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Each player in an infinite population interacts strategically with a finite subset of that popu- 
lation. Suppose each player's binary choice in each period is a best response to the population 
choices of the previous period. When can behaviour that is initially played by only a finite set of 
players spread to the whole population? This paper characterizes when such contagion is possible 
for arbitrary local interaction systems. Maximal contagion occurs when local interaction is suffic- 
iently uniform and there is low neighbour growth, i.e. the number of players who can be reached 
in k steps does not grow exponentially in k. 

1. INTRODUCTION 

When large populations interact strategically, players may be more likely to interact with 
some players than others. A local interaction system describes a set of players and specifies 
which players interact with which other players. If in addition, each player at each location 
has a set of available actions and a payoff function from each of his various interactions, 
we have a local interaction game. The strategic problem becomes interesting when it is 
assumed that players cannot tailor their behaviour for each neighbour, but must choose 
a constant action for all neighbours. 

A recent literature has examined such local interaction games.' A key finding of that 
analysis is that local interaction may allow some forms of behaviour to spread in certain 
dynamic systems. For example, suppose that players are arranged along a line, and each 
player interacts with his two neighbours. An action is '-dominant if it is a best response 
when a player has at least one neighbour playing that action.2 Ellison (1993) showed that 
if an action was '-dominant at every location and was played at any pair of neighbouring 
locations, then best response dynamics alone would ensure that it would eventually be 
played everywhere.3 

A number of papers have explored how robust this type of phenomenon is to the 
structure of the local interaction. For example, two-dimensional lattices have been much 
studied (Anderlini and lanni (1995), Blume (1995), Ellison (2000)). Blume (1995) con- 
sidered local interaction systems where locations are on an m-dimensional lattice and there 
is a translation invariant description of the set of neighbours. Unfortunately, it is hard to 
know what to make of results which rely on a particular geometric structure. It is not 

1. The relevant pure game theory literature includes Anderlini and lanni (1996), Berninghaus and 
Schwalbe (1996a, 1996b), Blume (1993,1995), Ellison (1993, 2000), Goyal (1996), Galeshoot and Goyal (1997), 
lanni (1997), Mailath, Samuelson and Shaked (1997a) and Young (1998, Chapter VI). See Durlauf (1997) for a 
survey of the closely related economics literature on local interaction. This paper follows those literatures in 
taking the local interaction system as exogenous. See Ely (1997) and Mailath, Samuelson and Shaked (1997b) 
for models with endogenous local interaction. 

2. If there are only two possible actions in a symmetric two player game, both players choosing the 2- 

dominant action is risk dominant in the sense of Harsanyi and Selten (1988). 
3. Ellison (1993) and much of the literature cited above are concerned with stochastic versions of best 

response dynamics; as I discuss briefly in Section 7, some of the conclusions are driven by properties of determin- 
istic best response dynamics. 
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clear that the study of lattices will explain which qualitative features of neighbourhood 
relations determine strategic behaviour. 

The primary purpose of this paper is to develop techniques for analysing general local 
interaction systems. It is useful to focus on one narrow strategic question in order to 
explore the effect of changes in the local interaction system.4 In particular, I consider an 
infinite population of players. Each player interacts with some finite subset of the popu- 
lation and must choose one of two actions (0 and 1) to play against all neighbours. There 
exists a critical number q between 0 and 1 such that action 1 is a best response for a 
player if at least proportion q of his neighbours plays 1. Players are assumed to revise 
their actions according to deterministic best response dynamics. Contagion is said to occur 
if one action say, action 1-can spread from a finite set of players to the whole popu- 
lation. In particular, for any given local interaction system, there is a critical contagion 
threshold such that contagion occurs if and only if the payoff parameter q is less than the 
contagion threshold. 

Ellison's argument discussed above shows that the contagion threshold for interac- 
tion on a line is 2. In fact, the contagion threshold is at most 2 in all local interaction 
systems. This paper provides a number of characterizations of the contagion threshold. A 
group of players is said to be p-cohesive if every member of that group has at least pro- 
portion p of his neighbours within the group. I show that the contagion threshold is the 
smallest p such that every "large" group (consisting of all but a finite sets of players) 
contains an infinite, (1 -p)-cohesive, subgroup. I also show that the contagion threshold 
is the largest p such that it is possible to label players so that, for any player with a 
sufficiently high label, proportion at least p of his neighbours has a lower label. These 
characterizations provide simple techniques for calculating the contagion threshold 
explicitly in examples. 

Contagion is most likely to occur if the contagion threshold is close to its upper 
bound of 2. I show that the contagion threshold will be close to 2 if two properties hold. 
First, there is low neighbour growth: the number of players who can be reached in k steps 
grows less than exponentially in k. This will occur if there is a tendency for players' 
neighbours' neighbours to be their own neighbours. Second, the local interaction system 
must be sufficiently uniform, i.e. there is some number a such that for all players a long 
way from some core group, roughly proportion a of their neighbours are closer to the 
core group. 

While I focus on this one contagion question, the techniques and critical properties 
described are important in a range of strategic local interaction problems: 

* When do there exist equilibria with co-existent conventions, i.e. equilibria of the 
local interaction game where both actions are played? A low contagion threshold 
implies the existence of such "co-existent equilibria" for a wide range of payoff 
parameters. In Section 6, I show (under the low neighbour growth assumption) 
that co-existent equilibria exist whenever the payoff parameter is more than the 
contagion threshold and less than one minus the contagion threshold. One conse- 
quence is that co-existent equilibria always exist in the (extreme) case of exactly 
symmetric payoffs. 

. The literature on local interaction games cited above has focused on stochastic 
revision processes. In Section 7, I discuss how stochastic processes built around 
best response dynamics are related to the deterministic process of this paper, and 
thus how they depend on the properties of general local interaction systems studied 
here. 

4. Goyal (1996) uses a rich set of examples to examine the effect of changes in the local interaction system. 
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This paper builds on two literatures. The questions studied and the formal framework 
used are very close to the earlier literature on local interaction games (see Footnote 1). 
When applied to lattice examples, the contribution of this paper is to provide a useful 
language for discussing the structure of local interaction that can be used to generalize 
arguments already used in that literature (especially, those of Blume (1995)). But much 
more importantly, this approach allows a discussion of the key qualitative properties of 
local interaction systems that does not rely on special features of lattices. 

The inspiration for this work is an apparently unrelated literature on the role of 
higher-order beliefs in incomplete information games. It is possible to show a formal 
equivalence between local interaction games and incomplete information games. The for- 
mal techniques in this paper are then analogues of the belief operator techniques, intro- 
duced by Monderer and Samet (1989), and used in the higher-order beliefs literature.5 
However, this relationship is explored in detail in a companion piece (Morris (1997b)), so 
in this paper, the ideas are developed independently. 

The paper is organized as follows. Local interaction games are introduced, and con- 
tagion threshold defined, in Section 2. Some examples are discussed in Section 3; these 
illustrate the questions studied but also highlight the risks of taking simple interaction 
systems too seriously. The crucial general properties of interaction systems are introduced 
and discussed in Section 4. The main results characterizations of the contagion thresh- 
old are presented in Section 5. Section 6 presents the results on the co-existence of con- 
ventions. Various ways of adding random elements to this paper's deterministic dynamic 
are discussed in Section 7. Section 8 concludes. 

2. LOCAL INTERACTION GAMES 

A local interaction game consists of a local interaction system describing how players 
interact and their payoffs from those interactions. 

A local interaction system consists of an infinite population, each of whom interacts 
with a finite subset of the population.6 So fix a countably infinite set of players 2'? and let 
- be a binary relation on 2 If x'-x, say that "x' is a neighbour of x." The following 

are assumed, for all x, x's , 

1. Irreflexivity: x-x. No player is his own neighbour. 
2. Symmetry: x'-x =* x -x'. If x' is a neighbour of x, then x is a neighbour of x'. 
3. Bounded Neighbours: there exists M such that #{ ye % y -x} ?M. Each player has 

at most M neighbours. 
4. Connectedness: there exist {X1,X2,..., XK}, , ?Z'such that xI = X', XK =x and 

Xk -Xk +? for each k = 1,.. , K - 1. There is some path connecting any pair of 
players. 

A local interaction system is a pair (X, -), where - satisfies properties [1] through [4]. 
Write F(x) for the set of neighbours of x, i.e. F(x) {x': x'x x}; a group of players, X, is 

5. The papers of Monderer and Samet (1989,1996), Morris, Rob and Shin (1995) and Kajii and Morris 
(1997) are especially relevant. 

6. The assumption of an infinite population is for analytic convenience. Analogous results could be proven 
for large finite populations, although some of the simplicity of the results would be lost. 

7. Irreflexivity and Symmetry imply that (, .) is an (infinite) graph. Bounded Neighbours implies that 
each player has a small number of neighbours (i.e. finite) relative to the whole (infinite) population. Connec- 
tedness is assumed for convenience only; if the graph were disconnected, the paper's results could be applied to 
each connected component. Symmetry is a substantive assumption, necessary for many of the results that follow. 
It will imply that if player 1 cares about player 2's action, then player 2 must care about player l's action. 
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an arbitrary subset of 2; the complementary group of X in t' is written as X, i.e. X= 
{xe C x X}. 

Each player has two possible actions, 0 and 1. Write u(a, a') for the payoff of a player 
from a particular interaction if he chooses a and his neighbour chooses a'. This payoff 
function corresponds to symmetric payoff matrix: 

0 1 

0 u(0,0 ), u(0,0 ) u(0, 1), u(1, 0) 

I u(l, O), u(O, 1) u(l, 1), u(l, 1) 

It is assumed that this game has two strict Nash equilibria, so that u(0, 0) > u(l, 0) and 
u(1, 1) > u(0, 1). However, for the analysis of this paper, only the best response correspon- 
dence matters. In particular, observe that action 1 is best response for some player exactly 
if he assigns probability at least 

u(0, 0) - u(1, 0) 
q (u(0,0 ) - u(1,0 )) + (u(1, 1) - u(0, 1)) 

to the other player choosing action 1. Thus payoffs are parameterized by the critical 
probability q e (0, 1). All analysis in the paper is unchanged if we restrict attention to the 
payoff matrix 

0 1 

0 q,q o,0 . (2.1) 

1 0,0 I -q, 1 -q 

Now a local interaction game is a 3-tuple (% -, q). 
A conventional description of best responses would proceed as follows. A (pure) 

configuration is a function s: 5-- 1{0, 1 }. Given configuration s, player x's best response is 
to choose an action which maximizes the sum of his payoffs from his interactions with 
each of his neighbours. Thus action a is a best response to configuration s for player x, 
i.e. aeb(s,x), if 

XyGF(x) u(a, s( y)) ? XYEF(x) u(1 - a, s( y)). 

Configuration s' is a best response to configuration s if s'(x) is a best response to s for 
each x, i.e. if s'(x)e b(s, x) for all xe 

But notice that action 1 is a best response for a player if at least proportion q of his 
neighbours choose action 1; and action 0 is a best response if at least proportion 1 - q of 
his neighbours choose action 0. So it is convenient to describe configurations of play and 
best responses as follows. Identify a configuration with the group of players who choose 
action 1 in that configuration. Thus configuration s is identified with the group X= 
{x: s(x) = 1 }; group X is identified with configuration s where 

[l, if xeX 
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Now let iz[Xlx] be the proportion of x's neighbours who are in group X, i.e. 

w[Xlx] #(Xrm F(x)) 
#F(X) 

Write fJP(X) for the players for whom at least proportion p of their interactions are with 
players in X, i.e. 

Flp(X) = {x E?' 74[XIx] ->p}. 

In this notation, Xis a best response to Y if XCllq(Y) and XcFII -q((). For simplicity, I 
assume the tie-breaking rule that action 1 is chosen if a player is indifferent between the 
two actions. Thus flq(X) will be referred to as the best response to X. This tie-breaking 
rule makes no difference to the contagion results, except for non-generic values of q.8 

This paper is concerned with the following question. Does there exist afinite group 
of players, such that if that group starts out playing some action (say, without loss of 
generality, action 1), best response dynamics will ensure that that action is eventually 
played everywhere? If so, action 1 spreads contagiously. The contagion threshold 4 is 
defined to be the largest q for which such contagious dynamics are possible. 

Definition 1. The contagion threshold, 4, of local interaction system (, -) is the 
largest q such that action 1 spreads by best response dynamics from some finite group to 
the whole population, i.e.9 

= max {q: Uk>21 [flq]k (X) = 2? for some finite X}. 

3. EXAMPLES 

The examples described in this section provide some intuition for the contagion threshold 
(as well as fixing the notation described in the previous section). For each example, I state 
(without proof) the contagion threshold. Techniques described in Section 5 are later used 
to establish these results. The examples will also be used to illustrate the critical graph 
theoretic properties of interaction described in the next section. I write Z for the set of 
integers. 

Example 1: Interaction on a line. The population is arranged on a line and each 
player interacts with the player to his left and the player to his right. See Figure 1. This 
is represented formally as follows: 

*22=Z;x'-x if x'=x-1 orx'=x?1. 

If q < in the payoff matrix (2.1), action 1 is a best response whenever at least one 

* * -- * .- * * p 

FIGURE 1 

8. For generic values of q (in particular, as long as q?n/m for all integers n-<m-<M), 7l[Xfx]?q for all 
x c 5. and Xs X. In this case, flq(X) = I1 -q(X) for all X5 ?2'7 (so there is a unique best response always) and 
thus the tie-breaking rule does not matter. Section 7.1 describes the precise sense in which the tie-breaking rule 
does not matter. 

9. The maximum can be shown to always exist, using the continuity properties of the operator lIP 
described in Lemma 1 in the Appendix. 
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neighbour chooses action 1. Thus if two neighbours x and x + 1 initially choose action 1, 
players x - 1, x, x + 1 and x + 2 must all choose action 1 in the next period, players x - 2, 
x - 1, x, x + 1, x + 2 and x + 3 must all choose action 1 in the period after that, and so on. 
So action 1 eventually spreads to the whole population. But if q > 2, no player switches 
to action 1 unless both neighbours are already choosing 1. Thus the contagion threshold 
is 2. 

Example 2: Nearest neighbour interaction in m dimensions. More generally, we can 
imagine the population situated on an m-dimensional lattice. Each player interacts with 
all players who are immediate neighbours in the lattice, i.e. whose coordinates differ in 
only one dimension. If m = 1, then we have the interaction on a line of the previous 
example. See Figure 2 for the case where m = 2. 

= zm; X_X if XI. 
n LxI-x = 1. 

In this case, each player has 2m neighbours. The contagion threshold is 'm (i.e. 
contagion occurs if and only if q-<!m). Thus it appears that as interaction becomes "rich- 
er" (i.e. as the number of dimensions increases) contagion becomes impossible. However, 
the next example suggests that this conclusion is premature. 

Example 3: n-max distance interaction in m dimensions. The population is again 
situated on an infinite m dimensional lattice. Each player interacts with all players who 
are less than n steps away in each of the m dimensions. See Figure 3 for the case where 
m = 2 and n = 1. 

* 2= Z ; x'-x if 1-< maxi1 .x' -x xn I-n. 

The contagion threshold is n(2n + l)n - 1/(2n + 1)" - 1. Table 1 gives the values of this 
expression for different values of m and n. 

This example illustrates the lack of robustness of the nearest neighbour analysis. If 
we simply add players at one diagonal remove (holding n = 1), then increasing the number 
of dimensions (m) never lowers the contagion threshold below 4; If we fix the number of 
dimensions (m) and increase the radius of interaction (n), the contagion threshold tends 
to 2. 

__| - m=2 

FIGURE 2 
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n=1 

FIGURE 3 

| 1 | 2 3 n n-cO| 

1_ 11 2 2 2 2 2 

2 8 5 7 n(2n+ 1) 1 812 16 (2n?1)2-2 

9 25 147 n(2n + 1)2 1 
3 26 62 342 (2 + 1)I-1 2 

3,',- 2 5'- 3 7"' -1 n(2n+ 1)"' 1 
m 3" -1 5"'-1 7"'-1 (2n1+1)"'-1 2 

M --->C) 1 2 3_ _ _1 

1 3 5 1 7 1 2n?1I 2 

TABLE 1 

Example 4: Regions. The population is divided into an infinite number of "regions" 
of m players each. Each player in a region interacts with every other player in that region. 
The regions are arranged in a line and each player also interacts with one player in each 
neighbouring region. See Figure 4 for the case where m= 3. 

* - = Z x {l1, . . ., m}; x'-x if either (i) xl xi; or (ii) Ix'-xl l I and x2 X2- 

The contagion threshold is l/(m + 1). 

FIGURE 4 
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m=2 

FIGURE 5 

Example 5: Hierarchy. The population is arranged in a hierarchy. Each player has 
m subordinates. Each player, except the root player, has a single superior. See Figure 5 
for the case where m = 2. 

* i= Uk=oXk, where X0= {0} and Xk= {1,. .I . m}k for all k>1, with m>2; 

x -y if and only if x = (y, n) or y = (x, n) for some ne {1,.. , m}. 

The contagion threshold is again 1/(m + 1). 

4. PROPERTIES OF INTERACTION 

Three types of properties important in local interaction systems are described in this 
section. 

4.1. Cohesion 

One natural measure of the "cohesion" of a social group is the relative frequency of ties 
among group members compared to non-members.10 For any given group of players X, 
do players in the group mostly interact with players within the group or with players 
outside the group? Let the cohesion of group X be the smallest p such that each player in 
X has proportion p of his interactions within X, i.e. 

c(X) = min w[XIx] = max {p: XcIIP(X)}. 
xeX 

The minimum and maximum exist since, for all players x and groups X, 4[Xj x] is a 
rational number with denominator less than or equal to M. 

Definition 2. Group X is p-cohesive if c(X) >p. 

We can use the examples of the previous section to illustrate this concept. 

* Example 1: Interaction on a line. Any non-trivial group (non-empty and not equal 
to the whole population) is at most 2 -cohesive, since at least one player must have 
one neighbour outside the group. For example, consider the group of players 

10. Wasserman and Faust (1994, Chapter 7), identify four independent concepts of cohesion in the soci- 
ology literature: (i) the relative frequency of ties among group members compared to non-members [the notion 
studied here]; (ii) the mutuality of ties; (iii) the closeness or reachability of members; and (iv) the frequency of 
ties among members. 
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{ 1,... , N} for some very large N. Most players have all of their interactions within 
the group. But the cohesion of the group is only I, because of the two critical 
players, 1 and N, who have only 2 their interactions with the group. 

* Example 2: Nearest neighbour interaction in m dimensions. Any group consisting 
of all players above some horizontal plane (i.e. taking the form {xe Z"': xi >_c}) 
will be (2m - 1)/2m-cohesive. 

* Example 3: n-max distance in m dimensions. Any group consisting of all players 
above some horizontal plane (i.e. taking the form {xe Z': x1 > c}) will be 
[(n + 1)(2n + I)m - I _ 1]/[(2n + I)m - 1]-cohesive. To see why, consider a player x with 
xI = c. He has (2n + 1)"- 1 - 1 neighbours with first coordinate c; he has 
n(2n + I)m -1 neighbours with first co-ordinate greater than c; and he has 
n(2n + 1)" -1 neighbours with first co-ordinate less than c. Thus proportion 
[(n + 1)(2n + 1)'" 1 - 1]/[(2n + 1)77t - 1] of his neighbours have first co-ordinate 
greater than or equal to c. 

* Example 4: Regions. A pair of neighbouring regions (i.e. a group of the form {xe 
Z x { 1,... ,m}: x =c or c +1 }) is m/(m + 1)-cohesive, since each player in that 
group has m neighbours within that group, and one neighbour outside. 

* Example 5: Hierarchy. Any group consisting of all direct or indirect subordinates 
of some player.*E ??n, i.e. taking the form 

{XE U nl'>fn fp: Xk =k for each k = 1, ...,n}, 

will be m/(mn + 1)-cohesive. To see why, note that player .x has all neighbours except 
his superior in that group, while all other players in the group have all their neigh- 
bours in the group. 

4.2. Weak links, strong links and neighbour growth 

Granovetter (1973) introduced the distinction between "weak" and "strong" social links." 
Strong social links are often transitive: if A is a close friend of B and B is a close friend 
of C, then B and C are more likely to be close friends than two randomly chosen individ- 
uals. This "neighbour correlation" will be less pronounced the weaker the social link being 
studied. 

In this section, I introduce a natural way of capturing this distinction for the infinite 
graphs studied in this paper. Fix an individual, and calculate the number of players that 
can be reached in no more than n steps from that individual. If there is no neighbour 
correlation in the graph (i.e. links are weak), then the numbers of players reached will 
grow exponentially. But if a significant proportion of players' neighbours' neighbours are 
their own neighbours, then this will tend to slow down the exponential growth. We will 
be interested in the case where there is enough neighbour correlation to prevent 
exponential growth. 

The Erdds distance between player x and group X is n if it takes at most n steps to 
reach x from X; i.e. writing 17"(X) for the set of players within Erdos distance n, F 0(X) 
X and 1n, l(X) = 1n(X)u {x': x'- x for some xe rn(X)}. 

11. I am grateful to Michael Chwe for bringing this literature to my attention. See Chwe (2000) for more 
on the strategic implications of different kinds of social links. 
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Definition 3. Local Interaction System (?,; ) satisfies low neighbour growth if 
,-n#rF'(X) -0 as n-oo, for all finite groups Xand y> 1.12 

In the hierarchy example, #I=(X0) 1 ? m, #12(X0) 1 ? m ? m2, etc., so that 

#Fk(X0) (+ M+... +M,) = (Mn +1)/(M _1). 

Thus the low neighbour growth property is not satisfied. In all the other examples con- 
sidered in Section 3, #F'(X) is a polynomial function of n, and thus low neighbour growth 
is satisfied. 

Researchers in the sociology literature have empirically verified that #F'(X) grows 
slower for graphs describing more important relationships.13 To get a feel for the growth 
of #F'(X), consider the experimental finding of Milgram (1967) that the median Erdos 
distance (derived from the relation "personally acquainted") between two randomly 
chosen individuals in the U.S. was five. To interpret this finding, consider two extreme 
cases. The U.S. population at the time was around 200 million and Milgram estimated 
that each individual had approximately 500 acquaintances. Suppose that one individual 
has no overlap between his acquaintances, his acquaintances' acquaintances and his 
acquaintances' acquaintances' acquaintances. Then over half the population would be 
within Erdos distance 3 of this individual (5003 = 125,000,000). On the other hand, sup- 
pose the population of 200 million was arranged in a circle and each individual knew 250 
people on either side, the median Erdos distance would be 200,000. 

4.3. 8-Uniformity 

The last property considered is more technical and requires some additional notation. A 
labelling of players X. 'is a bijection 1: Z + 2. Write Y- for the set of labellings and al(k) 
for the proportion of neighbours of player l(k) who have a lower label under labelling 1, 
i.e. 

#{j: 1(j) 1(k) and j < k} 
#{ j: 1(j) -l(k)} 

Labelling / is an Erdos labelling if there exists a finite group X such that 1(i)e Fn(X) and 
1(j)0 rn(x) => i <j. 

Definition 4. Local Interaction System (<., -) satisfies 8-uniformity if there exists an 
Erd6s labelling 1 such that for all sufficiently large K, 

max I a ,(k') - a ,(k) -. (4.1) 
k',k>K 

This seems to be a weak property. There must be some way of labelling players, 
consistent with Erd6s distance from some finite group X, such that for players sufficiently 

12. In fact, requiring the definition to hold "for all" finite X is redundant: if it holds for any finite X, it 
holds for all finite X. To see why, suppose that for some finite X and y > 1, f-k#rk(X) > E >0, for infinitely 
many k (i.e. 2-k#rk(X) +O). Fix any finite group Y. By connectedness, Xcr'"(Y) for some n. Now rk(X) 

rn+ k s(Y), SO f(z+k)#rnF+k(y)>cE-f1>O for infinitely many k, i.e. y-k#rk(Y)70- 
13. In one classic study, Rapoport and Horvarth (1961) examined levels of friendship among junior high 

school students. In a graph based on seventh and eighth best friends, #r"(X) grows fast. In a graph based on 
best and second best friends, #r'(X) grows much more slowly. 
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FIGURE 6 

far away from X, the proportion of neighbours with lower labels tends (roughly) to some- 
thing (with no restrictions on what that something is). Two examples illustrate the 
property. 

* Example 5: Hierarchy. 0-uniformity is satisfied. Consider any Erdo5s labelling with 
initial (singleton) group X0. Now F"(X0) = UJ=0X1. For any k, player l(k) has 
exactly one neighbour with a lower label. Thus a,l(k) = 1/(m + 1) for all k. 

*Example 2: Nearest neighbour interaction in 2 dimensions. For any 8 < 4, 8-uni- 
formity fails. Consider any Erdos labelling 1. For any n, there are 4(n + 1) players 
who are contained in J7]+l ({x}) but not J7"({x}) (see Figure 6). Those locations 
form an empty square with n + 2 players on each side; now 4n of those locations 
(those not on the corners) have a,l(k) = 2. But the four corners have a,l(k) = 4. 

The latter example illustrates how 8-uniformity fails because of the lumpiness of the 
lattice. With sufficiently large neighbourhoods on a lattice, 3-uniformity is satisfied for 
small 8. 

5. CHARACTERIZATIONS OF THE CONTAGION THRESHOLD 

Recall that the contagion threshold, for a given local interaction system (i, -), was 
defined as follows 

4= max {q: Uk?1 [fJq]k(X) - 2 for some finite X}. 

Note that operator TV' is non-monotonic: X may contain fII(X), X may be contained in 
lPX,or neither might be true. It is useful to analyse instead the following monotonic 

operator 

It is straightforward to construct examples where X is finite, Uk~ 1 [171P]k(X) iS finite, but 

Uk?l [JIV+]k(X) = 2k But it turns out that it must then be possible to find another, 
possibly larger but still finite, group Y with Uk?1 [11P]k(y) = X.- This means that the 
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same contagion threshold arises if the monotonic operator rI q is substituted in the defi- 
nition of the contagion threshold, i.e. 4 also equals 

max {q: Uk>l [I7I]k(X) = X? for some finite XI. 

This equivalence result is key to the characterizations that follow. It and the following 
two propositions are proved in the Appendix. 

Proposition 1. The contagion threshold is the smallest p such that every co-finite group 
contains an infinite, (1 -p)-cohesive, subgroup. 14 

Fix the parameter q in the payoff matrix (2.1). How can contagion be prevented? 
Suppose that there is a (1 -p)-cohesive group, with p < q, where action 0 is played initially. 
Since each player in that group has more than proportion 1 - q of his neighbours playing 
0, no player in that group will ever switch away from that group. So a sufficient condition 
for no contagion is that for any finite initial group X, the complement of X contains a 
(1 -p)-cohesive group, for some p < q. This sufficient condition turns out to be necessary 
also, and we get Proposition 1. 

Proposition 2. The contagion threshold is the largest p such that under some labelling 
1, acl(k) >p for all sufficiently large k. Formally 

=max( lim (mincai(k)$) (5.1) 
iE2- K-*oo k_K )( 

That is, roughly speaking, the contagion threshold is the largest p such that we can 
label the players such that at least proportion p of all players' neighbours have a lower 
label (except for some initial group). 

The following immediate corollaries of Propositions 1 and 2 respectively are 
especially useful in identifying contagion thresholds in practice. 

Corollary 1. [Upper Bound]. If every co-finite group contains an infinite, (1 -p)-cohes- 
ive, subgroup, then 4:-p. 

Corollary 2. [Lower Bound I]. If there exists a labelling l with acl(k)>?pfor all suffic- 
iently large k, then 4' p. 

An even simpler lower bound is a consequence of Corollary 2. Recall that M was an 
upper bound on the number of possible neighbours. 

Corollary 3. [Lower Bound II]. The contagion threshold 4 is at least 1/M. 

These corollaries can be used to establish the contagion threshold in earlier examples. 

Example 2: Nearest neighbour interaction in m dimensions. Every co-finite group 
contains an infinite (2m - 1)/2m-cohesive group of the form {xe Zm x1 >?c} so (by 
Corollary 1) 4 -1/2m. But 4 >1/2m by Corollary 3. 

14. A group X is co-finite if its complement X is co-finite. 



MORRIS CONTAGION 69 

* Example 3: n-max interaction in m dimensions. Every co-finite group contains an 
infinite ((1 -n(2n + l)m-1)/((2n + l)m - 1))-cohesive group of the form {xe 

XI': x>= c}, so (by Corollary 1) 4:n(2n + 1)"'-1/((2n + 1)m - 1). But consider any 
labelling of players that is increasing in their Euclidean distance from the origin 
(i.e. I(x') > I(x) => |x'll > ||xll). For any player x, at most (2n + I)m -1 - 1 players are 
contained on any m - 1 dimension plane passing through x. By symmetry, half the 
remainder are on either side of the plane. Thus at least proportion n(2n + I)m -1/ 

((2n + I)m - 1) are on either side of the plane. Now consider in particular the m - 1 
dimensional plane through x, perpendicular to the line joining x and the origin. If 
x has a sufficiently high label, all players on the origin's side of that plane will have 
a lower label than x. Thus we have constructed a labelling with c, (k) > 
n(2n + 1)m - /((2n + 1)" - 1) for all sufficiently large k, and, by Corollary 2, 4> 
n(2n + I)m- 1/((2n + 1)m - 1).15 

* Example 4: Regions. Every co-finite group contains an infinite m/(m + 1)-cohesive 
group of the form {xe `x {1, . . .,m}: x1c}, so (by Corollary 1) 4-?1/(m + 1). 
But 4> 1/(m + 1) by Corollary 3. 

* Example 5: Hierarchy. Every co-finite group contains an infinite m/(m + 1)- 
cohesive group of the form {xe Un'- n : Xk = Xk for each k = 1, . . . , n}, for some 
ixe X. So (by Corollary 1) 4? I1/(m+ 1). But 4 >1/(m+ 1) by Corollary 3. 

Proposition 3. Every local interaction system (,-) has a contagion threshold less 
than or equal to2. 

This can be proved from a result of Kajii and Morris (1997), via the incomplete 
information game/local interaction game equivalence discussed in Morris (1997b). 
However it is possible to give an elementary proof in this simpler setting, exploiting 
Proposition 2.16 

Proof. Suppose the contagion threshold were 4 > 4. By Proposition 2, there exists a 
labelling I and a number K such that al(k) ? >4> for all k> K. Let f(k) and g(k) be the 
number of interactions involving player k and players with lower labels and higher labels 
respectively and let h(k) be the number of interactions consisting of one player with a 
label greater than or equal to k and another player with a label lower than k, i.e. 

f(k) = #{j: 1(j)1(k) and j<k}, 

g(k) = #{ j: l(j) -l(k) and j> k}, 

h(k) = #{(i,j): l(i)-l(j), i?k- 1 and j?k}. 

By construction, h(k + 1) = h(k) -f(k) + g(k). For all k >K, a,(k) =f(k)/(f(k) + g(k))> >2 

sof (k) > g(k) and thus h(k + 1) < h(k). But since h(K) is finite and h( ) takes integer values, 
we must have h(k) negative for sufficiently large k, a contradiction. I I 

Proposition 4. If a Local Interaction System satisfies low neighbour growth and 8- 
uniformity, then the contagion threshold 4>-_ - 8. 

15. For a more formal version of this argument, see Appendix A of the working paper version of this 
work (Morris 1997a). That Appendix describes a general way of identifying the contagion threshold (using 
Corollaries 1 and 2) for interaction on a lattice. 

16. I am grateful to David McAdams of Stanford Business School for suggesting this argument. 
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Blume (1995) showed that if players interact on a two dimensional lattice in suffic- 
iently large symmetric neighbourhoods, then the contagion threshold is close to 2.*7 Prop- 
osition 4 generalizes Blume's result to arbitrary interaction structures. 

Proof. Suppose Erdos labelling I satisfies (4.1). Then there exist a and K with 

#{f j: 1(j)1(k) and j k} < 
a- < ? 

#{j: 1(j)-l(k)} 

for all k_K. By Corollary 2, ?a - 8. So if a>1, we are done. Suppose then that a < 
Now 

#{j: l(j)-l(k) and j<k}j-(l a )#{ j: l(j)Il(k) and j> k}, (5.2) 

for all k> K. Since I is an Erdos labelling, there exists a finite group X such that 1(i)E 
F'(X) and l(j)oF'(X)= i<j. Let X0= X and Xn=F?z(X)rnl(X) for n = 1,2,. 
Choose N such that l(K) XN_1. Now if n>N, summing equation (5.2) across all k with 
l(k)e Xn implies 

I #{(j, k): 1(j) -I(k), 1(j) E Xn and l(k) E X,} 

+ #{(j, k): 1(j) -l(k), {I (j), l(k)} cX,, and j < k} 

( oc ){#{(j,k): l(j) l(k), l(j)eXn,I and l(k)eX,} } 

a- + #{(j, k): 1(j)1-(k), {I(j), l(k)} 5Xn and j>k} 

Writing F = #{ {x, y}: x-y, xe Xn and yE Xn }, 

and Hn = #{{x, y}: x-y, xe X,, and y X }, 

the above expression can be re-written as 

Fn+Hn?( n, )(F n + 1 Hn). 

Since a<-, this implies F?z?l>((1 -a)/a)Fn for all n_Nso F ?((1 -a)/a)n-NFN for all 
n>N. But #Xn>F /M?((1 oa)/)n-NFN/M. Thus a-#Fn(X)-o if y<((1-a)/a), 
contradicting the assumption of low neighbour growth. Thus the hypothesis that a <2 is 
false and the lemma is proved. 

Two examples illustrate why both conditions are required: 

* The hierarchy example satisfied 0-uniformity but failed low neighbour growth. The 
contagion threshold was 1/(m + 1) and thus not close to 2. 

* Nearest neighbour interaction in 2 dimensions satisfied low neighbour growth but 
failed 8-uniformity, for any 8 < . The contagion threshold was 1 4 ~~~~~~~~~~4. 

The intuition for Proposition 4 is that behaviour must always spread slowly when 
contagion occurs: if it spreads fast initially, it must spread to players who do not interact 
much with each other, and therefore it will not spread further. Given the uniformity 
condition, low neighbour growth ensures that it spreads slowly. 

17. Blume considered a different (stochastic) revision process; but as I show in Section 7, this difference 
does not influence contagion properties. 
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The uniformity condition is quite necessary for this result. The following example- 
where uniformity does not hold-demonstrates this. 

Example 6: Combined weak links and strong links. Players are situated on a line and 
each player interacts with all players within r steps. This generates 2r neighbours for each 
player. But in addition, a hierarchy is super-imposed. 

* = Z; let -I correspond to be r-max distance interaction in 1 dimension 
(Example 3), i.e. x'- Ix if Ix' - x r; let -2 correspond to a hierarchy with m subor- 
dinates (Example 5); let x' and x be neighbours if they are neighbours under either 
of these relations. 

In this example, #Fn(X) grows at exponential rate m. But the contagion threshold 
4>r/(2r + m + 1), by Corollary 2 (consider the labelling I with l(k) = 4k if k is even, I(k) = 

-'(k + 1) if k is odd). By choosing m large but r larger, it is possible to get arbitrarily 
large growth of #Fn(X) with a contagion threshold arbitrarily close to 2. Thus it is possible 
to have high neighbour growth (as the evidence of Milgram (1967) suggests for acquaint- 
ances in the U.S. population) but still have high contagion if, as in this example, most 
neighbours are "local" but a few relations generate most of the growth. 

6. THE CO-EXISTENCE OF CONVENTIONS 

When do there exist equilibria of local interaction games where different players take 
different actions? How does the answer depend on the structure of interaction? This ques- 
tion has been studied by researchers under the rubric of the co-existence of conventions. 
Goyal (1996), Galesloot and Goyal (1997), Sugden (1995) and Young (1996) all discuss 
which properties of the interaction structure make co-existence more or less likely.18 The 
contagion threshold can be used to show when co-existence is possible in general interac- 
tion structures. 

Equilibrium in local interaction game ( i, -, q) is defined as follows. 

Definition 5. X is an equilibrium of (X--, , q) if X is a best response to X, i.e. if 
XcIJq(X) and XcFI' -q(X) 

Thus X is an equilibrium if and only if X is q-cohesive and X is (1 - q)-cohesive.19 An 
equilibrium Xis said to be a co-existent equilibrium if Xis an equilibrium and Xo {0, 2 }. 

Proposition 5. Suppose local interaction system (.( -) satisfies low neighbour growth 
and has contagion threshold 4. Then for all qe [4, 1 - 4], local interaction game (2, -, q) 
has a co-existent equilibrium. 

Low neighbour growth implies the existence of a non-empty finite I-cohesive group. 
For any qe[4, ], this finite group is also q-cohesive. By Proposition 1, there exists a 
disjoint non-empty (1 - q)-cohesive subgroup. Now there exists an equilibrium with co- 
existent conventions where action 1 is played by the q-cohesive group and action 0 is 

18. See also Shin and Williamson (1996) for an analysis of conventions with a continuum of actions 
(Morris (1997b) shows how their incomplete information results translates to a local interaction setting). 

19. For generic q, X is an equilibrium if and only if X = rlI(X), since no one will have exactly proportion 
q of their neighbours taking action 1; see Footnote 8. 
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played by the (1 - q)-cohesive group. A symmetric argument shows the existence of a co- 
existent equilibrium if qe [4, 1 - 4]. (The proof of Proposition 5 is in the Appendix.) 

Since 4:<2 (by Proposition 3), the following corollary holds. 

Corollary 4. Local interaction game (R, -, 4) has a co-existent equilibrium whenever 
(t~ -) satisfies low neighbour growth. 

Thus with low neighbour growth and in the degenerate case of exactly symmetric 
payoffs, there always exists an equilibrium with co-existent conventions. 

7. ADDING RANDOMNESS 

Deterministic best response dynamics need not converge to an equilibrium. For example, 
if players are arranged in a line and odd players choose action 1 and even players choose 
action 0, then best responses will lead odd players to switch to 0 and even players to 
switch to action 1. Best response dynamics, then, will lead to a two cycle as every player 
alternates between actions. Partly to rule out such cycles, a number of researchers have 
considered adding stochastic elements to the best response dynamics. This section contains 
a discussion of alternative ways of adding random elements to the dynamic process con- 
sidered in this paper. We can use this discussion to describe the connection to some of 
the related literature. 

7.1. Random revision opportunities 

In this paper, all players best responded simultaneously. Consider the more general notion 
of a best response sequence. Sequence {Xk }0= o is a best response sequence if 

1. xeXk,l and xoXk for some k= 7r[Xkl x]_q. 
2. xxXk?l and xe Xkfor some k r[Xkl|x]? 1 -q. 
3. 4[Xkljx]>q for all k>K=xeXkfor some k>K. 
4. 24[Xklx]>1 -q for all k_K= xXkfor some k>K. 

Properties (1) and (2) say that if a player switches action, it must be to a best response; 
properties (3) and (4) say that if an action is always going to be a unique best response, it 
is never abandoned (even if it is played only rarely). 

The sequence {[TJq]k(X)}j?0 studied in this paper is an example of a best response 
sequence. Blume (1995) considers a dynamic process where revision opportunities arrive 
randomly (and only one player revises his action at a time). With probability one, his 
process will generate a best response sequence. The "noise at the margin" process of 
Anderlini and Ianni (1996) allows more than one player to switch to a best response at a 
time. But again, with probability one, a best response sequence is generated. As long as 
players only switch to best responses and sometimes get opportunities to revise, the timing 
of revision opportunities makes no difference to contagion properties. More specifically, if 
the contagion threshold is 4. 

* if q < 4, then there exists a finite group X such that every best response sequence 

{Xk }k = o with X0 = X has Uk_ 1 Xk= <; 
* if q > 4, then for every finite group X, there exists an infinite group Y such that for 

every best response sequence {Xk }l= o with Xo = X, Uk l XkC ? 20 

20. In the non-generic case where q = 4, contagion is sensitive to fine details of the best response dynamic. 
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7.2. Random initial conditions 

Let the initial actions be chosen randomly, with each player starting out choosing action 
1 with (independent) probability ee (0, 1).21 Let Pe be the implied probability distribution 
over initial configurations. Define a modified contagion threshold as follows 

V = max {q: for all e > 0, PJ[{X Uk I 
[f 

]k (X) = l= }. 

Intuitively, the modified contagion threshold asks whether action 1 will spread from a 
randomly chosen "small" infinite group of players to the whole population. The contagion 
threshold asked whether action 1 would spread from a finite group of players. 

Say that the local interaction system is well behaved if there exist an infinite number of 
isomorphisms between players that preserve the neighbourhood structure. This property is 
satisfied by all the examples in this paper except Examples 5 and 6. If the interaction 
system is well behaved, then there will always exist an infinite number of disjoint groups 
of fixed finite size from which action 1 will spread, whenever there exists one such group. 
By the law of large numbers, with probability one, one of those finite groups will start 
one playing action 1. So we must then have 4 * > 4 in well-behaved local interaction sys- 
tems; thus contagion from some finite group is sufficient for contagion from a randomly 
chosen "small" infinite group. 

It is straightforward to provide an upper bound on the modified contagion threshold, 
in the spirit of Corollary 122 

=<ma q: for some N, every co-finite group contains an infinite (7.1) 
* number of (1 - q)-cohesive groups of size N or less. J 

Thus in the regions example (Example 4), the right-hand side of (7.1) is 1/(m + 1) and so 
the modified contagion threshold equals the contagion threshold. But for nearest neigh- 
bour interaction (Example 2), the right-hand side of (7.1) is 2 . A result of Lee and 
Valentinyi (2000) suggests that in the case of nearest neighbour interaction in two dimen- 
sions, the modified contagion threshold would be - (i.e. the risk dominant action would 
always spread), whereas the original contagion threshold was 4 .2 This important result 
suggests that it might be possible to derive much weaker sufficient conditions for a modi- 
fied contagion threshold close to -. In particular, a weakening of the 8-uniformity con- 
dition must be possible. 

7.3. Random responses 

Blume (1993) and Ellison (1993, 2000) consider (finite population) dynamics in local inter- 
action games where the possibility of mutations implies that players may switch to non- 
best responses (and thus all configurations are played with positive probability). The pro- 
cess is ergodic and in the long run, with small mutatio'n probabilities, the risk dominant 
action (i.e. action 1 if q <2) will be played by most players most of the time. The risk 

21. The models of Blume (1995) and Anderlini and Ianni (1996) both incorporate random initial 
conditions. 

22. For any E >O, an infinite number of the finite groups will (with probability one) start out playing 
action 0 and never switch. 

23. With nearest neighbour interaction in m dimensions, there exist non-trivial infinite (2m-1(2m)- 
cohesive groups; the existence of these groups was used above to show that the contagion threshold is 1/2m. 
But non-empty finite p-cohesive groups do not exist for any p >' 2 

24. The argument of Lee and Valentinyi for large finite lattices could presumably be extended to the 
infinite lattice of Example 2. 
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dominant equilibrium is also selected with uniform interaction (Kandori, Mailath and 
Rob (1993)), but in that case, convergence is very slow. Ellison (1993) used a contagion 
argument to show that convergence to the risk dominant action would occur very fast if 
there was interaction on a line. Using the results in this paper, it would be possible to 
show very fast convergence to action 1, using a contagion argument, in general local 
interaction systems, if the payoff parameter q were less than the contagion threshold. 

In fact, the fast convergence properties with local interaction do not rely on contagion 
(i.e. behaviour spreading by best responses alone from small neighbourhoods to much 
larger neighbourhoods). Young (1998, Chapter VI) provides a set of sufficient conditions 
on general interaction systems for fast convergence. He requires that all players belong to 
some small "close-knit" group. These close-knit groups need not even be connected to 
each other for very fast convergence to occur. Thus there is very fast convergence even 
when contagion is impossible under any best response dynamic. 

8. CONCLUSION 

This paper focused on one narrow question: when do we get contagion under deterministic 
best response dynamics in binary action games? This narrow focus allowed a detailed 
analysis of the effect of changes in the local interaction system. However, the techniques 
and some of the results presented here are relevant to a broader range of questions: for 
example, the existence of equilibria with co-existent conventions and stochastic best 
response dynamics. 

Many of the results extend straightforwardly to more general interaction structures 
(for example, allowing different interactions to have different weights). A companion 
paper, Morris (1997b), considers a very general class of interaction games and it is 
straightforward to extend many of the results in this paper. 

The contribution of the paper is to characterize contagion in terms of qualitative 
properties of the interaction system, such as cohesion, neighbour growth and uniformity 
(rather than in terms of, say, the dimensions of lattices or number of neighbours). But 
one would like to go one step further and understand how likely these critical properties 
are to emerge. 

APPENDIX 

For a sequence of groups Xk, write XkIX if X= Uk 1 Xk and XkSXk+ I for each k; and Xkd-X if X= Uk21 Xk 
and Xk+1cXk for each k. 

Lemma 1. The following properties holdfor all X-2. 

Bi (Operator Monotonicity). I-Ip(X)5-JPH(X). 
B2 (Group Continuity). If XIX,T then rp(X) =Uk 1rIHP(Xk) and rJPH(X) = Uk II+(Xk). 

B2 implies: 
B2* (Group Monotonicity). If Xc Y, then HJLP(X) cHLP(Y) and HJlp (X)5cHLP (Y). 
B3 (Probability Continuity). If PktP, then HPk(X) tHp(X) and HPk(X) d-rip1(X). 
B3 implies: 
B3* (Probability Monotonicity). If p < r, then r7(X)JPH(X) and rl+(X) rlp(X). 
B4 (Inverse Operator). If p + r > 1, then HIp(X)C1- r(N). 

Proof. 

Bi: I-IP(X)cXuH-JP(X) = -P(X). 
B2*: If XcY, then w[Xjx]<!f[Yjx] for all x; so w[Xlx]>p implies w[Yjx]?>p, and thus I-IP(X)g1-IP(Y). 

Now Xc Yand rJP(X)5cHrPf(Y) imply that FIP (X) = XurIP(X) YuHIp(Y) = HIP(y). 
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B2: Suppose XkTX. First, xe Uk I H(Xk) =* XE HI(Xk) for some Xk == xe FL(X) (by B2*); so 
Uk2 Irp(Xk)clp(X). But for any x, there exists k such that F(x) rXcXk (by finiteness of F(x)). So xE 
flp(X) =* xe rl (Xk) for some k = xE Uk1 rIp(Xk); therefore, HIp(X)= Uk P(Xk). Now fIP(X) = 

XuHrlp(X) = [Uk21 Xk]U[Uk,l rlp(Xk)] = Uk21 [Xkurlp(Xk)]= Uk1 HI IXk). 

B3*: If w[Xlx] _r and r >p, then w[Xlx] ?p. Therefore, r >p implies HIr(X)cHlP(X). Now 
fIl(X) = Xunr(X)cXuFLp(X) =H +(X). 

B3: Suppose PkTp. By B3*, HI-Pk(X) is a decreasing sequence of sets and HP(X)cHPk(X) for all k. But now 
if xE nkQ 1 HIPk(X), 7[X|x]pk for all k, so 4[Xlx]?p, so xErP(X). Thus HPkr(X)dIP(X). Now H+(X) 
[Xu Pk(X)] d [Xu rP(X)] = HP(X). 

B4: Supposep+r> 1; xEHP(X)= > [Xlx]?_p== > (Xlx)1 -<l-p<r > x H'r= (t * x eH rV'(S). 

Lemma 2. If 4 be the contagion threshold of local interaction system (X, ), the following properties are 
equivalent: 

[0] p 4; 
[1] Uk>l [HIP]k(X) is co-finite, for some finite X; 
[2] Uk21 [Ht]k (X) is co-finite, for some finite X; 

[3] [ "]k(X)I2 for somefinite X; 
[4] [HlP]k(X)T,J for somefinite X. 

Proof. By B3* and the definition of ,p-?5 if and only if Uk2I [HIP]k(X) =2, for some finite X. Thus 
[4] = [0] =* [1]. Thus it is sufficient to show the equivalence of [1], [2], [3] and [4]. 

If Xc Y and X is co-finite, then Y is co-finite. With property Bi, this gives [1] = [2]. 
To show [2] =* [3], suppose Uk2l [+]k(X) is co-finite, for some finite X; let Y= Xu(Uk,l [iP+k(X)); Y 

is the union of finite sets, and thus finite. But by property B2*, Uk1 [ U]k(X)kUk!l [+ Yk(Y); and 

Ukl [rHp]k(X)C Y5Uk2l [P]k(y), 

so Uk21 [Hl[Pj]k(y) = ,-But [Ip]k(y) is increasing by construction, so (H p]k(X)T). 
To show [3] = [4], I first show by induction that for all groups X and k' 1, 

[riP ] k (X) = Xu riP([H rip'] (X)). (8.1) 

This is true by definition for k = 1. Suppose it is true for arbitrary k. Now 

[=P]k+l(X) 
= 

P([HPp]k(X)) 

= [H ]k(X)uHP([H]k(X)), by definition of IP+ 

= Xu IP([ ] - 1 (X)) u HP([HI]k(X)), by inductive hypothesis 

= XuHlP([HI]k(X)), by B2*, since [H1k l(X)s[H+]k(X). 

Now suppose that Xis finite and Uk> [HPp]k(X) = ?/. Let Y= Xu {x: F(x)nX?0}; since Xis finite, Yis finite, 
and we can choose K such that YC[rp]K(X) and therefore, yC[Ip+]k(X) for all k_K Since xE 

xX= (x)c Y= F(x)C[Hip+]k(X) for all k_K= xXEP([H+]k(X)) for all k_K. Thus X +HP([H+]k(X)) for all 

k_K. Now by (8.1), [Hrp ]k+l(X) = XuriP([ ip ]k(X)) = riP([ripH]k(X)) for all k_K So [HIP]k([riP ]K(X)) 

[HII+ (X) for all k_O. Thus [HP] ([HI]K(X)) is increasing and Uk21 [lP]k([H](X)) = %. Thus [H+] (X) 
is a finite group satisfying property [4]. 

Finally, since 2< is co-finite, [4] =* [1]. 

Lemma 3. For any local interaction system (1, -) and probability pe (0, 1), there exists E > 0 such that 
Ukzl [+]k(X) is (1 -p)-cohesive for all XsY' and r?p + E. 

Proof. Consider the followingfinite subset of [0, 1]: 

F(M) =-{ae~ (O - 1) ) =n for some integers m, n 
m with0<m-<MandO.<n-<m 

Given p, choose E > Osuch that F(M) r) (p,p + e) is empty. Since (#(Xr) r(x))/(#J(x)) cF(M) for all xe e and 
Xc X,_ we have rIHI(X) = 171 "(X) for all Xs ?; and r, r'e (p, p + E). So for any Xc,, there exists a group Y with 

Y= Uk21 [I +k(X) for all re( p,p+E). 

Now for all xe Yand re(p,p+e), r(Ylx)> 1 -r, so r(Ylx)? l-p for all xe Y. | 
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Proof of Proposition 1. 

The proposition can be re-stated as: "every co-finite group contains an infinite, (1 -p)-cohesive, subgroup if and 
only if 4 p." Suppose every co-finite group contains an infinite, (1 -p)-cohesive, subgroup. Let X by any finite 
group. Let Ybe any infinite, (1 -p)-cohesive, subgroup of co-finite group X. Fix r > p. We will show by induction 
that Ys+]k(X). True for k = 0 (since YcX). Suppose true for k. Now 

YcsII1 -P(Y), since Y is (1 -p)-cohesive 

cUI P([17EJk(X)), buy inductive hypothesis and B2* 

CH1r([Hkr ]k(X)) by B4. 

Thus YC[ I+]k(X) r7r([j r ]k(X)) 

= [r ]k(X) U r([Hr ]k(X)) 

= [nr I+ (X). 
[rlr]k([Xir 1(X 

So UkJl [H+]k(X) is not co-finite for all Xc and thus, by Lemma 2, 4<r. But 4<r for all r>p implies 4?p- 
Now suppose 4:5p. Let X be any co-infinite group. By Lemma 3, there exists E >0 such that 

Uk2 [HJP++e]kGV) iS (1 -p)-cohesive. Since p+E>4, we have by Lemma 2 that UkZ1 [II+ ]kGV) is infinite. 
Since Uk21 [rp+.]k(X)cX, every co-finite group contains an infinite (1 -p)-cohesive subgroup. 

Proof of Proposition 2. 

The proposition can be re-stated as: "There exists a labelling 1 with al(k)>?p for all sufficiently large k if and 
only if >_p." Suppose a 1(k)?p for all k > K. Now let X be the finite group {l(j): j)<K}. Therefore, by induction 

{l(j).j-K+k} tUk]k(X), so Ik2l [pP]k(X) = p (by Lemma 2). 
Conversely suppose p -?. By Lemma 2, there exists finite group XO such that Un21 [I+]"(X0) = Let 

Xn= [Fr(xo)r [1+]"l(X0) for n = 1,2.... Consider any labelling withj> k whenever l(j) X , l(k) X, and 
m>n. Now ac1(k)>p for all k> #Xo. | 

Four additional lemmas are required to prove Proposition 5. 

Lemma 4. Suppose X is finite and p> 2. Then 
#(Uk>I 

[lp+]k(X))?-(M+ 1)#X. 

Proof. Let Xn = [TIWP]'(X), for each n = 0, 1 ... Take any labelling I with j > k and l(j)E Xn =, l(k) E X . 
Let X= {(1). l(K)}. As in the proof of Proposition 3, let 

f(k) = #{j: 1(1j) -I(k) and j < k} 

g(k) = # {j: 1(1j) I(k) and j > k} 

h(k) = #{(i,j): l(i)-l(j), i<k -1 and j_k}. 

By construction, we have h(k+ 1)=h(k)-f(k)+g(k); but ai(k)=f(k)/(f(k)+g(k))>_p>! if k>K and 
l(k)EUk2l [I +]k(X). So h(k+ 1)<h(k) for all k>K. But since h(K)?MK, #(Uk21 [HI +k(X))?(M+ 1)K. 

Lemma 5. Suppose (; -) satisfies low neighbour growth. Then for all e > 0 and all finite groups Xc9f 
there exists n such that [#(r n + I (X) n r n(X)/[#F n + I (X)] < E. 

Proof. Suppose [#(F'+1(X) rF(X))]/[#F'+1(X)]?- for all n. Then, for all n, 

>(e/(1 -l_))#rn(X), so #Fn+ I(X)(1 +E/(1 -_E))#Fn(X) = (1/(1 -E))#Fn(X) and #Fn(X)?(1/(1 - E))n#X. 
This contradicts low neighbour growth. I I 

Lemma 6. (2-, q) has a co-existent equilibrium if and only if there exist disjoint non-empty q-cohesive 
and (1 - q)-cohesive groups in 

Proof. [only if] follows from the definition of equilibrium. For [if], let XO and Yo be disjoint non-empty 
q-cohesive and (1 - q)-cohesive groups in Z. Define Xk inductively as follows: Xk+I = I (Xk)n YO. Let 

x* = Uk IXk. Now suppose xeX*. If xEXo, then xeIX0) C-q (X*). If xe XO, then xeXk+l\Xk for some 
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k_O, so (by definition of Xk+ 1), xeHI(Xk)sIq(XI). Thus X* is q-cohesive. But 

= Uk 1 Xk 

Uk1 I Xk? 1, since Xi sX2 

= k1((XkUrjq(Xk))rYO = Uk~1 I go) 

= ((Uk 1 Xk)U(Uk2l I (X0)))rm YO 

= (X* u 
- q (X*)) r- Yo, by B2. 

= Hq(X*) r YO. (8.2) 

Now suppose xe X . If xe YO, then xeHI -(YO)CI l-(X*), since Yoc_ X. If xe Yo, then by (8.2) 
x_Flq(X), so xeHl (X*). Thus X* is (1 - q)-cohesive. So X* is an equilibrium. 

Lemma 7. If(( -) satisfies low neighbour growth, then there exists a non-empty,finite, I-cohesive, group. 

Proof. By Lemma 3, there exists E > Osuch that Uk2 1 [12/2+E)]k(X) is 2-cohesive for all XscX. Fix any 
finite group Y. Let 

Z", n+I(Y)rmUk,l [1i1/2+E)]k(rn+1(Y)r nrn(Y)) for all n0=, 1.... 

If xeZn, then xern+ '(Y). But xe Uk21 [I+l/2+E)]k(rn+l( y) rn(y)) implies X0rn+1y](n)rJ(Y). Thus xe 
IF"(Y). By construction of rn+l(y), this implies that ir(rn+1(Y)jx) = 1. Now since 

Uk2o[-+'/2+E)]k(rn+l(Y)rnyn(Y is I-cohesive, we have that Zn is I-cohesive. Also, Zn is finite since rn+l(y) 
is finite. Now observe that by Lemma 4, 

#([ri/2+E]k(FPn+l(y){][Pn(y)))-<(M+ 1)#(rFn+l(y)rrn(y)), for all k_1 

Thus #Z #r n(Y) I 
#(Ukyl[2/2 + E)]k (n+I (y)rr (Y))) 

>#rn+ I(y) -(M+ 1)#(Fn+ I(y)frn(y)) 

= #rn+lI(y)(l 1_(M+ 1) ( y(Y) 

n 
( y))) 

By Lemma 5, [#('n+ 1(Y),rJn( Y))]/[#rF' + I (Y)] < 1 /(M+ 1) for some n. Thus #Zn > O and thus Z,, is non-empty 
for that n. Thus Zn is a non-empty, finite 2I-cohesive group. 

Proof of Proposition 5. 

Suppose that :- q:<! (a symmetric argument applies if 1 <q1 - < ). By Lemma 7, there exists a non-empty 
finite, I-cohesive group X. Thus X is q-cohesive. By Proposition 1, q? > X contains an infinite (and thus non- 
empty) (1 - q)-cohesive subgroup. Thus by Lemma 6, (?,- -, q) has a co-existent equilibrium. 
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