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Abstract

Several peer-to-peer networks are based upon randomized graph topologies that permit ef-
ficient greedy routing, e.g., randomized hypercubes, randomized Chord, skip-graphs and con-
structions based upon small-world networks. In each of these networks, a node has out-degree
O(log n), where n denotes the total number of nodes, and greedy routing is known to take
O(log n) hops on average. Our contribution in this paper is twofold. First we investigate the lim-
itations of greedy routing and establish lower-bounds for greedy routing for these networks.
The main contribution of the paper is the analysis of the Neighbor-of-Neighbor (NoN)-greedy
routing. The idea behind NoN, as the name suggests, is to take a neighbor’s neighbors into ac-
count for making better routing decisions.

The following picture emerges: Deterministic routing networks such as hypercubes and Chord
have diameter Θ(log n). This means that greedy routing is optimal in the sense that its routing
distance is at most (approximately) the diameter, yet networks with average degree of O(log n)
may have diameter O( log n

log log n ). Randomized routing networks such as skip-graphs, randomized
hypercubes, randomized Chord, and constructions based upon small-world percolation networks,
have diameter Θ(log n/ log log n) with high probability. In all of these networks, greedy routing
fails to find short routes, requiring Ω(log n) hops with high probability. Surprisingly, the NoN-
greedy routing algorithm is able to diminish route-lengths to Θ(log n/ log log n) hops, which
is asymptotically optimal.
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1 Introduction

Randomized network constructions that model the Small-World Phenomenon have recently re-
ceived considerable attention. A widely-held belief pertaining to social networks is that any two
people in the world are connected via a chain of six acquaintances (six-degrees of separation)1.
The behavior of such networks has been investigated extensively by researchers from diverse set of
disciplines including: the social sciences, physics, computer science and webologists. These investi-
gations consist of either checking the existence of the phenomenon in various setting or coming up
with models to explain it. The quantitative study of the phenomenon started with Milgram’s [31]
experiments in 1960’s, asking people to send letters to unfamiliar targets only through acquain-
tances. Milgram’s experiments and the work by Pool and Kochen [12] confirmed that often random
pairs of individuals are indeed connected by short chains.

The study of the algorithmic or routing perspective of this phenomenon was initiated by Klein-
berg [23],[22], who pointed out that the small world experiments showed not only that short paths
exist, but that people can find such paths based on local information. To model the routing aspects
of the Small-World Phenomenon, Kleinberg considered a family of random graphs. The graphs not
only have small diameter (to model the “six degrees of separation”) but also allow short routes to
be discovered on the basis of local information alone (to model Milgram’s observation that mes-
sages can be “routed to unknown individuals efficiently”). In particular, Kleinberg considered a
two dimensional n × n grid with n2 nodes. Each node is equipped with a small set of “local”
contacts and one “long-range” contact drawn from a harmonic distribution, i.e, the probability
of establishing an edge (x, y) is proportional to ||x − y||−2, where ||x − y|| stands for the grid’s
L1 distance. With greedy routing, the path-length between any pair of nodes is O(log2 n) hops,
w.h.p. Local knowledge available to a node suffices for greedy routing – a message is forwarded
along that out-going link which takes it closest to the destination. Barrière et al [7] showed that
greedy routing requires Ω(log2 n) hops for Kleinberg’s construction. The diameter of small world
graphs is shorter and is Θ(log n) on expectation [30]. Thus, greedy routing is sub-optimal and it
is desirable to find routing schemes that route along shorter paths.

Kleinberg’s results can have various interpretations: it could be thought of as an explanation of
how people in the chain letter experiments behaved (this is a descriptive approach). Alternatively, it
could be seen as suggesting a routing strategy. While sending letters to unknown targets is not the
most useful activity, the problem is related to routing in peer-to-peer networks, i.e. networks where
nodes join and leave the system dynamically. In various P2P systems nodes are assigned labels
that are interpreted as points on some d−dimensional space; links are added to close neighbors and
some links are added to far away ones. Hence the hope is that lessons learned for the small world
graphs may be applicable in the peer-to-peer environment. Indeed the works of Aspnes et al [4]
and Manku et al [28] apply intuitions from small worlds into peer-to-peer constructions. We shall
show further adaptations in this work.

Peer-to-Peer Networks

P2P routing networks have witnessed a flurry of research activity recently. Broadly, the topology of
these networks can be classified into two categories – deterministic and randomized. In deterministic

1According to Barabási [6] this idea may have its origins in a short story “Chains” by the Hungarian writer
Frigyes Karinthy from 1929; this idea has been retold and recast many times since then, in the literature,
popular press as well as scientific studies.
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P2P networks the topology is a function of the id’s of the nodes. Typically they are based upon
classical parallel inter-connection networks, such as the hypercube and its variants, butterflies or
De-Bruijn graphs, e.g [37, 42, 39, 1]. In randomized networks, as the name suggests, randomization
is used to determine the topology of the network. Natural examples include skip-graphs [5, 20], the
randomization of hypercubes [17, 9] and the randomization of Chord [41, 17]. All of which have
a node degree of O(log n). Other examples are networks based on Kleinberg’s construction such
as Symphony [28] [4]. In these networks the out-degree of each node is bounded by a constant.
Among the various P2P routing networks, skip-graphs are unique in that node identifiers (or “keys”
associated with nodes) can be drawn from an arbitrary ordered domain, e.g., the set of character
strings. This property makes skip-graphs the only P2P routing network that naturally supports
prefix-search. Other P2P routing networks assume that nodes are assigned identifiers that are
drawn uniformly from the unit interval [0, 1).

Many P2P networks share structural similarities with a network in which nodes are associated
with a d−dimensional torus, and an edge (i, j) is established with probability 1

||i−j||d , independently
of all other edges. We call this network a small-world percolation network. The small-world perco-
lation network has its antecedents in classical “long range percolation” models. We outline a brief
history at the beginning of Section 2.

The routing scheme suggested for all the above networks is greedy; i.e., each node routes the
message to its neighbor which is closest to the target. The greedy algorithm is appealing to use
since it is based on local information only and is very simple (both conceptually and to implement).
The main disadvantage of greedy is that often it routes along paths that are much longer than
the shortest paths in the network. The Neighbor-of-Neighbor (NoN) greedy algorithm is meant
to overcome this problem. The idea underlying NoN is to allow a node to gain knowledge of its
neighbor’s neighbors for assistance in making better routing decisions. . Our work addresses two
questions:

(a) When does greedy routing route along (approximately) shortest paths?

(b) What is the role of look-ahead (or Neighbor of Neighbor) upon greedy routing?

1.1 Our Contributions

In a network with k out-going links per node, the average length of shortest paths is Ω(log n/ log k).
Therefore, with O(log n) links per node, it might be possible to route in O(log n/ log log n) hops,
and it might be possible to route in O(log n) hops in Kleinberg’s construction. The known upper
bounds for greedy routing are sub optimal in this sense. The main contribution of this work is
to show that in many cases greedy routing is indeed asymptotically sub-optimal, while the NoN-
Greedy algorithm which uses just one level of look-ahead is asymptotically optimal. In particular
we show the following:

Upper bounds: We show that NoN-greedy routing, which fixes two hops of a route (by tak-
ing the neighbors of neighbors of a node into account), is optimal for the small-world percolation
networks and requires Θ(log n/ log log n) hops, w.h.p. (Section 2). The same upper bound is es-
tablished for randomized-hypercubes and randomized-Chord (Section 3) and for skip graphs (Sec-
tion 4). Thus skip-graphs are the only degree-optimal P2P network that supports prefix search. In

3



Section 3 we also analyze Kleingberg’s construction (Symphony) and show that the NoN algorithm
is asymptotically better than greedy yet not optimal.

The asymptotical analysis is accompanied by simulations which show that for network sizes
ranging from 212 to 224 nodes, NoN-greedy routes are 40% to 48% shorter than greedy routes
in all of these topologies (Section 6).

Lower bounds In Section 5 we show that greedy routing requires Ω(log n) hops on average in
small world percolation graphs and in each of the following randomized P2P networks: skip-graphs,
randomized-Chord, randomized-hypercube, and Symphony with k = Θ(log n) per node.

1.2 Related Work

The tradeoff between the average path length and the out-degree of nodes is of fundamental in-
terest to designers of P2P routing networks. Hypercubes and Chord offer average paths of length
Θ(log n) with Θ(log n) links per node with greedy routing (optimal routes in Chord were iden-
tified by Ganesan and Manku [16]). Skip graphs, Randomized-hypercubes and randomized-Chord
were known to offer routes of length O(log n) with greedy routing. Among the randomized P2P
networks, Viceroy [26] offers routes of length Θ(log n) w.h.p. with only O(1) links per node. A
randomized construction in [27] combines ideas from Viceroy with Kleinberg’s construction to
arrive at a network that routes in Θ(log n/ log k) hops w.h.p., with k links per node.

Networks based on De-Bruijn graphs [33, 21, 14] offer an optimal tradeoff between degree and
path length, in particular for O(log n) links per node the routes are of length O(log n/ log log n).
The De-Bruijn networks are significantly simpler than Viceroy and the construction in [27], yet
the routing protocol in De-Bruijn graphs is not greedy – it is based on numeric computations on
labels of nodes. Recently Abraham et al [2] presented a graph based on the Butterfly network in
which when the degree is d, greedy routes along paths of length O(log n/ log d).

Overall, two classes of networks are known to have optimal route lengths with respect to the
degree, for instance route in Θ(log n/ log log n) hops with Θ(log n) links per node: De-Bruijn net-
works and butterfly networks. The P2P implementation of these networks requires that keys are
random, thus unlike skip-graphs there is no natural way for keys to carry semantic meaning. The
results of this paper add a third class – “randomized small-world networks”. We hope that our
results inspire further investigations into the general properties of these networks.

The basic idea of the NoN-greedy approach is drawn from two sources. A paper by Copper-
smith et al [11] uses the neighbors-of-neighbors approach, though not in an algorithmic perspec-
tive. They use the idea to establish that the diameter of small-world percolation networks on n
nodes is O( logn

log logn) w.h.p. NoN-greedy routing was first used (under the name “greedy with
1-lookahead”) by Manku et al [28] as a heuristic for Symphony, a randomized P2P network.
Fraigniaud et al [15] recently analyzed other variants of greedy algorithms in Kleinberg’s model,
when each node is aware of the long-range contacts of the log n nodes which are closest to it. They
show that a variant of greedy which routes in expected Θ(log1+ 1

d n) hops (when d is the dimen-
sion of the mesh). Aspnes et al [4] established lower bounds for greedy over a general family of
randomized networks under the assumption that each “long-range” link is drawn from the same
probability distribution. Lebhar and Schabanel [25] present a routing algorithm which is not greedy
and improves over the simple greedy algorithm.
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1.3 The NoN-GREEDY Routing Algorithm

We introduce the main object of our investigation, the NoN-greedy Routing Algorithm, in Fig-
ure 1. We assume the existence of a metric on the labels of nodes.

Algorithm for routing a message to node t.

1. Assume the message is currently at node u 6= t. Let w1, w2, . . . , wk be the neighbors
of u.

2. For each wi, 1 ≤ i ≤ k, find zi - the closest neighbor to t. Let j be such that zj is
the closest to t among z1, z2, . . . , zk.

3. Route the message from u via wj to zj .

Figure 1: The NoN-greedy Algorithm. Some metric over the labels of nodes is assumed.

In the NoN-greedy algorithm, wj may not be the neighbor of u which is closest to t. The
algorithm could be viewed as a greedy algorithm on the square of the graph – a message gets routed
to the best possible node among those at distance two.

2 Small-World Percolation Graphs

Definition 2.1. A “small-world percolation network” of dimension d is a finite graph whose vertex
set is associated with the d−dimensional mesh. The probability that (u, v) is an edge is 1

||u−v||d and
is independent from all other edges, and ||u− v|| stands for the mesh L1 distance between u and v.

Small-world percolation networks originate from a classical percolation model called “long range
percolation”. In that model, nodes lie on an infinite grid and an edge is put between a pair of nodes
with some positive probability. The question of existence of infinite components was considered
by Schulman [38], Aizenman and Newman [3] and Newman and Schulman [35], where the one
dimensional grid Z is studied and edges (i, j) are selected with probability β/‖i − j‖s for some
values β, s.

Benjamini and Berger [8] proposed and studied a finite percolation model: a cycle graph over
n nodes where an edge between nodes i and j exists with probability 1 if ‖i− j‖ = 1, otherwise, it
exists with probability exp(−β/‖i− j‖s), for some values β, s. Coppersmith et al [11] extended the
model to multiple dimensions: a d−dimensional mesh where an edge (u, v) is selected independently
with probability 1/‖u− v‖d. Coppersmith et al [11] established that the diameter of the resulting
graph is Θ(log n/ log log n) w.h.p. Their proof used the neighbor-of-neighbor approach for part of
the way, and a non-constructive argument for the rest of the way. We now show that Non-greedy
routing results in paths of length Θ(log n/ log log n) w.h.p.

Theorem 2.2. Given two nodes s, t in a d−dimensional small-world percolation network over n
nodes, with probability at least 1− 1

n3 the NoN-greedy algorithm routes a message from s to t in
O( logn

log logn) hops. The probability is taken over the configuration of the graph.

Note that the high probability bound of Theorem 2.2 implies that with high probability the
NoN algorithm finds short paths between all pairs of nodes.
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Proof of Theorem 2.2. The L1 distance between any two nodes is at most n. So we assume the
worst case - that the distance between the source and target is n. We partition the routing into
two phases. In the first phase, the message is routed so that the remaining distance to the target
diminishes to e

√
logn or less. In the second phase, the message covers the remaining distance. We

show that each phase takes O(log n/ log log n) w.h.p., thus proving the theorem. The first phase
was handled in Lemma (6.1) from [11].

Lemma 2.3 ([11]). If m ≥ c log n/ log log n, for some constant c which depends only on the
dimension, then after m NoN-greedy routing steps, the message would reach a node that lies at
distance e

√
logn or less from the destination, with probability at least 1− 1

n3 .

The second phase of the routing could in fact be performed by plain greedy routing.

Lemma 2.4. Given that the current location of the message from the source is at distance at
most e

√
logn from its destination, then with probability at least 1− 1

n3 , the message would reach its
destination within O(log n/ log log n) greedy steps.

First we show the effect of a single a NoN hop:

Claim 2.5. Let δ and δ′ denote the distance from the destination before and after performing a
single NoN greedy hop. There is an ε = ε(d) > 0 such that for any sequence of hops leading to
the current node and for all k > 0

Pr[δ′ ≤ d(1− 1
k
)δe] ≥ 1− 1

kε
.

Proof. The proof will show that the Claim holds even for a single greedy hop. A single NoN hop
is always longer than a single greedy hop. Assume the message is at node ~0, and the target note t
is such that ||t||1 = δ. For each integer k define Bk to be all nodes with distance at most (1− 1

k )δ
from t (for notational convenience we remove the ceilings and floors). We calculate the probability
there is an edge from ~0 to the ball Bk. Define `i to be the number of vertices x such that ||x|| = i
and x is in Bk. We have:

Pr[~0 is not connected to Bk] =
δ∏

i=δ/k

(1−i−d)`i ≤
δ∏

i=2δ/k

(1−i−d)`i ≤
δ∏

i=2δ/k

e−`i/i
d

= exp(−
δ∑

i=2δ/k

`i
id

)

Now assuming that `i is Θ(id−1) for 2δ
k ≤ i ≤ δ, for some constant ε it holds that

exp(−
n∑

i=2δ/k

`i
id

) ≤ exp(−Θ(
n∑

i=2δ/k

1
i
)) ≤ 1

kε

which proves the claim. It remains to show that indeed `i = Θ(id−1) for 2δ
k ≤ i ≤ δ. There are

Θ(id−1) nodes at distance i from ~0, we need to show that a constant fraction of them are in Bk,
i.e with distance at most (1− 1

k )δ from t. Let i take some value 2δ/k ≤ i ≤ δ and let x be a point
on a shortest path from ~0 to t such that ||x|| = d1

2(δ/k + i)e. Note that x ∈ Bk, furthermore, all
the points in distance i − ||x|| = b1

2(i− δ/k)c from x are also in Bk. Note that b1
2(i− δ/k)c is

Θ(i) therefore there are Θ(id−1) points at distance b1
2(i− δ/k)c from x. How many of them are
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Figure 2: The bold line indicates points which
are in Bk and are exactly distance i from ~0.

of distance i from ~0? All the points of equal distance from x are evenly divided between the 2d

quadrants of the ball around x. It follows that a 2−d = Θ(1) fraction of them are at distance i from
~0, which concludes the proof of Claim 2.5. Figure 2 illustrates these calculations.

Proof of Lemma 2.4. Claim 2.5 analyzed the case of a single NoN hop. Each hop (whether NoN
or Greedy) examines edges towards the target, and eventually takes the edge (or two edges) which
covers the longest distance. Therefore the portion of the graph that was encountered on previous
hops is disjoint from the portion of the graph encountered in the current hop. In other words, the
length of each hop is a random variable which depends only on the distance from the target and
is independent from previous hops. Therefore we can use Claim 2.5 iteratively: set k = log1/4 n,
the probability the distance is reduced by a factor of 1 − 1

(logn)1/4
is 1 − 1

logε n . This means that

o(log n/ log log n) steps, each reduces the distance by 1− 1
(logn)1/4

, would route the message to the

destination. We prove this occurs with probability 1 − 1
n3 using the following argument: Let Xi

be the random Bernoulli variable indicating whether the ith NoN-hop have failed in reducing the
distance by a factor of 1 − 1

(logn)1/4
. We know that Pr[Xi = 1] ≤ 1

logε n . Now assume that the
variable Xi is simulated by tossing ε log log n fair coins and setting Xi = 1 if all coins turned up to
be 1. Now we have c log n fair coins, and if less than 3

4 of the coins turned up to be 1 the algorithm
will not fail. The standard Chernoff bound [10] shows there is a constant c such that this happens
with probability at least 1− 1

n3 .

The proof of Theorem 2.2 is now completed by combining Lemma 2.3 which handled the first
phase of the routing, with Lemma 2.4 which handled the second phase of the routing.

Do People Use the NoN-GREEDY Algorithm in Social Networks?

Since the original motivation of analyzing small-world graphs was the modeling of social networks,
it is interesting to check whether people use the NoN-greedy algorithm when they navigate in
a social network. Recently Dodds et al [13] repeated the famous experiment of Milgram [31] in
which letters were passed between random nodes on a social network where edges corresponds to
say, an acquaintance known by first name. In the Dodds et al experiment participants were given
a target and were asked to forward an email to some person they were acquainted with. The goal
of forwarding was to ensure that the email would reach its destination quickly. The participants
were also asked to explain why they chose the person from among their set of acquaintances. It
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appears that in the first two steps of the “routing”, which are most meaningful, about 25% of the
people sent the message to a recipient for one of the following reasons:
1. The recipient was known to have traveled to the target’s geographical region.
2. The recipient’s family was known to have originated from the target’s geographical region.

Both reasons suggest that the recipient received the message based on who his/her (possible)
acquaintances were, and not on the individual characteristics of just the recipient. Other reasons,
such as – “the recipient has the same education as the target” – could be viewed both as greedy and
NoN-greedy steps. We can conclude that at least some of the time, the NoN-greedy algorithm
was used.

3 Small-World P2P Networks

In this section, we analyze NoN-greedy routing for various randomized P2P routing networks
which are related to the small world model and the small world percolation model discussed in the
previous Section. Skip Graphs, which are of a different flavor, are analyzed in Section 4. We begin
by defining these networks formally. For each of the following we assume there are n = 2` nodes
arranged on a circle.
o Randomized-Hypercube [9, 17]: The out-degree of each node is `. For each 1 ≤ i ≤ `, node

x makes a connection with node y defined as follows: The top i − 1 bits of y are identical to
those of x. The ith bit is flipped. Each of the remaining `−i bits is chosen uniformly at random.
Edges are directed. Out-degree is ` = log n.

o Randomized-Chord [41, 17]: Node x makes ` connections as follows: Let r(i) denote an
integer chosen uniformly at random from the interval [0, 2i). Then for each 0 ≤ i < `, node x
creates an edge with node (x + 2i + r(i)) mod n. Edges are directed. Each node has out-degree
` = log n.

o Symphony [28, 4]: Node x establishes a short-distance edge with node (x + 1) mod n. Node
x also establishes k ≥ 1 long-distance edges as follows: For each edge, node x first draws a
random number r from the probability distribution p(x) = 1/(x lnn) where x ∈ [1, n] and then
establishes a link with node dx + re mod n. Edges are directed. The resulting graph is thus a
multi-graph node x could be connected to y by more than one edge. The out-degree of each
node is k + 1.
Symphony with k = 1 is identical to Kleinberg’s construction [23] in one dimension. Randomized-

Hypercube and randomized-Chord are structurally similar to small-world percolation networks with
d = 1 (see Definition 2.1). An important distinction is that the out-degree for each of the P2P
routing networks is fixed.

Some easy adaptations of Lemma 2.3 and 2.4 could be used to prove the following theorem:

Theorem 3.1. Given two nodes s, t in a randomized-Chord or a randomized-Hypercube network
over n nodes, with probability at least 1− 1

n3 the NoN-greedy algorithm routes a message from s

to t in O( logn
log logn) hops, (the probability is taken over the configuration of the graph).

The Theorem implies that these P2P networks are degree optimal using NoN. In Section 5 we
show that Greedy routing takes Ω(log n), thus Greedy makes suboptimal routing decisions.
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In Symphony with out-degree k + 1 the expected path length found by greedy is Θ( log2 n
k ).

The following Theorem shows that NoN-greedy improves upon greedy.

Theorem 3.2. The expected number of hops taken by NoN-greedy to route between any two nodes
in Symphony is O

(
log2 n
k log k

)
, when 1 ≤ k ≤ log n and the expectation is over the formation of the

graph.

Theorem 3.2 means that NoN improves upon greedy for any degree. When the degree is
log n then NoN improves such that it is degree optimal w.h.p. Martel and Nguyen show that the
diameter of symphony for any constant k is O(log n), which means that for these values of k NoN
does not route along approximately shortest paths.

Proof. Consider node x that holds a message destined for node y lying clockwise distance d away.
It is proven in [28] that greedy routing takes O( logn log d

k ) hops. Therefore, if log d ≤ log n/ log k,
then the remaining distance can be covered by NoN (which is faster than plain greedy) in
O(log2 n/(k log k)) hops.

We now consider large d satisfying logn
log k < log d ≤ log n. Let r(d) = ck log d

logn where d is the

clockwise distance currently remaining and c is a constant that we will shortly fix. Since logn
log k <

d ≤ log n, we deduce that ck
log k < r(d) ≤ ck.

Lemma 3.3. Let E denote the event that the current node is able to diminish the remaining distance
from d to at most d

r(d) in (at most) two hops, then Pr[E ] is Ω( k
logn), independent of d.

Thus the expected number of nodes encountered before event E occurs is O( logn
k ). Since ck

log k <

r(d), there can be at most O( logn
log k ) such events for a total of O( log2 n

(k log k ) hops. When d becomes small

enough to satisfy log d < logn
log k , plain greedy routing will take at most O( log2 n

k log k ) hops. Summing

the two, the total number of hops is O( log2 n
k log k ). Thus it only remains to prove Lemma 3.3.

Proof that Pr[E ] is Ω( k
logn): Denote by B(x) the number of nodes connected by an edge to x

which are at a clockwise distance of at most d away. By the definition of Symphony it holds that
E[B(x)] ≥ k log d

logn . Let d′ = dd(1− 1
r(d))e. Let ψ denote the event that such a node has a link in

clockwise distance [d′, d] from x. Since ψ is independent from B(x) and Pr[E ] is monotone in B(x)
we have that overall, the probability that one or more of these nodes has a link in distance [d′, d]
from x is:

Pr[E ] ≥ 1− (1− Pr[ψ])
k log d
2 logn · Pr

[
B(x) ≥ k log d

2 log n

]
(1)

We handle each element in (1) separately. B(x) is the sum of k Bernoulli variables, each with
success probability log d

logn ≥
1
k . By Chernoff’s bound (e.g [18]) we have:

Pr
[
B(x) ≤ k log d

2 log n

]
≤ exp(−1

8
E2[B(x)]) ≤ e−

1
8

Next we show that Pr[ψ] is Ω( k
r(d) logn). Recall that ψ denotes the probability that node x or

one of its neighbors has a link in distance [d′, d] where d′ = dd(1− 1
r(d))e. According the definition
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of Symphony, the probability node x or one of its neighbors does not have a link in distance [d′, d]
is

Pr[ψ] ≤

1−
log( r(d)

r(d)−1)

log n

k

≤

(
1−

log(1 + 1
r(d))

log n

)k
≤
(

1− 1
2r(d) log n

)k
≤ e

− k
2r(d) logn

In the third inequality we used the fact that log(1 + 1
r(d)) ≤

1
2r(d) . We have:

Pr[ψ] ≥ 1− e
− k

2r(d) logn ≥ c′k

r(d) log n

for some constant c′. Now all that remains is to substitute in (1). We had defined r(d) = ck log d
logn .

We set c ≥ c′ which ensures that

c′k

r(d) log n
· k log d

log n
≤ k

log n
≤ 1.

Using the fact that 1− (1− x)t ≥ xt/2 if x ∈ (0, 1) and xt ≤ 1, we deduce that

Pr[E ] ≥ c′k2 log d
2r(d) log2 n

.

Substituting r(d) = c′k log d
logn , we get Pr[E ] is Ω( k

logn) as needed. This completes the proof of
Lemma 3.3 and thus of Theorem 3.2.

4 Skip Graphs

In this section, we analyze NoN-greedy routing in skip-graphs [5] and SkipNets [20], which adapt
skip-lists [36] for creating a randomized P2P routing network2. We follow the description in [5].

4.1 A Brief Review of Skip Graphs

In a skip graph, each node represents a resource to be searched. Node x holds two fields: the first is
a key, which is arbitrary and may be the resource name. Nodes are ordered according to their keys.
We assume for notational convenience that the keys are the integers 1, 2, . . . , n; as the keys have no
function in the construction other than to provide an ordering and a target for searches there is no
loss of generality. The second field is a membership vector m(x) which is for convenience treated
as an infinite string of random bits chosen independently by each node; in practice, it is enough to
generate an O(log n)-bit prefix of this string with overwhelming probability.

The nodes are ordered lexicographically by their keys in a circular doubly-linked list Sε so that
node i is connected to i − 1 mod n and i + 1 mod n. For each finite bit-vector σ, an additional
circular doubly-linked list Sσ is constructed by taking all nodes whose membership vectors have σ
as a prefix, and linking adjacent nodes in the lexicographic key order. More formally, let m(x)k be

2There are some differences between the two suggestions, but essentially they are the same, and our results apply
for both.
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the restriction of m(x) to its first k bits; then nodes x < y are connected by an edge if there exists
some k such that m(x)k = m(y)k, and either (a) m(z)k 6= m(x)k for each z between x and y, or
(b) m(z)k 6= m(x)k for all z > x and all z < y. In such case we say the edge (x, y) corresponds to
a prefix of length k. Note that the cycle edges could be seen as corresponding to the empty prefix.

In analyzing a skip graph as a graph, we treat each pair of links as a single undirected edge,
and take the union of the resulting edge sets for all lists Sσ.

The main merit of skip-graphs is the following: edges do not depend on the keys themselves
but rather on their ordering and the random vectors. Thus the keys may be arbitrary and can
carry semantic meaning. Furthermore, since the nodes are ordered by their keys, the skip-graph
data structure supports prefix search. This is in stark contrast with the other networks we discuss,
which require that keys be random.

Claim 4.1. Let x, y be two nodes such that x < y. The probability there exists a (clockwise) edge
(y, x) is Θ( 1

y−x).

Proof. Denote by y ∼ x the event that (y, x) is an edge. The probability (x, y) is an edge which
corresponds to a prefix of length k is 2−k · (1 − 2−k)|x−y|−1. Setting k = blog(y − x)c we have
Pr[y ∼ x] ∈ Ω( 1

y−x). On the other hand:

Pr[y ∼ x] ≤
∑
k

2−k · (1− 2−k)(y−x)−1 ∈ O
(

1
y − x

)

The claim above implies that the expected degree of each node is about log n. It is easy to see
that w.h.p. the maximum degree in the graph is logarithmic: With high probability all prefixes of
length 3 log n are different, therefore all the edges in the graph correspond to prefixes of length at
most 3 log n.

4.2 Routing in Skip Graphs

The routing algorithm suggested in [5], [20] routes the message using the longest prefix of m(x)
possible, without overshooting the target. In other words it is a greedy algorithm which moves the
message as close to the target as possible without overshooting, and routes in O(log n) hops on
expectation3. We improve this routing by showing in Theorem 4.2 that the NoN-Greedy algorithm
routes in O(log n/ log log n) hops w.h.p, and by showing in Theorem 5.1 that the Greedy algorithm
needs Ω(log n) time to route. Each NoN hop considers paths of two edges and routes the message
as close as possible to the target without overshooting it. That is, assuming the target node is 0, at
each hop the algorithm routes the message to the neighbor of neighbor with the smallest positive
id4. Since the target node is set to 0 we abuse notation slightly and let a node’s key indicate its
distance from the target.

Theorem 4.2. Let s be some node in a skip graph of n nodes, with probability 1 − 1
n2 the NoN

algorithm finds a path between node s and node 0 of length O( logn
log logn), where the probability is taken

over the choices of membership vectors.
3A high probability bound can be easily derived using the machinery introduced in this section.
4For notational convenience we assume that the routing is always done in the clockwise direction.
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Given the low probability of failure, Theorem 4.2 implies that with high probability all nodes
are connected to node 0 via a short path:

Corollary 4.3. With probability at least 1 − 1
n the diameter of a skip-graph with n nodes is

O( logn
log logn), where the probability is taken over the choices of membership vectors.

The proof of Theorem 4.2 is rather technical, though the outline is similar to that of percolation
small world graphs. The proof is divided into two parts. In the first we show that with high
probability the message reaches quickly a distance of exp(

√
log n) from the target and in the second

part we show that with high probability all nodes of distance at most exp(
√

log n) are connected
to the target through short chains. We need to re-prove Lemmas 2.3 and 2.4 and deal with the
dependencies created by the properties of skip graphs.

4.2.1 The First Phase of the Routing

Let Xm be the point the NoN algorithm reached after performing m NoN hops. Since the target is
0, Xm also represents the distance from the target. X0 = s is the starting point. The following is
a restatement of Lemma 2.3 for the case of skip graphs.

Lemma 4.4. There exists a constant c such that for m ≥ c( logn
log logn) with probability at least 1− 1

n2

it holds that Xm ≤ exp(
√

log n).

The general outline of the proof follows that of Lemma 2.3 in [11]. Our goal is to show that each
NoN hop the distance to the target reduces by some poly-logarithmic factor. The main source of
technical difficulty in skip graphs is that the probability of a hop of a certain length depends upon
all the hops taken so far. In other words the value Pr[Xr ≤ Xr−1

(logn)1/4
] is now a random variable

whose distribution depends upon r and the membership vectors sampled in the segment [s,Xr−1].
Fix some 1 ≤ r ≤ m. It is sufficient to prove the following lemma:

Lemma 4.5. Denote by Er the event that Pr[Xr ≤ Xr−1

(logn)1/4
] ≥ 1− c√

logn
. There exists a constant

c such that Pr[Er] ≥ 1− 1
n3

Before proving Lemma 4.5 lets see why it derives Lemma 4.4. With probability 1− 1
n3 the event

Er holds, so with probability greater than 1− 1
n2 the event Er holds for every r, i.e. all through the

path. Call a NoN hop successful if it reduces the distance to 0 by a factor of (log n)−1/4. It holds
that 4 logn

log logn successful hops suffice to bring the message to a distance of exp(
√

log n). The previous
discussion implies that with high probability each NoN hop along the path is not successful with
probability at most c log−1/2 n. Therefore we can simulate the process in the following way: for
each hop we toss 1

2 log log n + log c fair coins, and the hop fails if all of them turn out successful.
As seen in the proof of Lemma 2.4, for large enough m, with probability 1 − 1

n2 there would be
4 logn

log logn successful NoN hops within the first m logn
log logn attempts.

Proof of Lemma 4.5. Our goal is to use the same outline as in [11]: Assume the current node
is x (i.e. Xr−1 = x). The proof has two components. First we show that with sufficiently high
probability x has Ω(log x) neighbors in [x−1, 0], then we show that with sufficiently high probability
one of these neighbors is part of a successful NoN step.

Before we do that however we need to build the machinery that will help us deal with the
dependencies. The main problem is that conditioning on the path taken so far, the membership
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vectors in the segment [x− 1, 0] are not drawn from the uniform distribution. To see this consider
for instance the case that for some y ∈ [x − 1, 0] it holds that m(y)k = m(s)k for large k, then
the edge (s, y) would exist and the NoN path starting at s would bypass x altogether. In other
words the conditioning that Xr = x affects the distribution of membership vectors in the segment
[x− 1, 0]. We conclude that for every choice of membership vectors in the segment [n, x] there is a
set of vectors Fx ⊆ {0, 1}∗ such that the following two conditions hold:

i If a node y ∈ [x−1, 0] has m(y) ∈ Fx then there would be an edge from some node in [n, x+1]
to y that would cause the NoN path from s to 0 to bypass node x.

ii If all nodes in [x− 1, 0] have their membership vectors drawn from {0, 1}∗ \ Fx then node x
would belong to the NoN path starting from s.

It holds therefore that when conditioning on the path taken so far, the membership vectors in
[x− 1, 0] are drawn uniformly and independently from {0, 1}∗ \ Fx.

Denote by µ(Fx) the measure of Fx, i.e. the probability a random membership vector falls
within Fx. Note that every choice of membership vectors for the nodes [n, x] defines a path to x
and a set Fx, so µ(Fx) is a random variable determined by the membership vectors in [n, x]. Our
goal now is to show that with high probability µ(Fx) is small. For every 0 ≤ α ≤ 1 we have:

Pr[µ(Fx) ≥ α | Xr−1 = x] ≤ Pr[Xr−1 = x | µ(Fx) ≥ α]
Pr[Xr−1 = x]

.

For {Xr−1 = x} to occur all vectors in [0, x− 1] must be outside Fx, therefore for every 0 ≤ α ≤ 1
it holds:

Pr[Xr−1 = x |µ(Fx) ≥ α] ≤ (1− α)x

Let Sr−1 ⊆ [0, n] denote the set of nodes such that Pr[Xr−1 = x] ≥ 1
n3 . The event that x 6∈ Sr−1 is

negligible. For every x ∈ Sr−1 we have:

Pr[µ(Fx) > α | Xr−1 = x] ≤ n3(1− α)x (2)

Setting α = 4 logn
x we have that with probability ≥ 1 − 1

n3 , it holds that µ(FXr−1) ≤
4 logn
x .

Denote by A the high probability event that x ∈ Sr−1 and µ(FXr−1) ≤
4 logn
x .

Now all that remains is to show that the occurrence of A implies the occurrence of Er. First we
show that the occurrence of A implies that the distribution of membership vectors in [x − 1, 0] is
almost uniform.

For a prefix ψ ∈ {0, 1}k denote by bψ the probability a random and uniform vector in {0, 1}∗
falls in Fx conditioned on its prefix being ψ (i.e. if u is sampled uniformly from {0, 1}∗ then
bψ = Pr[u ∈ Fx|m(u)k = ψ]). Denote by wψ the probability a random vector in {0, 1}∗ \ Fx has
ψ as a prefix, i.e. wψ is the probability ψ is a prefix in the conditional distribution of vectors in
[x− 1, 0].

Claim 4.6. For every integer k > 0 ∑
ψ∈{0,1}k

bψ = µ(Fx) · 2k (3)

1− bψ
2k

≤ wψ ≤
1

2k(1− µ(Fx))
(4)
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Proof. Let u be a vector sampled uniformly in {0, 1}∗. Equation (3) follows since:

µ(Fx) = Pr[u ∈ Fx] =
∑

ψ∈{0,1}k
Pr[u ∈ Fx | m(u)k = ψ] Pr[m(u)k = ψ] = 2−k

∑
ψ∈{0,1}k

bψ

The first inequality in Equation (4) follows since 1−bψ
2k

is the probability a single sample from
{0, 1}∗ has ψ as a prefix and falls outside Fx. The second inequality holds since 1

2k(1−µ(F))
is the

normalized probability after removing a measure µ(Fx).

We are now set to prove the claims needed for the proof of Lemma 4.5.

Lemma 4.7. Let B(x) be the number of nodes in [0, x − 1] which are connected to x by an edge
corresponding to a prefix of length at most 1

10 log x.

Pr
[
B(x) ≥ 1

100
log x

∣∣∣A] ≥ 1− 1√
log n

Proof. First note that for every k ≤ log( 1
µ(Fx))− 2 Claim 4.6 implies that

∑
bψ ≤ 1

4 and therefore
for every ψ ∈ {0, 1}k it holds that

3
4
· 1
2k

≤ wψ ≤
5
4
· 1
2k

Next we claim that with high probability there is a series of nodes y1 > y2 > . . . > y1/10 log x

where yk is the largest node in [x − 1, 0] such that m(yk)k = m(x)k for 1 ≤ k ≤ 1
10 log x. We toss

the membership vectors in [x− 1, 0] one by one from m(x− 1) to m(0) finding the yi’s one by one.
In other words - consider a series of independent geometric random variables g1, g2, . . . where the
parameter of gi is the probability a vector shares a prefix of length i withm(x). Since we conditioned
on µ(F) being small, by the previous discussion the success probability of gi is at least 3

42−i. Each gi
is repeatedly tossed until there is a success, in which case gi+1 is tossed and so on. On expectation,
the number of attempts needed until g1/10 log x succeeds is at most

∑1/10 log x
i=1 2i+1 ≤ 4x1/10. We have

x tosses at our disposal so by Markov’s inequality, with probability greater than 1 − 4x−
9
10 there

is a series of nodes y1, y2, . . . , y 1
10

log x such that m(x)k = m(yk)k. Typically it is not the case that
all these nodes are neighbors of x. If for some j < i it holds that m(x)i = m(yj)i then yi is not a
neighbor of x. It holds however that

Pr[m(y)i+1 = m(x)i+1|m(y)i = m(x)i] ≤
3
42−(i+1)

5
42−i

=
5
6

It follows then that each yi is a neighbor of x with probability at least 1
6 and independently from

all other yi’s. So on expectation at most 1
6 of the yi’s are neighbors of x. By Chernoff’s bound, the

probability less than 1
10 of the yi’s are connected to x is at most e−ε log x, where ε is some constant.

Now, since log x ≥
√

log n we conclude that with probability greater than 1− eε
√

logn > 1− 1√
logn

it holds that B(x) ≥ 1
100 log x.

We continue with the proof of Lemma 4.5. recall that y1, y2, . . . , ym are neighbors of x where
m ∈ Ω(log x) and each yi corresponds to a prefix of length at most 1

10 log x. It remains to show
that with probability 1 − 1√

logn
one of them has an edge towards [ x

log1/4 n
, 0]. Consider the first

log x bits of each m(yi).
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Claim 4.8. Let z be some node in [x− 1, 0]. Pr[yi ∼ z | A] ≥ 1
40x where the edge corresponds to a

prefix of length blog xc.

Proof. Let L ⊂ {0, 1}log x be vectors with m(yi)i as a prefix, so |L| ≥ x9/10. Now, according to
Claim 4.6 there are at least x9/10 − 4 log2 n prefixes ψ ∈ L such that 1

2x ≤ wψ ≤ 2
x . Denote by

yψ the probability that m(yi)log x = ψ. The same arguments show that for the vast majority of
vectors in L it holds that 1

2x9/10 ≤ yψ ≤ 2
x9/10 . So to conclude, in at least half of the prefixes in L

the conditioning on A changes the probability by a factor of at most 2. Now:

Pr[yi ∼ z | A] ≥
∑
ψ∈L

yψwψ(1− wψ)x ≥ 1
40x

Claim 4.8 implies that for every node z ∈ [ x
log1/4 n

, 0], the probability (yi, z) is an edge corre-
sponding to a prefix of length blog xc is Θ(1/x). Let Yi be the random variable indicating that yi is
connected to some node in[ x

log1/4 n
, 0] with an edge which corresponds to a prefix of length exactly

blog xc. There could be at most one such edge so

Pr[Yi] ≥
1

40 log1/4 n

For i 6= j it holds that Pr[Yi|Yj ] ≤ Pr[Yi]. The reason is that if Yj holds then m(yj)log x appears
in [ x

log1/4 n
, 0] and does not appear in [x, x

log1/4 n
], both events reduce the probability of Yi, and this

holds also when conditioning on A. In other words, the Yi|A are negatively correlated, so:

Pr[Y1 ∧ . . . ∧ Ym |A] ≤
Θ(log x)∏
i=1

(
1−Θ(log−1/4 n)

)
≤ exp(−Θ(log1/4 n)) ≤ 1√

log n

where in the second inequality we used the assumption that log x ≥
√

log n. Adding all the error
probabilities implies that given the high probability event A, the event Er holds, and as seen,
Lemma 4.5 implies Lemma 4.4.

4.2.2 Routing the Remaining Distance

For the second phase of the routing we basically re-prove Lemma 4.4 with different number crunch-
ing. Assume the Skip Graph contains e

√
n nodes and as before denote by Xi the location of the

NoN algorithm after i steps.

Lemma 4.9. There exists a constant c such that for m ≥ c( logn
log logn) with probability at least 1− 1

n2

it holds that Xm ≤ c( logn
log logn).

Proof. We use the same notation and mechanism of Lemma 4.4. Assume Xr−1 = x is the current
node. Note that x− 1 is always a neighbor of x, so it is enough to show that a greedy choice from
x− 1 would reduce the distance by a factor of 1− 1

log1/4 n
with probability 1− 1

logε n for some ε ≥ 0.
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Recall that Equation (2) states that Pr[µ(Fx) > α | Xr−1 = x] ≤ n3(1 − α)x. The Equation
implies that for every δ there exist c(δ) such If we assume that x ≥ c logn

log logn then Pr[µ(Fx) >
1− log−δ n | Xr−1 = x] ≤ 1

n3 . The exact value of δ would be set later on. As before we name this
high probability event A and condition on it to hold.

Denote by k = 0.8 log x. If k is not integer then take a coefficient slightly smaller than 0.8. As
before, for every prefix ψ of length k denote by wψ the probability that ψ is sampled condition on
the path taken so far. Now:

Pr
[
Xr ≤ (1− 1

log1/4 n
)x
∣∣ A] ≥ Pr

[
x− 1 ∼ y for some y ≤ (1− 1

log1/4 n
)x
]

≥
∑

ψ∈{0,1}k
wψ(1− wψ)

x

log1/4 n

(
1− (1− wψ)

(1− 1

log1/4 n
)
)

=
∑

ψ∈{0,1}k
wψ(1− wψ)

x

log1/4 n −
∑

ψ∈{0,1}k
wψ(1− wψ)x (5)

Our goal is to show that the sum in Equation (5) is at least 1 − 1
logε n . Claim 4.6 implies that

if A occurs then for every ψ ∈ {0, 1}k it holds that wψ ≤ logδ n
x0.8 . We deal with the two sums of

Equation (5) separately:

∑
ψ∈{0,1}k

wψ(1− wψ)
x

log1/4 n ≥ min{(1− wψ)
x

log1/4 n }

≥

(
1− logδ n

x0.8

) x

log1/4 n

≥ 1− 1
log1/25 n

for sufficiently small δ

The first inequality holds since
∑
wψ = 1. In the last inequality we used the assumption that

x > logn
log logn .

For the second part of Equation (5) we divide the sum into elements of small and big weight.
Denote by S all the elements ψ ∈ {0, 1}k such that wψ ≤ 1

x0.9 . There are at most x0.8 elements in
S therefore ∑

ψ∈S
wψ(1− wψ)x ≤ x0.8

x0.9
≤ 1

log1/25 n
.

On the other hand ∑
ψ 6∈S

wψ(1− wψ)x ≤ max
ψ 6∈S

{e−wψx} ≤ e−
x

x0.9 ≤ 1
log1/25 n

.

Now as before we have that O( log
log logn) distance reductions of factor 1 − 1

log1/4 n
are enough to

bring the path to a distance of O( log
log logn) from the target, and with probability greater than 1− 1

n2

this indeed happens within O(log n/ log log n) attempts.
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The remaining distance to the target could be covered by the cycle edges. Now the proof of
Theorem 4.2 is concluded by union bounding the error probabilities of Lemmata 4.4 and 4.9.

5 Lower Bounds

In this section we prove that in order to find a path between nodes at distance n, a routing
algorithm must either run in Ω(log n) time w.h.p (i.e. Ω(log n) hops), or must use additional
knowledge about the neighbor’s neighbors of a node. The lower bound holds for a model which
generalizes the greedy algorithm, thus it applies for a larger family of algorithms which includes
greedy. It holds both for small-world percolation networks and skip graphs.

A logarithmic lower bound of Ω(log2 n) for greedy routing in Kleinberg’s construction [23] in
one dimension was proved by Barrière et al [7]. Aspnes et al [4] extended the result to a larger
family of random graphs. They show that if the average degree is O(log n) then greedy routing
would take Ω(log n) hops on average. The proof however is limited to the case where the nodes are
set on a one dimensional line and the probability upon the edges has some symmetry assumptions
that do not apply to skip graphs. We show lower bounds for small-world percolation networks
and skip-graphs. Randomized-Chord, randomized-hypercube and Symphony are quite similar to
small-world percolation networks, and the proofs could be adapted for each of them.

5.1 A Probing Model

Assume that our goal is to find a path between two specific vertices distance n apart, say node 0
and node n. In order to do so, an algorithm must probe the vertices of the graph, where the probing
of a vertex reveals all the edges connected to it. Our lower bounds apply in a probing model, where
we bound the number of probes needed to find a path. Clearly, a lower bound on the number of
probes needed by the algorithm is a lower bound on the (sequential) time complexity of a routing
algorithm.

We define a 1−local algorithm to be a probing algorithm with the following properties:
1. The algorithm begins by probing the node 0.
2. The algorithm only probes nodes to which it has already established a path from 0.

The term local derives from the assumption that the algorithm starts at 0 and is only allowed
to probe nodes it has already reached. The term 1−local is used, since the probing of a node
reveals its neighborhood of radius 1, i.e. its neighbors. If it is assumed that a probe reveals
a neighborhood of radius k then the algorithm is termed k-local. Every routing algorithm which
relies on local information only, corresponds to a 1−local probing algorithm. The greedy algorithm
therefore is 1−local. The NoN-greedy algorithm could be viewed, following Theorems 2.2 and
4.2 as either a 2−local algorithm with O(log n/ log log n) probes w.h.p, or as a 1−local algorithm
having probing complexity of O(log2 n/ log log n). Other 1−local algorithms could be though of,
see for instance [24].

5.2 Lower Bounds in the Probing Model

Theorem 5.1. (i) In a skip graph - any 1-local algorithm that outputs a path between two nodes at
distance n, must probe Ω(log n) probes, with probability at least 1− 1

nε . In particular, the expected
number of probes is Ω(log n).
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(ii) In a d−dimensional small-world percolation network - any 1-local algorithm that outputs a path
between two nodes at distance n, must probe Ω(log n) probes, with probability at least 1 − 1

nε . In
particular, the expected number of probes is Ω(log n).

The theorem implies that if a node holds only its neighbors then any routing algorithm would
need Ω(log n) probes w.h.p. Thus the assumption that nodes have some knowledge of their neigh-
bor’s neighbors is essential.

We first argue that greedy dominates any other 1−local algorithm. The following lemma holds
both for skip graphs and small-world percolation networks.

Lemma 5.2. Let A be a 1−local algorithm . Denote by Ad, Gd the random variables representing
the number of probes it takes the algorithm A and the greedy algorithm respectively, to find a path
between two nodes at distance d. For all d > k > 0 it holds that Pr[Gd ≤ k] ≥ Pr[Ad ≤ k].

Proof. We distinguish between the two cases.

Small-World Percolation Networks For convenience, we label the target node as ~0, and
assume that the mesh is infinite. The trick is to give A some extra power. Assume that at some
step, the closest node to ~0 which A had found is at distance d from ~0, where the distance is
measured by the L1 norm. At this point, we grant A access to all nodes outside a ball of radius
d from ~0. Now if d1 > d2 then for every configuration of edges, every move A can do in case the
distance is d1, is also available when the distance is d2, so without loss of generality, for every k,
Pr[Ad1 ≤ k] ≤ Pr[Ad2 ≤ k]. In other words, for every k, Pr[Ad ≤ k] is monotonically decreasing in
d. The algorithm A samples some point v. The greedy choice is to sample a point closest 0, call
that point u. Let f(v) denote the the distance from ~0 of the neighbor of v which is closest to ~0.
Now

Pr[Ad ≤ k] =
∑
i<d

Pr[f(v) = i] · Pr[Ai ≤ k − 1]

Since ||u|| ≤ ||v|| it holds that for every i,
∑i

j=0 Pr[f(u) = j] ≥
∑i

j=0 Pr[f(v) = j]. Since Pr[Ad ≤ k]
is monotonically decreasing we have:∑

i

Pr[f(u) = i] Pr[Ai ≤ k − 1] ≥
∑
i

Pr[f(v) = i] Pr[Ai ≤ k − 1]

In other words, the best thing A can do is sample the greedy point, which implies that the greedy
algorithm dominates any other 1−local algorithm.

Skip Graphs The technique used in the previous section applies here as well. Now if at some
step the closest node to 0 which A had found is at distance d from 0 we supply to A both the
access and the membership vectors of all the nodes in the segment [n, d]. We need to handle some
dependencies. Denote by Md the membership vectors of this segment. Assume that A probes point
v and greedy probes point u. Using the notation of the previous section we have

Pr[(Ad ≤ k)|Md] =
d−1∑
i=0

Pr[(f(v) = i)|Md] · Pr[(Ai ≤ k − 1)|Md]

It is easy to see that for every instance of Md, it holds that Pr[f(v) = i|Md] ≤ Pr[f(u) = i|Md].
To see this consider prefixes of length k. If v does not have a neighbor corresponding to a prefix of
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length k within the segment [n, d] then the probability f(v) = i due to a prefix of length k is equal
to the probability f(u) = i due to a prefix of length k. If v does have a neighbor corresponding to
a prefix of length k in [n, d] then Pr[f(v) = i] < Pr[f(u) = i]. Conclude that

Pr[(Ad ≤ k)|Md] =
d−1∑
i=0

Pr[(f(v) = i) |Md] · Pr[(Ai ≤ k − 1) |Mi]

≤
d−1∑
i=0

Pr[(f(u) = i) |Md] · Pr[(Ai ≤ k − 1) |Mi]

which concludes the proof of the lemma.

It remains to lower bound the number of hops taken by the greedy algorithm. Assume as
before that the initial node is ||z|| = n and the destination is ~0. Divide the nodes of the graph into
sets B0, B1, . . . , Blogn according to their distance from ~0 (or L1 norm), such that Bi = {u|2i−1 ≤
||u|| < 2i}. So ~0 ∈ B0 and z ∈ Bdlogne. We slightly change the greedy algorithm thus: if the
algorithm reaches a node within a ball Bi it is granted access to all nodes with distance at least 2i−1

from 0, i.e. to all nodes in Bi, Bi+1, ..., Bn. When routing in a skip graph the algorithm is also given
the membership vectors of these nodes. The reason for this change is to cancel the dependencies on
previous hops, it may only reduce the number of hops greedy takes, since it allows the algorithm
a ‘free’ hop to the edge of the ball Bi. For each 0 ≤ i ≤ log n let Xi be the indicator of the event:
“The path taken by greedy includes at least one vertex in Bi”. Clearly the number of nodes in
the path is at least

∑logn
i=o Xi.

Lemma 5.3. Both for skip graphs and for small world graphs and for each i, it holds that

Pr[Xi = 1|Xi+1, Xi+2, . . . , Xlogn] ≥ c

for some constant c independent of n.

Before proving the lemma we show why it suffices to prove Theorem 5.1. Let Yi be a Bernoulli
variable with Pr[Yi = 1] = c. Now E[

∑
Yi] = c log n ≤ E[

∑
Xi]. Furthermore the random variable∑

Xi dominates the random variable
∑
yi. We have

Pr[
∑

Xi ≤
1
2
c log n] ≤ Pr[

∑
Yi ≤

1
2
c log n] ≤ 1

nε

according to Chernoff’s bounds.

Proof of Lemma 5.3. As before we distinguish between the two cases:

Small World Percolation Networks Assume that the values of Xi+1, . . . , Xlogn are already
set and that j is the smallest index such that Xj = 1. Since we changed the algorithm such that
when a ball Bi is reached all nodes in it are revealed, it is clear that Xi is independent from
Xj+1, Xj+2, . . . , Xlogn, it remains to analyze Pr[Xi = 1|Xi+1 = 0, Xi+2 = 0, . . . , Xj = 1]. Let y be
the node in Bj which is closest to 0, i.e. the node probed by greedy. The notation y ∼ Bi stands
for the event - ‘y is connected by an edge to Bi’. For convenience let B = ∪i−1

j=0Bj . All edges are
independent of each other. Therefore Pr[Xi = 1|Xi+1 = 0, Xi+2 = 0, . . . , Xj = 1] is the probability
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y is connected to Bi and is not connected to B0, B1, ..., Bi−1, conditioned on it being connected to
one of them. We need to compute:

Pr[y ∼ Bi ∧ y 6∼ B|y ∼ B ∪Bi] =
Pr[y ∼ Bi ∧ y 6∼ B]

Pr[y ∼ B ∪Bi]

=
Pr[y ∼ Bi] · Pr[y 6∼ B]

1− Pr[y 6∼ B] Pr[y 6∼ Bi]

It is easy to verify that Pr[y 6∼ B] ≥ Pr[y 6∼ Bi] and that Pr[y 6∼ B] ≥ ε for some constant ε.
We have:

Pr[y ∼ Bi] · Pr[y 6∼ B]
1− Pr[y 6∼ B] Pr[y 6∼ Bi]

≥ (1− Pr[y 6∼ Bi]) Pr[y 6∼ B]
(1− Pr[y 6∼ Bi])(1 + Pr[y 6∼ B])

≥ ε

1 + ε

Skip Graphs Here we have to deal with some dependencies. Let D denote the event that the
algorithm reached the node y (i.e. the segment Bj which contains y). As before we need to compute:

Pr[(y ∼ Bi ∧ y 6∼ B)|D]
Pr[y ∼ B ∪Bi|D]

The events {y ∼ Bi} and {y 6∼ B} are positively correlated, even when conditioned on D. So the
calculation of the previous section applies here as well.

6 Implementations of NoN

We ran simulations in which we compared the performance of the greedy algorithm and the
performance of the NoN-greedy algorithm. We constructed a skip graph of up to 217 nodes and
a small world percolation graph of up to 224 nodes. In a small world graph it is not necessary to
create the full graph in advance. Each time the message reached a node, we randomly created the
neighborhood of radius 2 around the node. This is a negligible compromise over the definition of
the model, since the edge in which the node was entered might not be sampled. This technique
allowed us to run simulations on much larger graphs. For each graph size we ran 150 executions.
A substantial improvement could be seen. Figures 3 and 4 demonstrate an improvement of about
48% for skip graphs of size 217 and an improvement of 34% for small world percolation graphs of
size 224. Figure 3 also depicts the average shortest path in the graph. We see that the shortest
paths may be 30% shorter than the paths found by NoN, yet even for moderate network sizes, the
NoN algorithm performs substantially better than then Greedy.

An even more impressive improvement could be seen when the size of the graph is fixed and
the average degree changes. We fixed a small world percolation graph of size 220. After that we
deleted each edge with a fixed probability which varied from 0 to 0.9 (a graph with roughly one
tenth of the edges). Figure 5 depicts the results of these simulations. It shows that the reduction
in the number of hops is more or less independent from the number of edges. The path length
achieved by the greedy algorithm when the degree is 26 is achieved by the NoN algorithm when
the degree is merely 12. In the case of skip graphs we ran the simulation for a graph of size 217 and
varied the size of the alphabet of the membership vectors. When the alphabet size is s the average
degree is O(logs n). We can see in Figure 5 that NoN with alphabet size 20 is better than Greedy
with alphabet size 2, i.e. when the average degree is log2 20 ' 4.3 bigger.

20



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
9

10
11
12
13
14

log nGreedy
NoN - Greedy
Shortest Paths

Skip Graphs

Figure 3: The number of hops in skip graphs.
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Figure 4: The number of hops in a small world percolation graphs of dimensions 1, 2.
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6.1 A different Implementation

The algorithm presented in Figure 1 is somewhat unnatural. Each NoN step has two phases. In the
first phase the message is sent to a neighbor whose neighbor is close to the target. In the second
phase a greedy step is taken (i.e. the message moves to the neighbor of neighbor). A 1−phase
implementation would let each node initiate a NoN step again, i.e. each node upon receiving a
message, finds the closest neighbor of neighbor, and passes the message on. This variant is harder
to analyze, indeed Theorem 4.2 holds for the 2−phase version only. Yet, as Figure 6 shows, in
practice the two variants have basically the same performance.
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Figure 6: Comparison between the two variants of NoN
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6.2 System Issues with NoN-greedy

An implementation of the NoN-greedy algorithm in a P2P network necessitates that each node
acquire knowledge of its neighbor’s neighbors. At first glance, it might appear that maintenance of
such knowledge is problematic since it is tantamount to squaring the degree of the graph and there-
fore, squaring the size of the routing table at each node. However, it is important to note that the
bottleneck in the system is actually the run-time cost of maintaining the TCP links between nodes.
This cost remains unchanged, irrespective of which routing protocol we use: greedy or NoN-
greedy. The primary concern in implementing NoN-greedy is the amount of communication-
overhead needed to keep the neighbor-of-neighbor lists (reasonably) up-to-date. Updates could be
piggy-backed on top of maintenance messages (the “keep-alive” messages). Moreover, the neighbor-
of-neighbor information at a node does not have to be perfectly up-to-date at all times to derive
the benefits of NoN-greedy routing, as could be seen in the next Section.

In the following we analyze more carefully the amount of communication needed in order to
keep the routing lists up-to-date. The execution NoN requires that nodes should update each other
regarding their own lists of neighbors. Such an update occurs in two scenarios:

1. Each node upon entrance sends its list of neighbors to its neighbors.
2. Whenever a node encounters a change in its neighbor list (due to the entrance or exit of a

node), it should update its neighbors.

The extra communication imposed by these updates is not heavy due to the two following reasons.
First, assume nodes u, v are neighbors. Node u periodically checks that v is alive (for instance
by pinging it). Checking whether v’s neighbor list has changed could be piggy-backed on the
maintenance protocol by letting v send a hash of its neighbor list. A possible hash function may be
MD5 (though the cryptographic properties of this hash function are not needed). Another possibility
is simply to treat the id of neighbors as coefficients of a polynomial, and evaluate this polynomial
at a random point. Either way the actual cost in communication is very small. When an actual
update occurs there is no reason for v to send its entire neighbor list. It may only send the part of
it which u misses. If it does not know which part it is then u, v may participate in a very fast and
communication efficient protocol that reconciles the two sets, see e.g. [32] for details. The second
reason the communication overhead is small is that the the actual updates are not urgent (as the
next section will show) and may be done when the system is not busy.

It is important to notice that the implementation of the NoN algorithm does not affect the
Join/Leave operations - the needed updates are passe only after the node enters the system. We
conclude that implementing NoN has little cost both in communication complexity and in internal
running time. It is almost a free tweak that improves performance considerably and may be
implemented on top of existing constructions.

6.3 Fault Tolerance

The previous simulations assumed that the list of neighbor’s neighbors each node holds is always
correct. In reality this might not be the case. We examine two scenarios which capture the two
extremes of this problem.
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Optimistic Scenario: In this case we assume that a node knows whether its neighbors of neigh-
bors lists are up-to-date or not. Whenever a node has a stale list it avoids a NoN hop and performs
instead a greedy step based on its own neighbors list. We ran simulations in which each node
performs with probability 1

2 a NoN step, and with probability 1
2 a greedy step. Whenever a NoN

step is performed, both phases of it are performed correctly. Figures 4 and 7 show that the total
performance is hardly compromised. A small world of size 222 suffered a relative delay of less than
one hop, A skip graph of size 217 suffers a relative delay of 1.2 hops. But why is the optimistic
scenario justified? Our suggestion is that each node would calculate a hash of its neighbors list.
This hash would be sent to all its neighbors on top of the maintenance messages. Thus with a
minuscule overhead in communication each node would know whether its lists are up-to-date.
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Figure 7: Optimistic fault tolerance in Skip
Graphs
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Figure 8: Pessimistic Fault Tolerance in Perco-
lation Small World

Pessimistic Scenario: In this scenario we assume that a node is unaware that its neighbor’s
neighbors lists are not up-to-date. So when node u passes a message to node w expecting it to
move on to node z, with probability 1

2 the edge (w, z) no longer exists. We tested two variants:
in the first one, whenever this occurs the intermediate node w performs a greedy step. In the
second variant the intermediate node w initiates another NoN step. The results of the simulations
appear in Figure 8. It could be seen that in the pessimistic scenario, the performance of NoN is
approximately the same as the Greedy algorithm.

We conclude that the NoN-greedy algorithm is beneficia even if the neighbor of neighbor lists
are error prone.

7 Discussion

Randomization Reduces Latency: A common strategy in the design of P2P routing networks
is to first identify a static graph which is known to possess good properties, and then to adapt the
static graph topology to handle the dynamism (arrival/departure of nodes) and scale (changes in
the average number of nodes). The resulting dynamic routing network resembles the underlying

24



static graph closely. In the case of skip graphs, a ‘perfect’ skip graph has the ith edge of each node
cover a distance of 2i, i.e., the lengths of edges of a node form a geometric series. The randomization
involved in the dynamic construction is usually considered as a negative by-product and much effort
is put in reducing it. For instance, a deterministic P2P routing network that guarantees that the
skip graph is almost ‘perfect’ is presented in [19]. As was noticed by Harvey et al [20], a perfect
skip graph is similar to Chord [39]. The average length of shortest paths in both Chord (studied
in [16]) and hypercubes is Ω(log n). Xu et al [40] proves that if edges are added to the cycle
deterministically such that the existence of an edge (x, y) is a function of |x− y| (and not say x, y
themselves), then the diameter of a network of degree log n is bounded by Ω(log n). This leads to
the following counter-intuitive and surprising fact:

Randomization of edges reduces the average length of shortest paths in the hypercubes, Chord
and Skip Graphs.

The reason is that the randomization enables a routing algorithm to use an ‘exceptionally’ long
edge once in a while. The density of these long edges is just large enough so that the NoN-Greedy
algorithm finds them. In a ‘perfect’ skip graph, Chord, and in the hypercube - these long edges do
not exist. Our results show that safety has a price: while these network topologies have guaranteed
worst-case route-lengths, they enlarge the expected length of routes.
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