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Abstract—Much of the past work on mining and modeling
networks has focused on understanding the observed properties
of single example graphs. However, in many real-life applications
it is important to characterize the structure of populations of
graphs. In this work, we investigate the distributional properties
of Kronecker product graph models (KPGMs) [1]. Specifically,
we examine whether these models can represent the natural
variability in graph properties observed across multiple networks
and find surprisingly that they cannot. By considering KPGMs
from a new viewpoint, we can show the reason for this lack of
variance theoretically—which is primarily due to the generation
of each edge independently from the others. Based on this
understanding we propose a generalization of KPGMs that uses
tied parameters to increase the variance of the model, while
preserving the expectation. We then show experimentally, that
our mixed-KPGM can adequately capture the natural variability
across a population of networks.

I. INTRODUCTION

Graphs and networks are a natural data representation
for analysis of a myriad of domains, ranging from systems
analysis (e.g., the Internet) to bioinformatics (e.g., protein
interactions) to psycho-social domains (e.g., online social
networks). Due to the recent interest in small-world networks
and scale-free graphs, there has been a great deal of research
focused on developing generative models of graphs that can
reproduce skewed degree distributions, short average path
length and/or local clustering (see e.g., [2], [3], [4], [5]). The
majority of this work has focused on procedural modeling
techniques (see [6] for a good overview). As an example,
the preferential attachment model of [4] is an incremental
generative method, which repeatedly adds a node to the graph
with k edges and each of the edges is linked up to existing
nodes in the graph with probability proportional to its current
degree.

There are relatively few statistical models of graph structure
that represent probability distributions over graph structures,
with parameters that can be learned from example net-
works. One method is the Exponential Random Graph Model
(ERGM) (also known as p* models) [7]. ERGMs represent
probability distributions over graphs with an exponential linear
model that uses feature counts of local graph properties
considered relevant by social scientists (e.g., edges, triangles,
paths). Another method is the Kronecker product graph model
(KPGM) [8]. The KPGM is a fractal model, which starts from
a small adjacency matrix with specified probabilities for all

pairwise edges, and uses repeated multiplication (of the matrix
with itself) to grow the model to a larger size.

The aim, for much of the past work on generative graph
models, has been to accurately capture the observed properties
of a single graph – either global properties such as average path
length or local graph properties such as transitive triangles. As
such, evaluation of the proposed models has generally centered
on empirical validation that observed graph properties match
those of the generated graphs. Specifically, empirical analysis
has consisted of visual comparison of properties of the input
and a small number of generated graphs.

However, in many real-life applications one would like to
model populations of graphs. That is, rather than capturing
the properties of a single observed network, we would like
to be able to capture the range of properties observed over
multiple samples from a distribution of graphs. For example,
in social network domains, the social processes that govern
friendship formation are likely to be consistent across college
students in various Facebook networks, so we expect that the
networks will have similar structure, but with some random
variation. Descriptive modeling of these networks should focus
on acquiring an understanding of both their average character-
istics and their expected variation. Similarly, when analyzing
the performance of network protocols or network classification
methods, we would like to be able measure performance across
a set of network structures that capture the natural variability
in these domains.

In recent work [9], we investigated the distributional prop-
erties of state-of-the art generative models for graphs. Specifi-
cally, we considered the case when more than one instance of
a network is available, and examined whether these models
capture the natural variability in graph properties observed
across multiple networks. Our analysis showed that KPGMs
[8] and ERGMs [7], [10] do not generate graphs with sufficient
variation to capture the natural variability in two social net-
work domains. What was particularly surprising is how little
variance (compared to the real networks) was produced in the
graphs generated from each model class. Each of the models
appears to place most of the probability mass in the space of
graphs on a relatively small subset of graphs with very similar
characteristics.

Some theoretical insights to explain this phenomenon is
available in the context of ERGMs. In recent work it was



Fig. 1. Natural variability in the characteristics of a population of Facebook
(left) and AddHealth (right) networks.

shown that learning ERGMs with only local features can lead
to degenerate global models (i.e., the estimated distribution
places most of its probability mass on either the empty or
complete graphs) [11]. This indicates that the effect may be
due to long-range dependencies in social networks that cannot
be accurately captured by local features alone.

In this work, we investigate the issue in more detail
for KPGM models. By considering KPGMs from a new
viewpoint, we show the reason for this lack of variance
theoretically—which is primarily due to the generation of
each edge independently from the others. Based on this un-
derstanding we propose a generalization to KPGMs that uses
tied parameters to increase the variance of the model, while
preserving the expectation. We then show experimentally,
that our mixed-KPGM can adequately capture the natural
variability across a population of networks.

The rest of the paper is organized as follows. First, we
describe the network data sets considered in the paper and
examine their variability across several graph metrics (Section
II). Next, we provide background information on KPGM
models, examine whether KPGM are capable of capturing such
variability (Section III). We consider the generative process
for KPGMs from a slightly different angle which leads us
to a variant of KPGM that allows higher variance and more
clustering in sampled graphs (Section IV). We then apply our
new approach to multiple instances of networks (Section V)
and discuss our findings and contributions (Section VI).

II. NATURAL VARIABILITY OF REAL NETWORKS

We conducted a set of experiments to explore three distri-
butional properties of graphs found in natural social network

populations: (1) degree, (2) clustering coefficient, and (3) path
lengths. The degree of a node di is simply the number of nodes
in the graph that are connected to node i. Degree is a local
property of nodes, but since many networks have heavy-tailed
degree distributions, the overall degree distribution is often
considered a global property to match. Clustering coefficient
is calculated for a node i as: ci = 2|δi|

(di−1)di
, where δi is the

number of triangles in which the node i participates and di
is the number of neighbors of node i. Clustering coefficient
measures the local clustering in the graph. For path length, we
consider the hop plot distribution in the graph, which refers
to the number of nodes that can be reached with h “hops” in
the graph: Nh =

∑
v Nh(v), where Nh(v) is the number of

neighbors that are ≤ h edges away from node v in G. The
hop plot measures the global connectivity of the graph.

Specifically, we investigated two different real-world social
network datasets. The first set is drawn from the public
Purdue Facebook network. Facebook is a popular online social
network site with over 150 million members worldwide. We
considered a set of over 50000 Facebook users belonging to
the Purdue University network with its over 400000 wall links
consisting of a year-long period. To estimate the variance of
real-world networks, we sampled 25 networks, each of size
1024 nodes, from the wall graph. To construct each network,
we sampled an initial timepoint uniformly at random, then
collected edges temporally from that point (along with their
incident nodes) until the node set consisted of 1024 nodes.
In addition to this node and initial edge set, we collected all
edges among the set of sampled nodes that occurred within
a period of 60 days from the initially selected timepoint.
(This increased the connectivity of the sampled networks). The
characteristics of the set of sampled networks is graphed in
Figure 1 (left), with each line corresponding to the cumulative
distribution of a single network. The figures show the similar-
ity among the sampled networks as well as the variability that
can be found in real domains for networks of the same size.

The second dataset consists of a set of social networks
from the National Longitudinal Study of Adolescent Health
(AddHealth) [12]. The AddHealth dataset consists of survey
information from 144 middle and high schools, collected
(initially) in 1994-1995. The survey questions queried for
the students’ social networks along with myriad behavioral
and academic attributes, to study how social environment and
behavior in adolescence are linked to health and achievement
outcomes in young adulthood. In this work, we considered
the social networks from 25 schools with sizes varying from
800 to 2000 nodes. The characteristic of these networks are
showed in Figure 1 (right), where, despite the fact that the
networks are of different size, since we compare cumulative
distributions, the networks have very similar characteristics.
From this data, we also use a specific subset of 6 networks
for some initial experiments, with sizes between 1100-1600
nodes and a density in the range [0.004-0.005].

We consider these sets of networks to be illustrative ex-
amples of populations of graphs (i.e., drawn from the same
distribution). Both sets are likely to be affected/generated by



similar social processes (high school friendships and undergrad
communication patterns respectively). In addition, both sets
exhibit a remarkable similarity in their graph structures, yet
with some variation due random effects.

III. VARIABILITY OF KPGM MODELS

In this section we evaluate KPGMs both empirically and
analytically to investigate whether graphs generated from
learned KPGM models can capture the distributional properties
we observe in real-world social networks.

A. Background: KPGMs

The Kronecker product graph model (KPGM) [8] is a fractal
model, which uses a small adjacency matrix with Bernoulli
probabilities to represent pairwise edges probabilitities, and
uses repeated multiplication (of the matrix with itself) to
grow the model to a larger size. To generate a sample graph
from the model, the algorithm independently samples each
edge according to its associated probability of existence in
the model. It has been shown empirically that this approach
successfully preserves a wide range of global properties of in-
terest, including degree distributions, eigenvalue distributions,
and path-length distributions [1].

More specifically, the model generates self-similar graphs,
in a recursive way using Kronecker multiplication. The al-
gorithm starts with a initial matrix P1 = Θ with b rows
and columns, where each cell value is a probability. Typically
b = 2 or 3, e.g.:

P1 = Θ =
[
θ11 θ12

θ21 θ22

]
To generate graphs of a larger size, the Kronecker product of
P1 is taken k times with itself to generate a matrix:

Pk = P [k]
1 = P [k−1]

1
⊗ P1 = P1 ⊗ . . . ⊗ P1| {z }

k times

with bk rows and columns. We will denote the (u, v)-th entry
of Pk by πuv = Pk [u, v], u, v = 1, . . . , bk. Under KPGM, a
graph G = (V,E) with V = {1, . . . , N} where N = bk, k ∈
N, is sampled by performing mutually independent Bernoulli
trials for each pair (u, v) with probability πuv = Pk [u, v] and
placing an edge (u, v) into E if the trial for (u, v) results in
a success.

To estimate a KPGM from an observed graph G?, the
learning algorithm uses maximum likelihood estimation to de-
termine the values of Θ that have the highest likelihood of gen-
erating G?: l(Θ) = logP (G?|Θ) = log

∑
σ P (G?|Θ, σ)P (σ)

where σ defines a permutation of rows and columns of the
graph G?. The model assumes that each edge is a Bernoulli
random variable, given P1. Therefore the likelihood of the
observed graph P (G?|Θ, σ) is calculated as:

P (G?|Θ, σ) =
Y

(u,v)∈E

Pk[σu, σv]
Y

(u,v)/∈E

(1− Pk[σu, σv])

where σu refers to the permuted position of node u in σ.
With this formula, the algorithm uses a gradient descent

approach to search for the MLE parameters Θ̂, however the
gradient of l(θ) involves a summation over an exponential

number of permutations σ. To avoid this calculation the
algorithm simulates draws from the permutation distribution
P (σ|G?, θ) until it converges. Then it calculates the expected
values of l(θ) and the gradient. This sampling is performed
with a Metropolis-Hastings algorithm. In every iteration of the
algorithm, l(Θ) and its gradient are calculated T times, obtain-
ing their corresponding mean. The parameters Θ̂ are updated
with the following until convergence: Θ̂t+1 = Θ̂t + λ∂l(Θ̂)

∂Θt
.

B. Assessing Variability

To learn KPGM models, we selected a single network from
each dataset to use as a training set. To control for variation
in the samples, we selected the network that was closest to
the median of the degree distributions in each dataset. In
the Facebook data, we selected the first generated network
with 2024 edges that was very close to the median of the
degree, clustering coefficient and hop plot distributions. In
the AddHealth data, we selected the network from school
117, with 1278 nodes and 7982 edges. This network is close
to median of the degree and hop plot distribution but has
a little higher clustering coefficient than the median of the
25 networks and the highest clustering of the subset of six
network samples.

Using each selected network as a training set, we learned
a KPGM model (b = 2) using ML estimation to estimate
Θ̂. For each learned model, we generated 200 sample graphs.
The KPGM graphs were generated using the estimated matrix
Pk = P [k]

1 . Since the number of rows/columns of Pk is
generally larger than the target network size (bk ≥ N ), we
generate a graph G with bk nodes and then simply drop the
last bk −N nodes and the adjoining edges from G. From the
200 samples we estimated the empirical sampling distributions
for degree, clustering coefficient, and hop plots.

The results are plotted in Figures 5 and 6 in Section V. For
both the original datasets and the KPGM generated data, we
plot the median and interquartile range for the set of observed
network distributions. Solid lines correspond to the median of
the distributions; dashed lines: the 25th and 75th percentiles.

The results in Figures 5 and 6 show two things. First, the
KPGM performs as expected, capturing the graph properties
that have been reported in the past. Specifically, the KPGM
model is able to capture the degree and hop plot (i.e., long
range connectivity) fairly well in both datasets, but it is not
able to model the local clustering in either. Second, the KPGM
model does not reproduce the amount of variance exhibited in
the real networks. Moreover, it is surprising that the variance of
the generated graphs is so slight that it is almost not apparent
in some of the plots. (Recall that dashed lines indicate the
25th and 75th percentiles.) The lack of variance implies that
while the KPGM model may be able to reasonably capture the
patterns of the input graph (i.e., match on the means of the
distributions), it cannot be used to generate multiple “similar”
graphs—since it appears that the generated graphs are nearly
isomorphic.



C. Increasing Variability

One obvious possibility that could explain the low variance
in KPGMs is the small number of model parameters used
in the initiator matrix. Recall, that the reported experiments
use 2 × 2 initiator matrices. To investigate the change in
variance for models with initiator matrices of varying sizes,
we conducted the following simulation experiment. We first

manually specified a 2 × 2 model: Θ2×2 =

»
0.95 0.60
0.60 0.20

–
.

Then to create a 4×4 matrix that would produce graphs similar
to the 2 × 2 model, we computed the Kronecker product of
the 2×2 matrix and then perturbed the parameter in each cell
by adding a random number ∼ N (0, 9E − 4).

From these specified matrices, we generated 100 networks
of size 1024 and measured the variance in the graph distribu-
tions. Unfortunately, the variance does not show any noticeable
increase. We also tried learning KPGM models of the real
datasets (e.g., AddHealth) with initiator matrices up to size
6 × 6 with no noticeable increase in variance. This indicates
that we are unlikely to achieve higher variance by increasing
the parameterization of the model. Although larger initiator
matrices (e.g., 30×30) would increase the number of model
parameters, it would also decrease the number of Kronecker
products needed to generate a graph of a particular size, which
may impact the model’s ability to represent fractal structure.

Based on these investigations, we conjecture that it is
KPGM’s use of independent edge probabilities and fractal
expansion that leads to the small variation in generated graphs.
We explore this issue analytically next.

D. Theoretical Analysis

It is possible to carry out a theoretical analysis for the
variance in the number of edges in graphs sampled from
KPGM, see Appendix A.

Denote by Ek the number of edges in a graph G with
N = bk nodes randomly sampled according to KPGM with
the initiator matrix P1. Denote by θij the entry in the i-th
row and j-th column of P1. Let S =

∑b
i=1

∑b
j=1 θij and

S2 =
∑b
i=1

∑b
j=1 θ

2
ij be the sum of the entries and the squares

of the entries, respectively, of the initiator matrix P1. Then

E [Ek] = Sk and V ar (Ek) = Sk − Sk2 . (1)

Note that V ar (Ek) ≤ E (Ek) and SD (Ek) ≤
√
E (Ek).

However, in the real-world networks considered in this paper,
the estimated variance significantly exceeds the mean—in
Facebook the estimated mean number of edges is 1991, while
the variance is 23451. Similarly, in AddHealth the mean
number of edges is 8021, while the variance is 9045070. This
indicates that KPGM models are incapable of reproducing the
variance of these real-world network populations.

IV. EXTENDING KPGM TO INCREASE VARIANCE

In this section, we propose a generalization of KPGM that
permits larger variance in the properties of the generated
graphs by introducing edge dependence in the generation
process.

A. Another View of Graph Generation with KPGMs

Before introducing our model variant, we present a slightly
different view of the graph generation under KPGM. This
viewpoint provides an extra dimension to the model that if
exploited allows a natural way to couple the edge generation
and thus to increase the variance of the graph statistics.

Consider the graph generation, or realization process. Given
a matrix of edge probabilities Pk = P [k]

1 , a graph G with
adjacency matrix E = R (Pk) is realized (sampled or gener-
ated) by setting Euv = 1 with probability πuv = Pk [u, v] and
setting Euv = 0 with probability 1 − πuv . Euvs are realized
through a set of Bernoulli trials or binary random variables
(e.g., πuv = θ11θ12θ11). For example, in Figure 2a, we illus-
trate the process of a KPGM generation for k = 3 to highlight
the multi-scale nature of the model. Each level correspond
to a set of separate trials, with the colors representing the
different parameterized Bernoullis (e.g., θ11). For each cell in
the matrix, we sample from three Bernoullis and then based
on the set of outcomes the edge is either realized (black cell)
or not (white cell).

To formalize this, we start with a description of probabilities
in the stochastic Kronecker matrix Pk. Assume N = bk

and index the entries of the initiator matrix P1 with (i, j),
i, j = 1, . . . , b. For convenience, we will label the nodes
{0, . . . , N − 1} instead of {1, . . . , N}. Let (v1 . . . vk)b be a
representation of a number v in base b. We will refer to it as
a b-nary representation for v and will refer to vl as the l-th
b-it of v. Each v ∈ {0, N − 1} has a unique representation in
base b, v =

∑k
l=1 (vl − 1) bk−l with each vl ∈ {1, . . . , b}.

As was pointed out in [13] for b = 2, and mentioned in [1],
for u, v ∈ {0, . . . , N − 1} with b-nary representations u =
(u1 . . . uk)b and v = (v1 . . . vk)b,

πuv = Pk [u, v] =
k∏
l=1

P1 [ul, vl] =
k∏
l=1

θulvl
. (2)

This description highlights the multiscale nature of KPGM.
The probability of having an edge (u, v) in a graph realization
from Pk is equal to the product of contributions (probabilities
θulvl

= P1 [ul, vl]) from different scales (l).
Alternatively, each Euv can be thought of as drawn in

k stages, one for each b-it of u and v. Let Eluv be a
binary random variable with P

(
Eluv = 1

)
= θulvl

and
P
(
Eluv = 0

)
= 1 − θulvl

. Then Iuv =
∏k
l=1E

l
uv or in other

words, an edge (u, v) is included if and only if the trials Eluv
resulted in a success for all scales l = 1, . . . ,K. Equivalently,
an l-th scale adjacency matrix El =

(
Eluv

)
is realized from

(Pk)l = 1b ⊗ . . . ⊗ 1b︸ ︷︷ ︸
l−1

⊗ P1 ⊗ 1b ⊗ . . . ⊗ 1b︸ ︷︷ ︸
k−l

where 1b is a

b× b matrix of ones. An adjacency matrix E = E1 ◦ · · · ◦Ek
is an entriwise (Hadamard) product of the adjacency matrices
at k scales. See illustration in Fig 2(a).

Note that each matrix (Pk)l consists only of the values
of the initiator matrix P1. Each of these values is repeated
bk−1× bk−1 and is contained in the intersection of bk−1 rows
and columns, with the value θij appearing in rows u with



Fig. 2. Generative mechanisms for different Kronecker product graph models: (a) KPGM, (b) tKPGM, (c) mKPGM. Probability matrices are on the left,
realizations are on the right. The bottom left matrices are the final sample from each model. For KPGM, bk × bk independent Bernoulli trials are performed
at each level. For tKPGM, only bl × bl independent Bernoulli trials are performed at a level l; the result of each trial is then replicated for all bk−l × bk−l

entries in the corresponding submatrix. For mKPGM, the first l levels (l = 2 in the figure) are untied.

ul = i and columns v with vl = j. Because of the Kronecker
product structure of (Pk)l, pairs (u, v) corresponding to the
same probability values appear in blocks of bk−l × bk−l. It is
important to note that even though many of Eluv have the same
probability distribution, under KPGM they are all sampled
independently of one another. Relaxing this assumption will
lead to extension of KPGMs capable of capture the variability
of real-world graphs.

B. Tied KPGM

In this section, we consider a variant of KPGM that pre-
serves the marginal probabilities of edges in a given location
but does not treat them as independent. Our approach increases
the variance in the number of edges by introducing positive
covariance between the indicator variables Euv for the pres-
ence of edges.

Even though the probability matrix Pk exhibits hierarchical
or multiscale structure, this hierarchy is not explicit in the
graphs realized from KPGM because all of the trials at all
scales are performed independently, or in other words, all
of the edges are untied at all scales. We propose a model
where the trials have a hierarchical structure as well, lead-
ing to a higher grouping of edges and a higher variance
in the number of edges. In this model, the edges are tied
at all common scales. For the KPGMs, a realization E is
obtained from the edge probability matrix Pk, E = R (Pk) =
R (P1 ⊗ . . . ⊗ P1). Instead, we propose to realize an adja-
cency matrix after each Kronecker multiplication. We denote
by Rt (P1, k) a realization of this new model with the initiator
P1 and k scales. We define Rt recursively, Rt (P1, 1) =
R (P1), and Rt (P1, k) = Rt (Rt (P1, k − 1) ⊗ P1). If un-
rolled,

E = Rt (P1, k) = R (. . . R (R (P1) ⊗ P1) . . . )︸ ︷︷ ︸
k realizations R

.

Similar to section IV-A, we define the probability matrix
for scale l, (Pk)l = P1 for l = 1, and (Pk)l =
Rt
(
(Pk)l−1

)
⊗ P1 for l ≥ 2. Under this model, at scale

l there are bl × bl independent Bernoulli trials rather than

bk × bk as (Pk)l is a bl × bl matrix. These bl × bl tri-
als correspond to different prefixes of length l for (u, v),
with a prefix of length l covering scales 1, . . . , l. Denote
these trials by T lu1...ul,v1...vl

for the entry (u′, v′) of (Pk)l,
u′ = (u1 . . . ul)b, v

′ = (v1 . . . vl)b. The set of all indepen-
dent trials is then T 1

1,1, T
1
1,2, . . . , T

1
b,b, T

2
11,11, . . . , T

2
bb,bb, . . . ,

T k1 . . . 1︸ ︷︷ ︸
k

,1 . . . 1︸ ︷︷ ︸
k

, . . . , T kb . . . b︸ ︷︷ ︸
k

,b . . . b︸ ︷︷ ︸
k

. The probability of a suc-

cess for a Bernoulli trial at a scale l is determined by the
entry of the P1 corresponding to the l-th bits of u and v:

P
(
T lu1...ul,v1...vl

)
= θulvl

.

One can construct El, a realization of a matrix of probabilities
at scale l, from a bl × bl matrix T by setting Eluv =
T lu1...ul,v1...vl

where u = (u1 . . . uk)b, v = (v1 . . . vk)b. The
probability for an edge appearing in the graph is the same as
under KPGM as

Euv =
k∏
l=1

Eluv =
k∏
l=1

T lu1...ul,v1...vl
=

l∏
l=1

θulvl
.

Note that all of the pairs (u, v) that start with the same prefixes
(u1 . . . ul) in b-nary also share the same probabilities for Eluv ,
l = 1, . . . , l. Under the proposed models trials for a given scale
t are shared or tied for the same value of a given prefix. We
thus refer to our proposed model as tied KPGM or tKPGM
for short. See Figure 2(b) for an illustration.

Just as with KPGM, we can find the expected value and
the variance of the number of edges under tKPGM. Since
the marginal probabilities for edges (u, v) are the same as
under KPGM, the expected value for the number of edges
is unchanged, E [Ek] =

∑N−1
u=0

∑N−1
v=0 E [Euv] = Sk. The

variance V ar (Ek) can be derived recursively by conditioning
on the trials with prefix of length l = 1:

V ar (Ek) = S × V ar (Ek−1) + (S − S2)S2(k−1), (3)

with V ar (E1) = S − S2. The solution to this recursion is

V ar (Ek) = Sk−1
(
Sk − 1

) S − S2

S − 1
. (4)



Note that under this model, all edges sharing a prefix are
no longer independent as they either do not appear together
(if either of the trials corresponding to the prefix resulted in
a failure), or have a higher probability of appearing together
(if all of the trials in the prefix are successful). In the case of
success at all l scales for a prefix of length l, the expected
number of edges for the possible bk−l × bk−l pairs with this
prefix is Sk−l.The resulting proportion of edges to pairs is then(
S/b2

)k−l
higher than

(
S/b2

)k
for all possible bk × bk pairs

(S =
∑b
i=1

∑b
j=1 θij ≤ b2). This suggests that the resulting

graph will consist of several groups of nodes connected by
many edges rather than edges spread among the nodes in the
graph.

C. Mixed KPGM

Even though tKPGM provides a natural mechanism for
clustering the edges and for increasing the variance in the
graph statistics, the resulting graphs exhibit too much variance
(see Section V). One of the possible reasons is that the edge
clustering and the corresponding Bernoulli trial tieing should
not begin at the highest shared scale (to model real-world
networks). To account for this, we introduce a modification
to tKPGM that ties the trials starting with prefix of length
l + 1, and leaves the first l scales untied. Since this model
will combine or mix the KPGM with tKPGM, we refer to it
as mKPGM. Note that mKPGM is a generalization of both
KPGM (l ≥ k) and tKPGM (l = 1). The effect of tieing
can be seen in Figure 3—the graph sampled from KPGM
exhibits little grouping of the edges, the graph sampled from
tKPGM exhibits strong grouping, and the graph sampled from
mKPGM falls in between the other two. How close would the
properties of a graph from mKPGM resemble one of the other
two depends on the proportion of untied scales.

Formally, we can define the generative mechanism in
terms of realizations. Denote by Rm (P1, k, l) a realization
of mKPGM with the initiator P1, k scales in total, and l
untied scales. Then Rm (P1, k, l) can be defined recursively
as Rm (P1, k, l) = R (Pk) if k ≤ l, and Rm (P1, k, l) =
Rt (Rm (P1, k − 1, l) ⊗ P1) if k > l. Scales 1, . . . , l will
require bl × bl Bernoulli trials each, while a scale s ∈
{l + 1, . . . , k} will require bs × bs trials. See Figure 2(c) for
an illustration.

Intuitively, the graph sampling mechanism under mKPGM
can be viewed as generating a binary bl× bl matrix according
to KPGM with Pl = P [l]

1 , and then for each success (1 in the
matrix) generating a bk−l × bk−l matrix according to tKPGM
with initiator P1 and k−l scales. Failure (0) in the intermediate
matrix results in a bk−l × bk−l matrix of zeros. These bk−l ×
bk−l then serve as submatrices of the realized bk×bk adjacency
matrix.

Since the marginal probabilities for edges are unchanged,
P (Euv) = πuv =

∏k
l=1 θulvl

, the expected value for the
number of edges is unchanged as well, E [Ek] = Sk. However,
the variance expression is different from that in (4), and it can
be obtained conditioning on the Bernoulli trials of the l highest

Fig. 3. Generated networks of 28 nodes for different Kronecker product
graph models: KPGM (left), tKPGM (center), mKPGM (right). For mKPGM
the number of untied scale was 5.

order scales:

V ar (Ek) = Sk−1
(
Sk−l − 1

) S − S2

S − 1
+
(
Sl − Sl2

)
S2(k−l).

(5)
Note that for l = 1, the variance is equal to
Sk−1

(
Sk − 1

)
S−S2
S−1 , the same as for tKPGM, and the vari-

ance of mKPGM is smaller than that of tKPGM for l > 1.
When l = l, the variance is equal to Sk−Sk2 , the same as for
KPGM, and the variance of mKPGM is greater than that of
KPGM for l < k.

D. Experimental Evaluation
We perform a short empirical analysis of mKPGMs using

simulations. Figure 4 shows the variability over four different
graph characteristics, calculated over 300 sampled networks of

size 210 with Θ =

»
0.99 0.20
0.20 0.77

–
, for l = {1, .., 10}. In each

plot, the solid line represents the mean of the analysis (median
for plot (b)) while the dashed line correspond to the mean
plus/minus one standard deviation (first and third quartile for
plot(b)).

In Figure 4(a), we can see that the total number of edges
does not change significantly with the value of l, however the
variance of this characteristic decreases for higher values of l,
confirming that the KPGM (l = 10) has the lowest variance
of all. Figure 4(b) shows how the median degree of a node
increases proportionally to the value of l. Also, considering
that the number of nodes in the network remains constant for
all values of l, it is clear that as l increases the edges are
assigned more uniformly throughout the nodes compared to
the tKPGM (l = 1)—where some nodes get the majority of
the edges.

This uniform distribution of the edges in KPGM generates
large chain of nodes with few connections among them,
leading to a small clustering coefficient and a large diameter
(Fig 4c-d). On the other hand, the large connected sets of nodes
generated by tKPGM produces a higher clustering coefficient
among these groups with a small diameter (plots (c) and (d)).
Finally as l increases, the mKPGM (1 ≤ l ≤ 10) will generate
a larger number of (smaller) connected sets of nodes, leading
lower clustering coefficients and larger diameters. These ef-
fects can be observed in the generated network presented in
Figure 3 as well as Figure 4c-d.

V. EXPERIMENTS

To assess the performance of the tied KPGM (tKPGM)
and mixed KPGM (mKPGM), we repeated the experiments



(a) Total Edges (b) Degree (c) Cluster Coefficient (d) Diameter

Fig. 4. Mean value (solid) ± one sd (dashed) of characteristics of graphs sampled from mKPGM as a function of l, number of untied scales.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 5. Variation of graph properties in generated Facebook networks.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 6. Variation of graph properties in generated AddHealth networks.

described in Section III. We compared the two new methods
to the original KPGM model, which uses MLE to learn model
parameters Θ̂MLE .

Although we outlined the representation and sampling
mechanisms for tKPGM and mKPGM in Section IV, we
do not yet have an automatic algorithm for estimating their
parameters from data. Here we are more interested in the
properties of the model(s) and whether they can accurately
capture the variance of multiple network samples. We leave the
development of efficient learning algorithms for future work.

To initialize the tKPGM and mKPGM models, we searched
for a set of parameters Θ and L that reasonably matched to
our example datasets. To achieve this, we first considered an
exhaustive search of the set of possible parameter values for Θ
and calculated their expected number of edges. We considered
any parameters that matched the average number of edges in
sample data (±1%). Within this set, we considered parameters
in decreasing order of Θ11 (along with all possible values of
L) and searched until we found a set that were a close match
for the mean and variance of the degree distribution. Given the

best match, we used the same Θ values for both the tKPGM
and the mKPGM models.

For the Facebook networks, the average number of edges is

1991. We selected Θ =

»
0.98 0.14
0.14 0.94

–
with E[Ek] = 1975.2

and L = 8. For the AddHealth networks, the average number

of edges is 8021. We selected Θ =

»
0.95 0.26
0.26 0.96

–
with

E[Ek] = 8010.1 and L = 4. The corresponding MLE
parameters estimated by the KPGM model were Θ̂MLE =»

0.66 0.25
0.25 0.84

–
and Θ̂MLE =

»
0.93 0.43
0.43 0.47

–
respectively.

For each of the methods we generated 200 sample graphs
from the specified model. In Figures 5-6, we plot the median
and interquartile range for the generated graphs, comparing
to the empirical sampling distributions for degree, clustering
coefficient, and hop plot to the observed variance of original
data sets. As we discussed earlier, the KPGM graphs show
almost no variance. The tKPGM graphs show the highest
variance among all the models, with even more variance than
the real data, so the tKPGM approach is equally inadequate
for representing the natural variability in the domain. However,



with the mKPGM models, we are able to determine a value for
L which produces graphs that reasonable the variance of real
networks. With the exception of the hop plot distribution on
the AddHealth data, the network generated from the specified
mKPGM models match well on both the means and variances
of the distributions. This demonstrates the potential for the
mixed model to better represent network properties found in
populations of networks, particularly those with skewed degree
distributions (e.g., Facebook).

The key issue for using mKPGMs will be to select an
appropriate set of parameters that both match the expected
properties of a particular domain, and also reflect the natural
variability. Our current approach of using exhaustive search,
with a filter based on expected edge counts, is feasible to use
in practice only if one has a sample of networks to evaluate
the parameter settings. When only one network is available
(e.g., a single Facebook network), the level of variance (i.e.,
L) will need to be selected based on domain understanding.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we investigated whether the state-of-the-
art generative models for large-scale networks are able to
reproduce the properties of multiple instances of real-world
networks generated by the same source. Surprisingly KPGMs,
one of the most commonly used models, produces very little
variance in the simulated graphs, significantly less than that
observed in real data. To explain this effect we showed
analytically that KPGMs cannot capture the variance in the
number of edges that we observe in real network populations.

Part of the problem with the lack of variance is that the
edges under KPGM are drawn independently. We proposed
a generalization to KPGM, mixed-KPGM, that introduces
dependence in the edge generation process by performing the
Bernoulli trials determining whether to add edges in a hierar-
chy. By choosing the level where the hierarchy begins, one can
tune the amount that edges are grouped in a sampled graph.
In our experiments with the multiple instance of networks
from AddHealth and Facebook data sets, the model provides
a good fit and importantly reproduces the observed variance
in network characteristics.

In the future, we will investigate further the statistical
properties of our proposed model. Among the issues, the most
pressing is a systematic parameter estimation, a problem we
are currently studying.
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APPENDIX

A. Expectation and Variance for KPGM’s Number of Edges

Let Ek denote the random variable for the number of edges
in a graph generated from a KPGM with k scales and a b× b
initiator matrix P1. Then

E [Ek] =
N−1∑
u=0

N−1∑
v=0

E [Euv] =
b∑

i1=1

b∑
j1=1

· · ·
b∑

ik=1

b∑
jk=1

k∏
l=1

θulvl

=
b∑

i1=1

b∑
j1=1

θi1j1 · · ·
b∑

ik=1

b∑
jk=1

θikjk =

 b∑
i=1

b∑
j=1

θij

k
= Sk

with S =
∑b
i=1

∑b
j=1 θij is the sum of entries in the initiator

matrix P1, a result mentioned in [8], [13]. We can also find
the variance V ar (E). Since Euvs are independent,

V ar (Ek) =
N−1∑
u=0

N−1∑
v=0

V ar (Euv) =
N−1∑
u=0

N−1∑
v=0

πuv (1− πuv)

=
N−1∑
u=0

N−1∑
v=0

πuv −
N−1∑
u=0

N−1∑
v=0

π2
uv

=

 b∑
i=1

b∑
j=1

θuv

k −
 b∑
i=1

b∑
j=1

θ2
uv

k = Sk − Sk2

where S2 =
∑b
i=1

∑b
j=1 θ

2
ij is the sum of the squares of the

entries in the initiator matrix P1.


