

3!
z3 + . . .

=

∞
∑

n=1

(

2n
n

)

(2n − 1) 22n
zn (58)

and comparing this expression with Eq. (52), we imme-
diately see that

f2n =

(

2n
n

)

(2n − 1) 22n
, (59)

and we have our solution for the distribution of first re-
turn times.

Now consider the form of f2n for large n. Writing out
the binomial coefficient as

(

2n
n

)

= (2n)!/(n!)2, we take
logs thus:

ln f2n = ln(2n)! − 2 lnn! − 2n ln 2 − ln(2n − 1), (60)

and use Sterling’s formula lnn! ≃ n lnn − n + 1
2 lnn to

get ln f2n ≃ 1
2 ln 2 − 1

2 lnn − ln(2n − 1), or

f2n ≃
√

2

n(2n − 1)2
. (61)

In the limit n → ∞, this implies that f2n ∼ n−3/2, or
equivalently

ft ∼ t−3/2. (62)

So the distribution of return times follows a power law
with exponent α = 3

2 . Note that the distribution has a
divergent mean (because α ≤ 2). As discussed in Sec-
tion III.C, this implies that the mean is finite for any
finite sample but can take very different values for dif-
ferent samples, so that the value measured for any one
sample gives little or no information about the value for
any other.

As an example application, the random walk can be
considered a simple model for the lifetime of biological
taxa. A taxon is a branch of the evolutionary tree, a

14 The enthusiastic reader can easily derive this result for him or
herself by expanding (1 − z)−1/2 using the binomial theorem.

group of species all descended by repeated speciation
from a common ancestor.15 The ranks of the Linnean
hierarchy—genus, family, order and so forth—are exam-
ples of taxa. If a taxon gains and loses species at random
over time, then the number of species performs a ran-
dom walk, the taxon becoming extinct when the number
of species reaches zero for the first (and only) time. (This
is one example of “gambler’s ruin”.) Thus the time for
which taxa live should have the same distribution as the
first return times of random walks.

In fact, it has been argued that the distribution of the
lifetimes of genera in the fossil record does indeed follow
a power law [48]. The best fits to the available fossil data
put the value of the exponent at α = 1.7 ± 0.3, which is
in agreement with the simple random walk model [49].16

D. The Yule process

One of the most convincing and widely applicable
mechanisms for generating power laws is the Yule pro-
cess, whose invention was, coincidentally, also inspired
by observations of the statistics of biological taxa as dis-
cussed in the previous section.

In addition to having a (possibly) power-law distribu-
tion of lifetimes, biological taxa also have a very convinc-
ing power-law distribution of sizes. That is, the distribu-
tion of the number of species in a genus, family or other
taxonomic group appears to follow a power law quite
closely. This phenomenon was first reported by Willis
and Yule in 1922 for the example of flowering plants [15].
Three years later, Yule [36] offered an explanation using
a simple model that has since found wide application in
other areas. He argued as follows.

Suppose first that new species appear but they never
die; species are only ever added to genera and never re-
moved. This differs from the random walk model of the
last section, and certainly from reality as well. It is be-
lieved that in practice all species and all genera become
extinct in the end. But let us persevere; there is nonethe-
less much of worth in Yule’s simple model.

Species are added to genera by speciation, the splitting
of one species into two, which is known to happen by a va-

15 Modern phylogenetic analysis, the quantitative comparison of
species’ genetic material, can provide a picture of the evolution-
ary tree and hence allow the accurate “cladistic” assignment of
species to taxa. For prehistoric species, however, whose genetic
material is not usually available, determination of evolutionary
ancestry is difficult, so classification into taxa is based instead
on morphology, i.e., on the shapes of organisms. It is widely ac-
knowledged that such classifications are subjective and that the
taxonomic assignments of fossil species are probably riddled with
errors.

16 To be fair, I consider the power law for the distribution of genus
lifetimes to fall in the category of “tenuous” identifications to
which I alluded in footnote 7. This theory should be taken with
a pinch of salt.
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riety of mechanisms, including competition for resources,
spatial separation of breeding populations and genetic
drift. If we assume that this happens at some stochasti-
cally constant rate, then it follows that a genus with k
species in it will gain new species at a rate proportional
to k, since each of the k species has the same chance per
unit time of dividing in two. Let us further suppose that
occasionally, say once every m speciation events, the new
species produced is, by chance, sufficiently different from
the others in its genus as to be considered the founder
member of an entire new genus. (To be clear, we define
m such that m species are added to pre-existing genera
and then one species forms a new genus. So m + 1 new
species appear for each new genus and there are m + 1
species per genus on average.) Thus the number of gen-
era goes up steadily in this model, as does the number of
species within each genus.

We can analyse this Yule process mathematically as
follows.17 Let us measure the passage of time in the
model by the number of genera n. At each time-step
one new species founds a new genus, thereby increasing
n by 1, and m other species are added to various pre-
existing genera which are selected in proportion to the
number of species they already have. We denote by pk,n

the fraction of genera that have k species when the total
number of genera is n. Thus the number of such genera
is npk,n. We now ask what the probability is that the
next species added to the system happens to be added to
a particular genus i having ki species in it already. This
probability is proportional to ki, and so when properly
normalized is just ki/

∑

i ki. But
∑

i ki is simply the to-
tal number of species, which is n(m + 1). Furthermore,
between the appearance of the nth and the (n + 1)th
genera, m other new species are added, so the probabil-
ity that genus i gains a new species during this interval is
mki/(n(m + 1)). And the total expected number of gen-
era of size k that gain a new species in the same interval
is

mk

n(m + 1)
× npk,n =

m

m + 1
kpk,n. (63)

Now we observe that the number of genera with k
species will decrease on each time step by exactly this
number, since by gaining a new species they become gen-
era with k + 1 instead. At the same time the number
increases because of species that previously had k − 1
species and now have an extra one. Thus we can write
a master equation for the new number (n + 1)pk,n+1 of

17 Yule’s analysis of the process was considerably more involved
than the one presented here, essentially because the theory of
stochastic processes as we now know it did not yet exist in his
time. The master equation method we employ is a relatively
modern innovation, introduced in this context by Simon [35].

genera with k species thus:

(n + 1)pk,n+1 = npk,n +
m

m + 1

[

(k − 1)pk−1,n − kpk,n

]

.

(64)
The only exception to this equation is for genera of size 1,
which instead obey the equation

(n + 1)p1,n+1 = np1,n + 1 − m

m + 1
p1,n, (65)

since by definition exactly one new such genus appears
on each time step.

Now we ask what form the distribution of the sizes of
genera takes in the limit of long times. To do this we
allow n → ∞ and assume that the distribution tends
to some fixed value pk = limn→∞ pn,k independent of n.
Then Eq. (65) becomes p1 = 1−mp1/(m + 1), which has
the solution

p1 =
m + 1

2m + 1
. (66)

And Eq. (64) becomes

pk =
m

m + 1

[

(k − 1)pk−1 − kpk

]

, (67)

which can be rearranged to read

pk =
k − 1

k + 1 + 1/m
pk−1, (68)

and then iterated to get

pk =
(k − 1)(k − 2) . . . 1

(k + 1 + 1/m)(k + 1/m) . . . (3 + 1/m)
p1

= (1 + 1/m)
(k − 1) . . . 1

(k + 1 + 1/m) . . . (2 + 1/m)
, (69)

where I have made use of Eq. (66). This can be simpli-
fied further by making use of a handy property of the
Γ-function, Eq. (21), that Γ(a) = (a − 1)Γ(a− 1). Using
this, and noting that Γ(1) = 1, we get

pk = (1 + 1/m)
Γ(k)Γ(2 + 1/m)

Γ(k + 2 + 1/m)

= (1 + 1/m)B(k, 2 + 1/m), (70)

where B(a, b) is again the beta-function, Eq. (20). This,
we note, is precisely the distribution defined in Eq. (39),
which Simon called the Yule distribution. Since the beta-
function has a power-law tail B(a, b) ∼ a−b, we can im-
mediately see that pk also has a power-law tail with an
exponent

α = 2 +
1

m
. (71)

The mean number m + 1 of species per genus for the
example of flowering plants is about 3, making m ≃ 2
and α ≃ 2.5. The actual exponent for the distribution
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found by Willis and Yule [15] is α = 2.5 ± 0.1, which is
in excellent agreement with the theory.

Most likely this agreement is fortuitous, however. The
Yule process is probably not a terribly realistic expla-
nation for the distribution of the sizes of genera, princi-
pally because it ignores the fact that species (and gen-
era) become extinct. However, it has been adapted and
generalized by others to explain power laws in many
other systems, most famously city sizes [35], paper ci-
tations [50, 51], and links to pages on the world wide
web [52, 53]. The most general form of the Yule process
is as follows.

Suppose we have a system composed of a collection of
objects, such as genera, cities, papers, web pages and so
forth. New objects appear every once in a while as cities
grow up or people publish new papers. Each object also
has some property k associated with it, such as number of
species in a genus, people in a city or citations to a paper,
that is reputed to obey a power law, and it is this power
law that we wish to explain. Newly appearing objects
have some initial value of k which we will denote k0.
New genera initially have only a single species k0 = 1,
but new towns or cities might have quite a large initial
population—a single person living in a house somewhere
is unlikely to constitute a town in their own right but
k0 = 100 people might do so. The value of k0 can also be
zero in some cases: newly published papers usually have

zero citations for instance.
In between the appearance of one object and the next,

m new species/people/citations etc. are added to the en-
tire system. That is some cities or papers will get new
people or citations, but not necessarily all will. And in
the simplest case these are added to objects in propor-
tion to the number that the object already has. Thus
the probability of a city gaining a new member is pro-
portional to the number already there; the probability
of a paper getting a new citation is proportional to the
number it already has. In many cases this seems like a
natural process. For example, a paper that already has
many citations is more likely to be discovered during a
literature search and hence more likely to be cited again.
Simon [35] dubbed this type of “rich-get-richer” process
the Gibrat principle. Elsewhere it also goes by the names
of the Matthew effect [54], cumulative advantage [50], or
preferential attachment [52].

There is a problem however when k0 = 0. For example,
if new papers appear with no citations and garner cita-
tions in proportion to the number they currently have,
which is zero, then no paper will ever get any citations!
To overcome this problem one typically assigns new cita-
tions not in proportion simply to k, but to k + c, where
c is some constant. Thus there are three parameters k0,
c and m that control the behaviour of the model.

By an argument exactly analogous to the one given above, one can then derive the master equation

(n + 1)pk,n+1 = npk,n + m
k − 1 + c

k0 + c + m
pk−1,n − m

k + c

k0 + c + m
pk,n, for k > k0, (72)

and

(n + 1)pk0,n+1 = npk0,n + 1 − m
k0 + c

k0 + c + m
pk0,n, for k = k0. (73)

(Note that k is never less than k0, since each object appears with k = k0 initially.)

Looking for stationary solutions of these equations as
before, we define pk = limn→∞ pn,k and find that

pk0
=

k0 + c + m

(m + 1)(k0 + c) + m
, (74)

and

pk =
(k − 1 + c)(k − 2 + c) . . . (k0 + c)

(k − 1 + c + α)(k − 2 + c + α) . . . (k0 + c + α)
pk0

=
Γ(k + c)Γ(k0 + c + α)

Γ(k0 + c)Γ(k + c + α)
pk0

, (75)

where I have made use of the Γ-function notation intro-
duced for Eq. (70) and, for reasons that will become clear
in just moment, I have defined α = 2 + (k0 + c)/m. As
before, this expression can also be written in terms of the

beta-function, Eq.(20):

pk =
B(k + c, α)

B(k0 + c, α)
pk0

. (76)

Since the beta-function follows a power law in its tail,
B(a, b) ∼ a−b, the general Yule process generates a
power-law distribution pk ∼ k−α with exponent related
to the three parameters of the process according to

α = 2 +
k0 + c

m
. (77)

For example, the original Yule process for number of
species per genus has c = 0 and k0 = 1, which reproduces
the result of Eq. (71). For citations of papers or links to
web pages we have k0 = 0 and we must have c > 0 to get
any citations or links at all. So α = 2+ c/m. In his work
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on citations Price [50] assumed that c = 1, so that paper
citations have the same exponent α = 2 + 1/m as the
standard Yule process, although there doesn’t seem to be
any very good reason for making this assumption. As we
saw in Table I (and as Price himself also reported), real
citations seem to have an exponent α ≃ 3, so we should
expect c ≃ m. For the data from the Science Citation
Index examined in Section II.A, the mean number m of
citations per paper is 8.6. So we should put c ≃ 8.6
too if we want the Yule process to match the observed
exponent.

The most widely studied model of links on the web,
that of Barabási and Albert [52], assumes c = m so that
α = 3, but again there doesn’t seem to be a good reason
for this assumption. The measured exponent for numbers
of links to web sites is about α = 2.2, so if the Yule
process is to match the data in this case, we should put
c ≃ 0.2m.

However, the important point is that the Yule process
is a plausible and general mechanism that can explain a
number of the power-law distributions observed in nature
and can produce a wide range of exponents to match the
observations by suitable adjustments of the parameters.
For several of the distributions shown in Fig. 4, especially
citations, city populations and personal income, it is now
the most widely accepted theory.

E. Phase transitions and critical phenomena

A completely different mechanism for generating power
laws, one that has received a huge amount of attention
over the past few decades from the physics community,
is that of critical phenomena.

Some systems have only a single macroscopic length-
scale, size-scale or time-scale governing them. A classic
example is a magnet, which has a correlation length that
measures the typical size of magnetic domains. Under
certain circumstances this length-scale can diverge, leav-
ing the system with no scale at all. As we will now see,
such a system is “scale-free” in the sense of Section III.E
and hence the distributions of macroscopic physical quan-
tities have to follow power laws. Usually the circum-
stances under which the divergence takes place are very
specific ones. The parameters of the system have to be
tuned very precisely to produce the power-law behaviour.
This is something of a disadvantage; it makes the diver-
gence of length-scales an unlikely explanation for generic
power-law distributions of the type highlighted in this
paper. As we will shortly see, however, there are some
elegant and interesting ways around this problem.

The precise point at which the length-scale in a sys-
tem diverges is called a critical point or a phase transi-
tion. More specifically it is a continuous phase transi-
tion. (There are other kinds of phase transitions too.)
Things that happen in the vicinity of continuous phase
transitions are known as critical phenomena, of which
power-law distributions are one example.

FIG. 10 The percolation model on a square lattice: squares
on the lattice are coloured in independently at random with
some probability p. In this example p = 1

2
.

To better understand the physics of critical phenom-
ena, let us explore one simple but instructive example,
that of the “percolation transition”. Consider a square
lattice like the one depicted in Fig. 10 in which some of
the squares have been coloured in. Suppose we colour
each square with independent probability p, so that on
average a fraction p of them are coloured in. Now we look
at the clusters of coloured squares that form, i.e., the con-
tiguous regions of adjacent coloured squares. We can ask,
for instance, what the mean area 〈s〉 is of the cluster to
which a randomly chosen square belongs. If that square
is not coloured in then the area is zero. If it is coloured
in but none of the adjacent ones is coloured in then the
area is one, and so forth.

When p is small, only a few squares are coloured in
and most coloured squares will be alone on the lattice,
or maybe grouped in twos or threes. So 〈s〉 will be small.
This situation is depicted in Fig. 11 for p = 0.3. Con-
versely, if p is large—almost 1, which is the largest value
it can have—then most squares will be coloured in and
they will almost all be connected together in one large
cluster, the so-called spanning cluster. In this situation
we say that the system percolates. Now the mean size
of the cluster to which a vertex belongs is limited only
by the size of the lattice itself and as we let the lattice
size become large 〈s〉 also becomes large. So we have two
distinctly different behaviours, one for small p in which
〈s〉 is small and doesn’t depend on the size of the sys-
tem, and one for large p in which 〈s〉 is much larger and
increases with the size of the system.

And what happens in between these two extremes?
As we increase p from small values, the value of 〈s〉 also
increases. But at some point we reach the start of the
regime in which 〈s〉 goes up with system size instead of
staying constant. We now know that this point is at p =
0.5927462 . . ., which is called the critical value of p and
is denoted pc. If the size of the lattice is large, then 〈s〉
also becomes large at this point, and in the limit where
the lattice size goes to infinity 〈s〉 actually diverges. To
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FIG. 11 Three examples of percolation systems on 100× 100 square lattices with p = 0.3, p = pc = 0.5927 . . . and p = 0.9. The
first and last are well below and above the critical point respectively, while the middle example is precisely at it.

illustrate this phenomenon, I show in Fig. 12 a plot of
〈s〉 from simulations of the percolation model and the
divergence is clear.

Now consider not just the mean cluster size but the en-
tire distribution of cluster sizes. Let p(s) be the probabil-
ity that a randomly chosen square belongs to a cluster of
area s. In general, what forms can p(s) take as a function
of s? The important point to notice is that p(s), being
a probability distribution, is a dimensionless quantity—
just a number—but s is an area. We could measure s in
terms of square metres, or whatever units the lattice is
calibrated in. The average 〈s〉 is also an area and then
there is the area of a unit square itself, which we will de-
note a. Other than these three quantities, however, there
are no other independent parameters with dimensions in
this problem. (There is the area of the whole lattice, but
we are considering the limit where that becomes infinite,
so it’s out of the picture.)

If we want to make a dimensionless function p(s) out
of these three dimensionful parameters, there are three
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FIG. 12 The mean area of the cluster to which a randomly
chosen square belongs for the percolation model described in
the text, calculated from an average over 1000 simulations on
a 1000×1000 square lattice. The dotted line marks the known
position of the phase transition.

dimensionless ratios we can form: s/a, a/ 〈s〉 and s/ 〈s〉
(or their reciprocals, if we prefer). Only two of these are
independent however, since the last is the product of the
other two. Thus in general we can write

p(s) = Cf

(

s

a
,

a

〈s〉

)

, (78)

where f is a dimensionless mathematical function of its
dimensionless arguments and C is a normalizing constant
chosen so that

∑

s p(s) = 1.
But now here’s the trick. We can coarse-grain or

rescale our lattice so that the fundamental unit of the
lattice changes. For instance, we could double the size of
our unit square a. The kind of picture I’m thinking of
is shown in Fig. 13. The basic percolation clusters stay
roughly the same size and shape, although I’ve had to
fudge things around the edges a bit to make it work. For
this reason this argument will only be strictly correct for
large clusters s whose area is not changed appreciably by
the fudging. (And the argument thus only tells us that
the tail of the distribution is a power law, and not the
whole distribution.)

FIG. 13 A site percolation system is coarse-grained, so that
the area of the fundamental square is (in this case) quadru-
pled. The occupation of the squares in the coarse-grained
lattice (right) is chosen to mirror as nearly as possible that of
the squares on the original lattice (left), so that the sizes and
shapes of the large clusters remain roughly the same. The
small clusters are mostly lost in the coarse-graining, so that
the arguments given in the text are valid only for the large-s
tail of the cluster size distribution.
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The probability p(s) of getting a cluster of area s is
unchanged by the coarse-graining since the areas them-
selves are, to a good approximation, unchanged, and the
mean cluster size is thus also unchanged. All that has
changed, mathematically speaking, is that the unit area
a has been rescaled a → a/b for some constant rescaling
factor b. The equivalent of Eq. (78) in our coarse-grained
system is

p(s) = C′f

(

s

a/b
,
a/b

〈s〉

)

= C′f

(

bs

a
,

a

b 〈s〉

)

. (79)

Comparing with Eq. (78), we can see that this is equal, to
within a multiplicative constant, to the probability p(bs)
of getting a cluster of size bs, but in a system with a
different mean cluster size of b 〈s〉. Thus we have related
the probabilities of two different sizes of clusters to one
another, but on systems with different average cluster
size and hence presumably also different site occupation
probability. Note that the normalization constant must
in general be changed in Eq. (79) to make sure that p(s)
still sums to unity, and that this change will depend on
the value we choose for the rescaling factor b.

But now we notice that there is one special point at
which this rescaling by definition does not result in a
change in 〈s〉 or a corresponding change in the site occu-
pation probability, and that is the critical point. When
we are precisely at the point at which 〈s〉 → ∞, then
b 〈s〉 = 〈s〉 by definition. Putting 〈s〉 → ∞ in Eqs. (78)
and (79), we then get p(s) = C′f(bs/a, 0) = (C′/C)p(bs).
Or equivalently

p(bs) = g(b)p(s), (80)

where g(b) = C/C′. Comparing with Eq. (29) we see that
this has precisely the form of the equation that defines a
scale-free distribution. The rest of the derivation below
Eq. (29) follows immediately, and so we know that p(s)
must follow a power law.

This in fact is the origin of the name “scale-free” for a
distribution of the form (29). At the point at which 〈s〉
diverges, the system is left with no defining size-scale,
other than the unit of area a itself. It is “scale-free”, and
by the argument above it follows that the distribution of
s must obey a power law.

In Fig. 14 I show an example of a cumulative distribu-
tion of cluster sizes for a percolation system right at the
critical point and, as the figure shows, the distribution
does indeed follow a power law. Technically the distribu-
tion cannot follow a power law to arbitrarily large cluster
sizes since the area of a cluster can be no bigger than the
area of the whole lattice, so the power-law distribution
will be cut off in the tail. This is an example of a finite-
size effect. This point does not seem to be visible in
Fig. 14 however.

The kinds of arguments given in this section can be
made more precise using the machinery of the renor-
malization group. The real-space renormalization group
makes use precisely of transformations such as that
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FIG. 14 Cumulative distribution of the sizes of clusters for
(site) percolation on a square lattice of 40 000 × 40 000 sites
at the critical site occupation probability pc = 0.592746 . . .

shown in Fig. 13 to derive power-law forms and their
exponents for distributions at the critical point. An ex-
ample application to the percolation problem is given by
Reynolds et al. [55]. A more technically sophisticated
technique is the k-space renormalization group, which
makes use of transformations in Fourier space to accom-
plish similar aims in a particularly elegant formal envi-
ronment [56].

F. Self-organized criticality

As discussed in the preceding section, certain sys-
tems develop power-law distributions at special “critical”
points in their parameter space because of the divergence
of some characteristic scale, such as the mean cluster size
in the percolation model. This does not, however, pro-
vide a plausible explanation for the origin of power laws
in most real systems. Even if we could come up with some
model of earthquakes or solar flares or web hits that had
such a divergence, it seems unlikely that the parameters
of the real world would, just coincidentally, fall precisely
at the point where the divergence occurred.

As first proposed by Bak et al. [57], however, it is possi-
ble that some dynamical systems actually arrange them-
selves so that they always sit at the critical point, no
matter what state we start off in. One says that such
systems self-organize to the critical point, or that they
display self-organized criticality. A now-classic example
of such a system is the forest fire model of Drossel and
Schwabl [58], which is based on the percolation model we
have already seen.

Consider the percolation model as a primitive model
of a forest. The lattice represents the landscape and a
single tree can grow in each square. Occupied squares
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FIG. 15 Lightning strikes at random positions in the forest
fire model, starting fires that wipe out the entire cluster to
which a struck tree belongs.

represent trees and empty squares represent empty plots
of land with no trees. Trees appear instantaneously at
random at some constant rate and hence the squares of
the lattice fill up at random. Every once in a while a
wildfire starts at a random square on the lattice, set off
by a lightning strike perhaps, and burns the tree in that
square, if there is one, along with every other tree in
the cluster connected to it. The process is illustrated in
Fig. 15. One can think of the fire as leaping from tree
to adjacent tree until the whole cluster is burned, but
the fire cannot cross the firebreak formed by an empty
square. If there is no tree in the square struck by the
lightning, then nothing happens. After a fire, trees can
grow up again in the squares vacated by burnt trees, so
the process keeps going indefinitely.

If we start with an empty lattice, trees will start to ap-
pear but will initially be sparse and lightning strikes will
either hit empty squares or if they do chance upon a tree
they will burn it and its cluster, but that cluster will be
small and localized because we are well below the perco-
lation threshold. Thus fires will have essentially no effect
on the forest. As time goes by however, more and more
trees will grow up until at some point there are enough
that we have percolation. At that point, as we have seen,
a spanning cluster forms whose size is limited only by the
size of the lattice, and when any tree in that cluster gets
hit by the lightning the entire cluster will burn away.
This gets rid of the spanning cluster so that the system
does not percolate any more, but over time as more trees
appear it will presumably reach percolation again, and so
the scenario will play out repeatedly. The end result is
that the system oscillates right around the critical point,
first going just above the percolation threshold as trees
appear and then being beaten back below it by fire. In
the limit of large system size these fluctuations become
small compared to the size of the system as a whole and
to an excellent approximation the system just sits at the
threshold indefinitely. Thus, if we wait long enough, we
expect the forest fire model to self-organize to a state
in which it has a power-law distribution of the sizes of
clusters, or of the sizes of fires.

In Fig. 16 I show the cumulative distribution of the
sizes of fires in the forest fire model and, as we can see,
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FIG. 16 Cumulative distribution of the sizes of “fires” in a
simulation of the forest fire model of Drossel and Schwabl [58]
for a square lattice of size 5000 × 5000.

it follows a power law closely. The exponent of the dis-
tribution is quite small in this case. The best current
estimates give a value of α = 1.19 ± 0.01 [59], meaning
that the distribution has an infinite mean in the limit of
large system size. For all real systems however the mean
is finite: the distribution is cut off in the large-size tail be-
cause fires cannot have a size any greater than that of the
lattice as a whole and this makes the mean well-behaved.
This cutoff is clearly visible in Fig. 16 as the drop in the
curve towards the right of the plot. What’s more the dis-
tribution of the sizes of fires in real forests, Fig. 5d, shows
a similar cutoff and is in many ways qualitatively similar
to the distribution predicted by the model. (Real forests
are obviously vastly more complex than the forest fire
model, and no one is seriously suggesting that the model
is an accurate representation the real world. Rather it
is a guide to the general type of processes that might be
going on in forests.)

There has been much excitement about self-organized
criticality as a possible generic mechanism for explaining
where power-law distributions come from. Per Bak, one
of the originators of the idea, wrote an entire book about
it [60]. Self-organized critical models have been put for-
ward not only for forest fires, but for earthquakes [61, 62],
solar flares [5], biological evolution [63], avalanches [57]
and many other phenomena. Although it is probably not
the universal law that some have claimed it to be, it is cer-
tainly a powerful and intriguing concept that potentially
has applications to a variety of natural and man-made
systems.
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G. Other mechanisms for generating power laws

In the preceding sections I’ve described the best
known and most widely applied mechanisms that gener-
ate power-law distributions. However, there are a num-
ber of others that deserve a mention. One that has been
receiving some attention recently is the highly optimized
tolerance mechanism of Carlson and Doyle [64, 65]. The
classic example of this mechanism is again a model of
forest fires and is based on the percolation process. Sup-
pose again that fires start at random in a grid-like forest,
just as we considered in Sec. IV.F, but suppose now that
instead of appearing at random, trees are deliberately
planted by a knowledgeable forester. One can ask what
the best distribution of trees is to optimize the amount of
lumber the forest produces, subject to random fires that
could start at any place. The answer turns out to be that
one should plant trees in blocks, with narrow firebreaks
between them to prevent fires from spreading. Moreover,
one should make the blocks smaller in regions where fires
start more often and larger where fires are rare. The
reason for this is that we waste some valuable space by
making firebreaks, space in which we could have planted
more trees. If fires are rare, then on average it pays to put
the breaks further apart—more trees will burn if there is
a fire, but we also get more lumber if there isn’t.

Carlson and Doyle show both by analytic arguments
and by numerical simulation that for quite general dis-
tributions of starting points for fires this process leads to
a distribution of fire sizes that approximately follows a
power law. The distribution is not a perfect power law
in this case, but on the other hand neither are many of
those seen in the data of Fig. 4, so this is not necessarily
a disadvantage. Carlson and Doyle have proposed that
highly optimized tolerance could be a model not only for
forest fires but also for the sizes of files on the world wide
web, which appear to follow a power law [6].

Another mechanism, which is mathematically similar
to that of Carlson and Doyle but quite different in mo-
tivation, is the coherent noise mechanism proposed by
Sneppen and Newman [66] as a model of biological ex-
tinction. In this mechanism a number of agents or species
are subjected to stresses of various sizes, and each agent
has a threshold for stress above which an applied stress
will wipe that agent out—the species becomes extinct.
Extinct species are replaced by new ones with randomly
chosen thresholds. The net result is that the system self-
organizes to a state where most of the surviving species
have high thresholds, but the exact distribution depends
on the distribution of stresses in a way very similar to the
relation between block sizes and fire frequency in highly
optimized tolerance. No conscious optimization is needed
in this case, but the end result is similar: the overall dis-
tribution of the numbers of species becoming extinct as
a result of any particular stress approximately follows a
power law. The power-law form is not exact, but it’s as
good as that seen in real extinction data. Sneppen and
Newman have also suggested that their mechanism could

be used to model avalanches and earthquakes.
One of the broad distributions mentioned in Sec. II.B

as an alternative to the power law was the log-normal. A
log-normally distributed quantity is one whose logarithm
is normally distributed. That is

p(lnx) ∼ exp

(

− (lnx − µ)2

2σ2

)

, (81)

for some choice of the mean µ and standard deviation σ
of the distribution. Distributions like this typically arise
when we are multiplying together random numbers. The
log of the product of a large number of random numbers is
the sum of the logarithms of those same random numbers,
and by the central limit theorem such sums have a normal
distribution essentially regardless of the distribution of
the individual numbers.

But Eq. (81) implies that the distribution of x itself is

p(x) = p(lnx)
d lnx

dx
=

1

x
exp

(

− (lnx − µ)2

2σ2

)

. (82)

To see how this looks if we were to plot it on log scales,
we take logarithms of both sides, giving

ln p(x) = − lnx − (lnx − µ)2

2σ2

= − (lnx)2

2σ2
+

[

µ

σ2
− 1

]

lnx − µ2

2σ2
, (83)

which is quadratic in lnx. However, any quadratic curve
looks straight if we view a sufficient small portion of it, so
p(x) will look like a power-law distribution when we look
at a small portion on log scales. The effective exponent α
of the distribution is in this case not fixed by the theory—
it could be anything, depending on which part of the
quadratic our data fall on.

On larger scales the distribution will have some down-
ward curvature, but so do many of the distributions
claimed to follow power laws, so it is possible that these
distributions are really log-normal. In fact, in many cases
we don’t even have to restrict ourselves to a particu-
larly small a portion of the curve. If σ is large then the
quadratic term in Eq. (83) will vary slowly and the cur-
vature of the line will be slight, so the distribution will
appear to follow a power law over relatively large por-
tions of its range. This situation arises commonly when
we are considering products of random numbers.

Suppose for example that we are multiplying together
100 numbers, each of which is drawn from some distri-
bution such that the standard deviation of the logs is
around 1—i.e., the numbers themselves vary up or down
by about a factor of e. Then, by the central limit the-
orem, the standard deviation for lnx will be σ ≃ 10
and lnx will have to vary by about ±10 for changes in
(lnx)2/σ2 to be apparent. But such a variation in the
logarithm corresponds to a variation in x of more than
four orders of magnitude. If our data span a domain
smaller than this, as many of the plots in Fig. 4 do, then
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we will see a measured distribution that looks close to
power-law. And the range will get quickly larger as the
number of numbers we are multiplying grows.

One example of a random multiplicative process might
be wealth generation by investment. If a person invests
money, for instance in the stock market, they will get
a percentage return on their investment that varies over
time. In other words, in each period of time their in-
vestment is multiplied by some factor which fluctuates
from one period to the next. If the fluctuations are ran-
dom and uncorrelated, then after many such periods the
value of the investment is the initial value multiplied by
the product of a large number of random numbers, and
therefore should be distributed according to a log-normal.
This could explain why the tail of the wealth distribution,
Fig. 4j, appears to follow a power law.

Another example is fragmentation. Suppose we break
a stick of unit length into two parts at a position which is
a random fraction z of the way along the stick’s length.
Then we break the resulting pieces at random again and
so on. After many breaks, the length of one of the re-
maining pieces will be

∏

i zi, where zi is the position of
the ith break. This is a product of random numbers and
thus the resulting distribution of lengths should follow a
power law over a portion of its range. A mechanism like
this could, for instance, produce a power-law distribution
of meteors or other interplanetary rock fragments, which
tend to break up when they collide with one another, and
this in turn could produce a power-law distribution of the
sizes of meteor craters similar to the one in Fig. 4g.

In fact, as discussed by a number of authors [67, 68,
69], random multiplication processes can also generate
perfect power-law distributions with only a slight modi-
fication: if there is a lower bound on the value that the
product of a set of numbers is allowed to take (for ex-
ample if there is a “reflecting boundary” on the lower
end of the range, or an additive noise term as well as a
multiplicative one) then the behaviour of the process is
modified to generate not a log-normal, but a true power
law.

Finally, some processes show power-law distributions
of times between events. The distribution of times be-
tween earthquakes and their aftershocks is one exam-
ple. Such power-law distributions of times are observed
in critical models and in the coherent noise mechanism
mentioned above, but another possible explanation for
their occurrence is a random extremal process or record
dynamics. In this mechanism we consider how often a
randomly fluctuating quantity will break its own record
for the highest value recorded. For a quantity with, say, a
Gaussian distribution, it is always in theory possible for
the record to be broken, no matter what its current value,
but the more often the record is broken the higher the
record will get and the longer we will have to wait until it
is broken again. As shown by Sibani and Littlewood [70],
this non-stationary process gives a distribution of wait-
ing times between the establishment of new records that
follows a power law with exponent α = 1. Interestingly,

this is precisely the exponent observed for the distribu-
tion of waiting times for aftershocks of earthquakes. The
record dynamics has also been proposed as a model for
the lifetimes of biological taxa [71].

V. CONCLUSIONS

In this review I have discussed the power-law statis-
tical distributions seen in a wide variety of natural and
man-made phenomena, from earthquakes and solar flares
to populations of cities and sales of books. We have seen
many examples of power-law distributions in real data
and seen how to analyse those data to understand the be-
haviour and parameters of the distributions. I have also
described a number of physical mechanisms that have
been proposed to explain the occurrence of power laws.
Perhaps the two most important of these are:

1. The Yule process, a rich-get-richer mechanism in
which the most populous cities or best-selling books
get more inhabitants or sales in proportion to the
number they already have. Yule and later Simon
showed mathematically that this mechanism pro-
duces what is now called the Yule distribution,
which follows a power law in its tail.

2. Critical phenomena and the associated concept of
self-organized criticality, in which a scale-factor of a
system diverges, either because we have tuned the
system to a special critical point in its parameter
space or because the system automatically drives it-
self to that point by some dynamical process. The
divergence can leave the system with no appropri-
ate scale factor to set the size of some measured
quantity and as we have seen the quantity must
then follow a power law.

The study of power-law distributions is an area in
which there is considerable current research interest.
While the mechanisms and explanations presented here
certainly offer some insight, there is much work to be
done both experimentally and theoretically before we can
say we really understand the physical processes driving
these systems. Without doubt there are many exciting
discoveries still waiting to be made.
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APPENDIX A: Rank/frequency plots

Suppose we wish to make a plot of the cumulative dis-
tribution function P (x) of a quantity such as, for exam-
ple, the frequency with which words appear in a body
of text (Fig. 4a). We start by making a list of all the
words along with their frequency of occurrence. Now the
cumulative distribution of the frequency is defined such
that P (x) is the fraction of words with frequency greater
than or equal to x. Or alternatively one could simply
plot the number of words with frequency greater than
or equal to x, which differs from the fraction only in its
normalization.

Now consider the most frequent word, which is “the”
in most written English texts. If x is the frequency with
which this word occurs, then clearly there is exactly one
word with frequency greater than or equal to x, since no
other word is more frequent. Similarly, for the frequency
of the second most common word—usually “of”—there
are two words with that frequency or greater, namely
“of” and “the”. And so forth. In other words, if we
rank the words in order, then by definition there are
n words with frequency greater than or equal to that
of the nth most common word. Thus the cumulative
distribution P (x) is simply proportional to the rank n
of a word. This means that to make a plot of P (x)
all we need do is sort the words in decreasing order
of frequency, number them starting from 1, and then
plot their ranks as a function of their frequency. Such
a plot of rank against frequency was called by Zipf [2]
a rank/frequency plot, and this name is still sometimes
used to refer to plots of the cumulative distribution of a
quantity. Of course, many quantities we are interested in
are not frequencies—they are the sizes of earthquakes or
people’s personal wealth or whatever—but nonetheless
people still talk about “rank/frequency” plots although
the name is not technically accurate.

In practice, sorting and ranking measurements and
then plotting rank against those measurements is usu-
ally the quickest way to construct a plot of the cumula-
tive distribution of a quantity. All the cumulative plots
in this paper were made in this way, except for the plot
of the sizes of moon craters in Fig. 4g, for which the data
came already in cumulative form.

APPENDIX B: Maximum likelihood estimate of exponents

Consider the power-law distribution

p(x) = Cx−α =
α − 1

xmin

(

x

xmin

)

−α

, (B1)

where we have made use of the value of the normalization
constant C calculated in Eq. (9).

Given a set of n values xi, the probability that those
values were generated from this distribution is propor-

tional to

P (x|α) =

n
∏

i=1

p(xi) =

n
∏

i=1

α − 1

xmin

(

xi

xmin

)

−α

. (B2)

This quantity is called the likelihood of the data set.
To find the value of α that best fits the data, we need

to calculate the probability P (α|x) of a particular value
of α given the observed {xi}, which is related to P (x|α)
by Bayes’ law thus:

P (α|x) = P (x|α)
P (α)

P (x)
. (B3)

The prior probability of the data P (x) is fixed since x
itself is fixed—x is equal to the particular set of ob-
servations we actually made and does not vary in the
calculation—and it is usually assumed, in the absence of
any information to the contrary, that the prior proba-
bility of the exponent P (α) is uniform, i.e., a constant
independent of α. Thus P (α|x) ∝ P (x|α). For conve-
nience we typically work with the logarithm of P (α|x),
which, to within an additive constant, is equal to the log
of the likelihood, denoted L and given by

L = lnP (x|α) =

n
∑

i=1

[

ln(α − 1) − lnxmin − α ln
xi

xmin

]

= n ln(α − 1) − n lnxmin − α

n
∑

i=1

ln
xi

xmin
. (B4)

Now we calculate the most likely value of α by maximiz-
ing the likelihood with respect to α, which is the same
as maximizing the log likelihood, since the logarithm is
a monotonic increasing function. Setting ∂L/∂α = 0, we
find

n

α − 1
−

n
∑

i=1

ln
xi

xmin
= 0, (B5)

or

α = 1 + n

[

∑

i

ln
xi

xmin

]

−1

. (B6)

We also wish to know what the expected error is on our
value of α. We can estimate this from the width of the
maximum of the likelihood as a function of α. Taking the
exponential of Eq. (B4), we find that that the likelihood
has the form

P (x|α) = ae−bα(α − 1)n, (B7)

where b =
∑n

i=1 ln(xi/xmin) and a is an unimportant
normalizing constant. Assuming that α > 1 so that the
distribution (B1) is normalizable, the mean and mean
square of α in this distribution are given by

〈α〉 =

∫

∞

1 e−bα(α − 1)nα dα
∫

∞

1 e−bα(α − 1)n dα
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=
e−bb−2−n(n + 1 + b)Γ(n + 1)

e−bb−1−nΓ(n + 1)

=
n + 1 + b

b
(B8)

and

〈

α2
〉

=

∫

∞

1
e−bα(α − 1)nα2 dα

∫

∞

1
e−bα(α − 1)n dα

=
e−bb−3−n(n2 + 3n + b2 + 2b + 2nb + 2)Γ(n + 1)

e−bb−1−nΓ(n + 1)

=
n2 + 3n + b2 + 2b + 2nb + 2

b2
, (B9)

where Γ(x) is the Γ-function of Eq. (21). Then the vari-
ance of α is

σ2 =
〈

α2
〉

− 〈α〉2

=
n2 + 3n + b2 + 2b + 2nb + 2

b2
− (n + 1 + b)2

b2

=
n + 1

b2
, (B10)

and the error on α is

σ =

√
n + 1

b
=

√
n + 1

[

∑

i

ln
xi

xmin

]

−1

. (B11)

In most cases we will have n ≫ 1 and it is safe to ap-
proximate n + 1 by n, giving

σ =
√

n

[

∑

i

ln
xi

xmin

]

−1

=
α − 1√

n
, (B12)

where α in this expression is the maximum likelihood
estimate from Eq. (B6).
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[44] J.-P. Bouchaud, More Lévy distributions in physics. In
M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (eds.),
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