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Abstract. In this paper, we establish max-flow min-cut theorems for several important classes of
multicommodity flow problems. In particular, we show that for any n-node multicommodity flow
problem with uniform demands, the max-flow for the problem is within an O(log n) factor of the
upper bound implied by the min-cut. The result (which is existentially optimal) establishes an
important analogue of the famous 1-commodity max-flow min-cut theorem for problems with
multiple commodities. The result also has substantial applications to the field of approximation
algorithms. For example, we use the flow result to design the first polynomial-time (polylog
n-times-optimal) approximation algorithms for well-known NP-hard optimization problems such as
graph partitioning, min-cut linear arrangement, crossing number, VLSI layout, and minimum
feedback arc set. Applications of the flow results to path routing problems, network reconfiguration,
communication in distributed networks, scientific computing and rapidly mixing Markov chains are
also described in the paper.
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1. Introduction

In this paper, we study the relationship between the maximum flow and the
minimum cut in multicommodity flow problems. Our research is motivated in
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part by the seminal work of Ford and Fulkerson [1956], which showed that for
1-commodity flow problems, the max-flow and min-cut are always equal.

1.1. SINGLE COMMODITY FLOW PROBLEMS. In a 1-commodity flow problem,
there is an underlying network with n nodes V and m edges E. Each edge e [ E
is provided with a nonnegative capacity C(e), which represents the maximum
amount of flow that can pass through the edge. (Unless otherwise stated, we
assume that edges are undirected, in which case flow can pass through edges in
either direction.) One of the nodes is designated as the source s and one as the
sink t . The objective is to route as much flow as possible from the source to the
sink without violating the capacity of any edge. The maximum amount of flow
that can be so routed is called the max-flow.1 The min-cut is the minimum
amount of capacity that needs to be removed from the network in order to
disconnect the source from the sink. More formally, the min-cut is

min
{U,V us[U ,t[U# }

O
e[^U ,U# &

C~e!

where U is any subset of V that contains the source but not the sink, U# 5 V 2 U
is the set of nodes not in U, and ^U, U# & denotes the set of edges that link a node
in U to a node in U# . (The set of edges from any set U to U# is referred to as a cut
of the network since the removal of those edges separates U from the rest of the
network.)

It is easy to see that the min-cut of a 1-commodity flow problem is always an
upper bound on the max-flow. This is because for any U # V that contains the
source but not the sink, all flow from s to t must be routed through edges in
^U, U# &. Hence, the total flow is limited by the capacity in the min-cut. For
example, see Figure 1. Showing that the min-cut bound is always achievable (i.e.,
that the max-flow equals the min-cut) is more difficult and remains as one of the
earliest and most important advances in the field of algorithm design [Ford and
Fulkerson 1956].

1.2. MULTICOMMODITY FLOW PROBLEMS. In a multicommodity flow problem,
there are k $ 1 commodities, each with its own source si, sink t i, and demand
Di. The objective is to simultaneously route Di units of commodity i from si to t i

for each i so that the total amount of all commodities passing through any edge
is no greater than its capacity. (In the case of undirected edges, the sum of the
flows in both directions cannot exceed the capacity of the edge.) For example, a
solution to a 2-commodity flow problem is illustrated in Figure 2.

More generally, it is often useful to maximize the amount of flow that can be
routed for each commodity. Because of the shared capacity constraints and the

1 For a formal definition of max-flow, see Tarjan [1983].

FIG. 1. A 1-commodity flow problem (a) for which the min-cut (b) and max-flow (c) are both 3.

788 T. LEIGHTON AND S. RAO



multiplicity of commodities, there are several ways that one can define the
max-flow for a multicommodity flow problem. In this paper, we will concentrate
on a normalized definition of max-flow (known as concurrent max-flow) wherein
we attempt to maximize a common fraction f of each commodity that is routed.
In other words, the max-flow for a multicommodity flow problem is defined to be
the maximum value of f such that fDi units of commodity i can be simultaneously
routed for each i without violating any capacity constraints. (For example, the
max-flow for the 2-commodity flow problem in Figure 2 is one.) This commonly-
used definition provides for a “fairness” property that ensures that proportionally
more of one commodity will not be routed at the expense of another. The
definition is also representative of other definitions in the sense that several of
the techniques that we will derive in conjunction with our definition can also be
used with alternative definitions.

The min-cut (a.k.a. sparsest cut 6) of a (undirected) multicommodity flow
problem is defined to be the minimum over all cuts of the ratio of the capacity of
the cut to the demand of the cut. More formally, the min-cut is

6 5 min
U#V

C~U , U# !

D~U, U# !
,

where

C~U, U# ! 5 O
e[^U ,U# &

C~e!

is the sum of capacities of the edges linking U to U# and

D~U, U# ! 5 O
{i usi[U`t i[U# or t i[U`si[U# }

Di

is the sum of the demands whose source and sink are on opposite sides of the cut
that separates U from U# . For example, the min-cut of the flow problem shown in
Figure 2 is one. (Without loss of generality, we assume that the underlying graph
is connected so that C(U, U# ) . 0 for all U.)

It is not difficult to check that the definition of the min-cut for a multicom-
modity flow problem is a generalization of the definition given earlier in the
special case of one commodity (where we assume that the demand of the single
commodity is one without loss of generality). It is also not difficult to check that
the max-flow is always upper bounded by the min-cut for any multicommodity

FIG. 2. Solution to a 2-commodity flow problem (a) in which all edge capacities are 1. The routing
of the first commodity is shown in (b) and the second commodity is shown in (c).
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flow problem. To see why, let i1, i2, . . . , ir denote the commodities whose
source and sink are separated by some cut ^U, U# &. Since all flow for these
commodities must cross the cut ^U, U# &, we know that

O
j51

r

fDij
# C~U, U# ! .

Since

O
j51

r

Dij
5 D~U , U# ! ,

this means that

f #
C~U, U# !

D~U, U# !

and that the max-flow is upper bounded by the min-cut.

1.3. PRIOR WORK ON MAX-FLOWS AND MIN-CUTS FOR MULTICOMMODITY

FLOW PROBLEMS. The relationship between the max-flow and min-cut of a
multicommodity flow problem has been the subject of substantial interest since
Ford and Fulkerson’s famous result for 1-commodity flows. Hu [1963] showed
that the max-flow and min-cut are always equal in the case of two commodities.
More generally, by combining results of Lomonosov [1985] and Papernov [1990],
Schrijver [1990] showed that if the graph formed by the set of demands (i.e., the
graph with edges {si, t i}) does not contain either three disjoint edges or a
triangle and a disjoint edge, then the max-flow and min-cut are equal. The
max-flow and min-cut are also known to be equal or near-equal for certain
special types of flows in planar graphs (see Frank [1990] and Schrijver [1990] for
a survey of such results).

In the case when there is a commodity for every pair of nodes and all demands
are equal, Shahrokhi and Matula [1990] proved that the max-flow and min-cut
are equal provided that the dual of the flow problem satisfies a certain cut
condition (namely, that the edges with nonzero length in the dual form a cut of
the underlying graph into three or fewer components). They also used informa-
tion contained in the dual to design heuristics for finding small cuts in graphs.

The max-flow and min-cut are not always equal for all patterns or numbers of
commodities, however. For example, Figure 3 illustrates a simple 4-commodity
flow problem described in Okamura and Seymour [1981] for which the max-flow
is 3/4 and the min-cut is 1.

For general networks, little was known about the relationship between the
max-flow and the min-cut. In fact, for general networks, it was known only that
the max-flow is within a factor of k of the min-cut since each commodity can be
optimized separately using 1/k of the capacity of each edge. Unfortunately, this
result is not very good for large numbers of commodities.

1.4. OUR MAX-FLOW MIN-CUT RESULTS. In this paper, we establish a much
tighter relationship between the max-flow and the min-cut for several important
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classes of multicommodity flow problems. For the most part, we focus our
attention on a special kind of flow problem that we call the uniform multicom-
modity flow problem. In a uniform multicommodity flow problem (UMFP), there
is a commodity for every pair of nodes and the demand for every commodity is
the same. (Without loss of generality, the demand for every commodity is set to
one.)2 The underlying network and capacities are arbitrary. As we will later see,
uniform multicommodity flow problems arise in many important applications and
their structure is sufficiently robust that the methods that we develop in this
paper have already proven useful in the study of more general multicommodity
flow problems [Klein et al. 1989; 1993; 1997; Garg et al. 1996; Plotkin and Tardos
1993].

Our primary result in this paper is an approximate max-flow min-cut theorem
for uniform multicommodity flow problems. In particular, we show that for
uniform multicommodity flow problems, the max-flow is within a Q(log n)-factor
of the min-cut.3 We also show that this bound is tight in the sense that there exist
uniform flow problems for which the max-flow is precisely a factor of Q(log n)
smaller than the min-cut for any n. To our knowledge, these are the first results
of their kind. In particular, the approximate max-flow min-cut theorem is the
first such nontrivial result known to hold for flow problems with many commod-
ities and arbitrary underlying networks. The examples for which the max-flow
and min-cut differ by a Q(log n) factor also provide the first evidence that the
separation between the max-flow and min-cut can be arbitrarily large.

We also prove approximate max-flow min-cut theorems for related classes of
flow problems in which the edges in the underlying graph may be directed, the
flow paths may be required to be short, and/or the constraint on the uniformity
of the demands is relaxed. All of the results are constructive in the sense that we
can convert any of the known polynomial-time algorithms for max-flow [Vaidya
1989; Kamuth and Palmon 1995] or approximate max-flow [Klein et al. 1994;
Leighton et al. 1992; Awerbuch and Leighton 1994] into a polynomial-time
algorithm for finding an approximate min-cut. As we will soon see, this fact has
surprisingly powerful consequences in the domain of approximation algorithms.

1.5. APPLICATIONS TO APPROXIMATION ALGORITHMS. In a uniform multicom-
modity flow problem, the demand across a cut ^U, U# & is simply the product of

2 Equivalently, we can have two commodities for every pair of nodes u and v, with 1/2 unit of flow
from u to v and 1/2 unit of flow from v to u in a uniform multicommodity flow problem.
3 Throughout this paper, log n is used to denote log2n and ln n is used to denote logen.

FIG. 3. The Okamura–Seymour [1981] example of a 4-commodity flow problem for which the
max-flow is 3/4 and the min-cut is 1. In this example, all demands and capacities are one. The
max-flow is attained by routing 1/4 unit of commodity 4 on each of the three paths between s4 and t4,
and 3/8 unit of commodity i on each of the two paths between si and t i for 1 # i # 3.
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the number of nodes in U and the number of nodes in U# . In other words,

D~U, U# ! 5 uU u uU# u.

Hence, the min-cut of a uniform flow problem is

6 5 min
U#V

C~U , U# !

uU u uU# u
, (1)

where C(U, U# ) 5 (e[^U,U# &C(e). In the case when all capacities are 1, the
min-cut is simply

min
U#V

u^U, U# & u

uU u uU# u
. (2)

The min-cut values in Eqs. 1 and 2 provide good measures of the number of
edges (or the total weight of edges) that need to be removed in order to partition
the underlying network into pieces of various sizes. As a consequence, we will be
able to use our algorithm for finding an approximate min-cut to design the first
nontrivial polynomial-time approximation algorithms for several important NP-
hard graph partitioning problems.

In part because graph partitioning is itself a key component in many divide-
and-conquer-based algorithms, we will also be able to use the flow result to
design the first polynomial-time approximation algorithms for a wide variety of
other well-known NP-hard optimization problems. For example, approximation
algorithms for crossing number, VLSI layout, minimum feedback arc set, and
search number will be described in the paper. Applications of the flow results to
path routing problems, network reconfiguration, communication in distributed
networks, rapidly mixing Markov chains, and scientific computing will also be
described in the paper.

Altogether, the max-flow min-cut result has been used to provide the first
polynomial time approximation algorithms for over two dozen optimization
problems, many of which have no readily-apparent connection to multicommod-
ity flow.

1.6. SUBSEQUENT WORK. Several of the key results in this paper first ap-
peared in an extended abstract published in 1988 [Leighton and Rao 1988]. Since
that time, significant progress has been made on many of the problems studied in
this paper. In what follows, we will give brief descriptions of and forward pointers
to the most important subsequent advances in this area.

The methods described in this paper were first used by Klein et al. [1995] to
establish an O(log C log D) max-flow min-cut theorem for arbitrary multicom-
modity flow problems in undirected networks, where C denotes the total capacity
of the network and D denotes the total demand of the commodities. (In other
words, Klein et al. [1995] showed that the max-flow is always within an O(log C
log D) factor of the min-cut for undirected multicommodity flow problems.) This
bound was improved to O(log2 k) in a succession of papers by Tragoudas [1990],
Plotkin and Tardos [1993], and Garg et al. [1996]. An existentially tight gap of
Q(log k) was recently established by Linial et al. [1995] and Aumann and Rabani
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[1998]. The latter result differs from its predecessors by its elegant use of
Bourgain’s techniques [Bourgain 1985] that embed metric spaces on graphs into
geometric spaces.

In addition, Garg et al. [1996] established an O(log k) max-flow min-cut
theorem for arbitrary (undirected) multicommodity flow problems where the sum
of the flows is maximized (as opposed to our situation in which a common
fraction of each commodity’s demand is maximized). Klein et al. [1993] discov-
ered a Q(1) max-flow min-cut theorem for uniform multicommodity flow prob-
lems in undirected planar graphs and graphs with small excluded minors. Klein et
al. [1997] and Even et al. [1998] have established an O(log3k) max-flow min-cut
theorem for multicommodity flow problems in directed networks for which the
demand from any node u to any node v is equal to the demand from v to u.
Whether or not there is a polylog max-flow min-cut theorem for arbitrary
directed multicommodity flow problems still remains as an interesting open
question.

Additional applications of the max-flow min-cut results described in the paper
have also been discovered. For example, Klein et al. [1995] used the flow results
to design approximation algorithms for 2-CNF satisfiability. Agarwal et al. [1993]
and Ravi et al. [1991] gave approximation algorithms for minimizing fill when
solving sparse linear systems of equations, and register allocation. Garg et al.
[1996] used their flow results to find an approximation algorithm for the
minimum multicut problem. Some of these applications will be described in
greater detail in Section 3 of the paper.

The construction used in Lemma 3 is similar in nature to the neighborhood
cover constructions defined by Awerbuch and Peleg [1990]. Neighborhood covers
have also proven to be very useful in the design of approximation algorithms for
such problems as shortest paths [Awerbuch et al. 1999; Cohen 1993] finding
separators in planar graphs [Rao 1992], and producing compact routing tables in
distributed networks [Awerbuch and Peleg 1990].

For a survey of all the work on max-flow min-cut theorems and their
applications to approximation algorithms, we refer the reader to the excellent
article by Shmoys [1996].

1.7. ORGANIZATION OF THE PAPER. The remainder of the paper is organized
as follows: The max-flow min-cut results are described in Section 2. Applications
of these results to the design of approximation algorithms are described in
Section 3. Remarks and open questions are included in Section 4. We conclude
with acknowledgments and references in Sections 5 and 6, respectively.

2. Max-Flow Min-Cut Theorems

In this section, we prove max-flow min-cut theorems for several classes of
multicommodity flow problems. We begin in Section 2.1 by giving an example of
a uniform multicommodity flow problem (UMFP) for which the max-flow is a
V(log n)-factor smaller than the min-cut.

Our main result is proved in Section 2.2, where we show that the max-flow is
always within a Q(log n)-factor of the min-cut for any UMFP. This result is
generalized in Section 2.3, where we show that the max-flow is within a
Q(log n)-factor of the min-cut for any product multicommodity flow problem
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(PMFP).4 (In a PMFP, the demands between any pair of nodes u and v is
p(u)p(v) where p is a function on the nodes of the graph.) Our results are
further extended to the case of directed graphs in Section 2.4 and to flow
problems in which the flow paths are required to be short in Section 2.5.

2.1. A BAD EXAMPLE. We begin by showing that the max-flow and min-cut of
a UMFP are separated by a Q(log n) gap whenever the underlying network has
certain expansion properties. In particular, let G be a 3-regular n-node graph
with unit edge capacities for which

u^U, U# & u $ c min$ uU u , uU# u%

for some constant c . 0 and all U # V. Families of such graphs are well known
to exist provided that c is a sufficiently small constant [Margulis 1973]. (In fact, a
randomly selected 3-regular graph will satisfy this property with high probability.)

By the definition of G, we know that the min-cut of the corresponding UMFP
is

6 5 min
U#V

u^U, U# u

uU u uU# u

$ min
U#V

c

max$ uU u , uU# u%

5
c

n 2 1
.

As we will show in what follows, however, the max-flow for the UMFP is at most
6/(n 2 1)(log n 2 1), which is a Q(log n)-factor smaller than the min-cut.

Since G is 3-regular, there are at most n/ 2 nodes within distance log n 2 3 of
any particular node v [ V. Hence, for at least half of the (2

n) commodities, the
shortest path connecting the source and sink in G has at least log n 2 2 edges.
In order to sustain a flow of f for such a commodity, at least f(log n 2 2)
capacity must be used by the commodity. Thus, in order to sustain a flow of f for
all (2

n) commodities, the capacity in the network must be at least

1

2S n

2D f~log n 2 2! .

Since the graph is 3-regular and has unit capacity edges, the total capacity is at
most 3n/ 2. Hence,

f #
3n

S n

2D ~log n 2 2!

4 The fact that our techniques apply to this more general case was pointed out to us by Shmoys and
Tardos, and Sinclair.
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5
6

~n 2 1!~log n 2 2!

#
66

c~log n 2 2!

5 OS 6

log nD
In other words, the max-flow for the UMFP on G is at least a Q(log n)-factor

smaller than the min-cut. This result is summarized in the following theorem.

THEOREM 1. For any n, there is an n-node uniform multicommodity flow
problem with max-flow f and min-cut 6 for which f # O(6/log n).

The example described above can be generalized to nonexpander graphs by
replacing each edge of G by a path of length p. In this manner, it is possible to
construct UMFPs with a small min-cut but for which the V(log n) gap between
max-flow and min-cut still holds. The gap can never be greater than Q(log n),
however, as we show in the next section.

2.2. FINDING SMALL CUTS IN UMFPS. The example in Section 2.1 demon-
strates that there is a UMFP for which the min-cut is at least Q(log n) times as
large as the max-flow. In this section we will prove that this example is worst-case
in the sense that the min-cut of a UMFP can never be more than a Q(log n)-
factor larger than the max-flow. In fact, we will describe a polynomial-time
algorithm that will find a cut ^U, U# & for any UMFP for which

C~U, U# !

uU u uU# u
# O~ f log n! , (3)

where f is the max-flow of the UMFP. (Henceforth, we will refer to the quantity
C(U, U# )/ uU u uU# u as the ratio cost of a cut ^U, U# &.) Since the min-cut of a UMFP
is

6 5 min
U#V

C~U , U# !

uU u uU# u
,

Eq. 3 results in the following theorem.

THEOREM 2. For any uniform multicommodity flow problem,

VS 6

log nD # f # 6 ,

where f is the max-flow and 6 is the min-cut of the UMFP.

The algorithm for finding a cut with small ratio cost is based on the linear
programming dual of the UMFP. In general, the dual of a multicommodity flow
problem for a graph G is the problem of apportioning a fixed amount of weight
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(where weights are thought of as distances) to the edges of G so as to maximize
the cumulative distance between the source/sink pairs. Alternatively, the dual can
be thought of as apportioning the smallest amount of total distance so that the
cumulative distances between the source/sink pairs is not too small. More
precisely, the dual of a k-commodity flow problem consists of finding a nonnega-
tive distance d(e) for each edge e [ E so that

O
i51

k

Did~si, t i! $ 1 (4)

and so that

O
e[E

C~e!d~e!

is minimized, where d(si, t i) is the distance between the source and sink for the
ith commodity in G with respect to the distance function. (The proof of this
result is based on the standard notion of duality from linear programming
[Chvatal 1983]. The proof was originally discovered by Iri [1967] and subse-
quently observed by Shahrokhi and Matula [1986].)

In what follows, we will refer to Eq. 4 as the distance constraint of the dual. In
the case of a uniform multicommodity flow problem, the distance constraint is
simply

O
u ,v[V

d~u, v! $ 1, (5)

where the sum is taken over all unordered pairs of nodes in G. We will also refer
to

W 5 O
e[E

C~e!d~e!

as the total weight of the distance function. From the duality theory of linear
programming, we know that an optimal distance function results in a total weight
that is equal to the max-flow of the UMFP. Hence, by solving the dual UMFP,
we can find distances d(e) that satisfy Eq. 5 and for which W 5 f. This is the first
step toward finding a cut with small ratio cost.5

The fact that our algorithm uses the dual UMFP to find a small cut should not
be completely surprising, given the well-known relationship between the min-cut
and the dual of a single commodity flow problem. Indeed, in one optimal
solution for the dual of a single-commodity flow problem, the edges in the

5 Although linear programming problems can be solved in polynomial time, linear programming is
not very fast for large multicommodity flow problems in practice. Thus, Shahrokhi and Matula
proposed approximation algorithms that seemed promising in experiments. Subsequently, researchers
have discovered provably fast methods for finding a near-optimal distance function. For example,
Klein et al. [1994] and Leighton et al. [1992] describe fast polynomial-time algorithms for finding a
distance function for which W # (1 1 «) f for arbitrarily small e . 0. Such approximation algorithms
are quite suitable for our purposes (even with e . 1) since we will only endeavor to find cuts with
ratio cost O(W log n) 5 O( f log n).
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min-cut are assigned distance 1 and all other edges are assigned distance 0. A
similar relationship between the min-cut and nonzero distance edges also holds
for certain very special UMFPs. For example, consider the UMFP where G
consists of two copies of Kn/ 2 that are connected by a single edge e0 and where
all edges have unit capacity. In this example, the edge e0 is assigned distance
4/n2 and all other edges are assigned distance 0 in the optimal solution to the
dual. The min-cut is simply the edge e0.

Unfortunately, the relationship between the min-cut and the non-zero distance
edges appears to break down for general UMFPs. Although edges that are
assigned large distances in the dual tend to be included in good cuts for many
examples (see Shahrokhi and Matula [1990]), it does not appear as though a
simple thresholding type of procedure can be relied upon to always find a good
cut.

In what follows, we describe a different approach that is guaranteed to find a
good cut with ratio cost at most O(W log n) 5 O( f log n). Although the
algorithm will tend to place edges with large distance in the cut, the distance that
is assigned to an edge is not the primary factor in deciding whether to place the
edge in the cut. Rather, we rely on a more global property of the distance
function that is related to the problem of decomposing a graph into regions of
small radius. This property is captured in the following lemmas.

LEMMA 3. For any graph G with arbitrary edge capacities, any D . 0, and any
distance function with total weight W it is possible to partition G into components
with radius at most D so that the capacity of the edges connecting nodes in different
components is at most 4W log n/D.

PROOF. Let C 5 (e[EC(e) denote the total capacity on the edges of G.
When D # 4W log n/C, we can use the partition that leaves every node in a
different component. Each such component will have radius 0 # D and the
capacity of the edges running between different components is at most C #
(4W log n/D), as desired.

If D . (4W log n/C), then we construct a second graph G1 from G by
replacing each edge e of G with a path of Cd(e)/W edges. Each edge along the
path is assigned capacity C(e) and distance 1. In what follows, we will show how
to partition G by forming components in G1. (The reason for using G1 is that it
is simpler to work with a graph in which each edge corresponds to the same
amount of distance.)

The components of G1 are formed as follows: We begin by selecting an
arbitrary node v [ G1 that corresponds to a node in G. For each i $ 0, define
Gi

1 to be the subgraph of G1 consisting of nodes and edges within distance i of
v. (For G1, the distance between two nodes is defined to be the number of edges
that are traversed in the shortest path connecting the nodes.) Let C0 5 (2C/n),
and for i . 0, define Ci to be the total capacity of the edges in Gi

1. Let j denote
the smallest value of i $ 0 for which Ci11 , (1 1 e)Ci where e 5
(W log n/DC) , 1/4. (There must be such a j since for large enough i, Gi11

1 5
Gi

1.)
The nodes and edges in Gj

1 form the first component of the partition. The
remaining components are found by removing Gj

1 from G1 and then repeating
the entire process. The process is repeated until there are no longer any nodes
v [ G1 that correspond to nodes in G.
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Let C1 denote the total initial capacity of G1. From the construction of G1,
we know that

C1 5 O
e[E

C~e!Cd~e!

W 
# O

e[E

C~e! 1
C

W
O

e[E

C~e!d~e!

5 2C.

From the method by which the components were formed, we know that the
capacity of the edges leaving any component is at most eCj, where Cj 5 (2C/n)
if the component consists of a single node and Cj is the sum of the capacities on
the edges contained in Gj

1, otherwise. Since the Gj
1 are disjoint, this means that

the total capacity on all edges leaving all components in G1 is at most

e~C1 1 nC0! # 2eC12eC 5 4eC. (6)

The partition for G is derived from the components of G1 in the natural way.
In particular, two nodes of G are placed in the same component for G if and
only if they were in the same component for G1. From the construction of the
components, we thus know that any edge e [ G that links two components in G
must correspond to a path of capacity C(e) edges in G1 that was cut to form at
least one of the corresponding components in G1. Hence, the total capacity of
the edges linking different components in G is at most 4eC 5 (4W log n/D), as
desired.

It remains only to show that each component has small radius. This can be
verified as follows: Consider a component with radius j in G1. Provided that j .
0, this component must have total capacity at least (1 1 e) jC0 5 (1 1 e) jC0 e
(1 1 e) j(2C/n). Since the total capacity of G1 is C1 # 2C, this means that

~1 1 e! j
2C

n
# 2C

and thus (since e , 1/4) that

j #
log n

log~1 1 e!
#

log n

e
.

Given a path of length l in G1, the corresponding path in G has length at most
Wl/C. Hence, the radius of each component in G is at most

W log n

Ce
5 D ,

as desired. e

COROLLARY 4. For any graph G and any distance function with total weight W,
we can either
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(1) find a component with radius 1/ 2n2 that contains at least 2/3 of the nodes in G,
or

(2) find a cut of G with ratio cost O(W log n).

PROOF. We apply the result of Lemma 3 with D 5 1/ 2n2. If one of the
components formed during the construction of Lemma 3 contains at least 2/3 of
the nodes of G, then we are done. Otherwise, we can divide the components into
two sets so that each set contains at least n/3 nodes. This division forms a cut
with edge capacity at most

4W log n/D 5 8Wn2log n.

Since both sides of the cut have at least n/3 nodes, the ratio cost of this cut is at
most

8wn2log n

~2n/3!~n/3!
5 36W log n

5 O~w log n! ,

as desired. e

LEMMA 5. For any graph G, if there is a distance function d with total weight W
and a subset of nodes T # V with uTu $ 2n/3 and

O
u[V2T

d~T, u! $
1

2n
,

then we can find a cut with ratio cost O(W).

PROOF. The proof uses many of the same arguments that were used to prove
Lemma 3. In particular, we start by defining the graph Gi

1 to be the subgraph of
G1 consisting of all nodes and edges that are within distance i of a node in T.
(Recall that distance in G1 is measured in terms of the number of edges that are
traversed since every edge has distance 1 in G1.) We also define Vi to be the set
of nodes of G that correspond to nodes in Gi

1, ni 5 uV 2 Viu, Ri to be the ratio
cost of the cut ^Vi, V 2 Vi& in G, and R 5 min{Ri}.

Since ni nodes of G are at distance at least i 1 1 from T in G1 for all i, we
know that

O
u[V2T

dG1~T, u! 5 O
i$0

ni.

By the construction of G1, we also know that dG1(T, u) $ (C/W)dG(T, u).
Hence, we can conclude that

O
i$0

ni $
C

W
O

u[V2T

dG~T, u! $
C

2nW
. (7)

Since uT u $ 2n/3, the capacity in the cut ^Vi, V 2 Vi& of G is at least
Rini(2n/3) $ (2nRni/3). Hence, the capacity of the corresponding cut for Gi

1
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in G1 is also at least this amount. Since the total capacity in G1 is at most C1 #
2C (from the proof of Lemma 3), this means that

O
i$0

2nRni

3
# 2C

and thus that

R #
3C

n O i$0 ni

.

Plugging in the lower bound from Eq. 7, we find that

R # 6W 5 O~W! ,

as desired. e

LEMMA 6. Given a graph G and a distance function with total weight W that
satisfies the distance constraint, we can find a cut with ratio cost O(W log n).

PROOF. We begin by partitioning the graph as in Lemma 3 with D 5 1/ 2n2.
By Corollary 4, we can then either find a cut with ratio cost O(W log n) (in
which case, we are done) or we can find a component T with radius 1/ 2n2 that
contains at least 2n/3 nodes. In the latter case, we will apply Lemma 5 to find a
cut with ratio cost O(W) (thereby concluding the proof), but we must first show
that

O
u[V2T

d~T, u! $
1

2n
.

The proof makes use of the fact that for any pair of nodes u, v [ V

d~u, v! # d~T, u! 1 d~T, v! 1
1

n2

since T has radius 1/ 2n2. In particular,

O
{u ,v}

d~u, v! 5
1

2
O

(u ,v)

d~u, v!

#
1

2
O

(u ,v)
S d~T, u! 1 d~T, v! 1

1

n2D
, n O

u[V2T

d~T, u! 1
1

2
.
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Because of the distance constraint, this means that

O
u[V2T

d~T, u! .
1

2n
,

as desired. e

The proof of Theorem 2 follows immediately from Lemma 6 and the fact that
W 5 f. (In fact, the result follows even if an approximate distance function with
total weight W 5 O( f ) is used.) It is worth noting that although high-distance
edges in G are not necessarily placed in the cut with small ratio cost, they are more
likely to be placed in the cut since they correspond to long paths in G1. It is also
worth noting that each of the proofs in this section can be easily adapted to yield
simple polynomial time algorithms for finding cuts and regions with low diameter.

2.3. RELAXING THE UNIFORMITY OF DEMANDS. The results of the preceding
section can be easily generalized to work for more general multicommodity flow
problems. For example, in this section, we show how to prove analogous results
for product multicommodity flow problems (PMFPs).6 In a PMFP, we associate a
nonnegative weight p(u) with each node u [ V. The demand for the commodity
between nodes u and v is then set to be p(u)p(v).7 The UMFP is a special case
of a PMFP for which p(u) 5 1 for all nodes u [ V.

In what follows, we use 3 to denote the subset of nodes for which p is
nonzero, and we set p 5 u3 u. Without loss of generality, we will assume that
(u[V p(u) 5 p for each PMFP.

The min-cut for a PMFP is

min
U#V

C~U, U# !

p~U!p~U# !
,

where p(U) 5 (u[Up(u). In what follows, we will show how to find a cut
^U, U# & for which the weighted ratio cost

C~U, U# !

p~U!p~U# !

is at most O( f log p) where f is the value of the maximum flow for the PMFP.
Since the number of commodities with nonzero demand is k 5 (2

p), this will be
sufficient to prove the following theorem.

THEOREM 7. For any product multicommodity flow problem with k commodi-
ties,

VS 6

log kD # f # 6 ,

6 The fact that our techniques apply to this more general case was pointed out to us by Shmoys and
Tardos, and Sinclair.
7 Equivalently, we can have two commodities for each pair of nodes u and v with demand 1

2
p(u)p(v)

from u to v and demand 1
2
p(u)p(v) from v to u.
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where f is the max-flow and 6 is the min-cut of the PMFP.

The algorithm for finding a cut with small weighted ratio cost is quite similar
to the algorithm for UMFPs described in Section 2.2. In particular, the algorithm
is based on a distance function formed from the dual of the PMFP. In this case,
however, the distance constraint from Eq. 4 becomes

O
{u ,v}[32

p~u!p~v!d~u , v! $ 1.

In what follows, we will briefly explain the other changes that need to be made
in Lemmas 3– 6 to find a cut with small weighted ratio cost.

LEMMA 8. For any graph G, any D $ 0, any distance function with total weight
W, and any set of p nodes 3 with nonzero node weight, it is possible to partition G
into components so that

(1) any component containing a node of 3 has radius at most D, and
(2) the capacity of the edges linking nodes in different components is at most

4W log p/D.

PROOF. The proof is identical to that of Lemma 3, except that:

(1) n is replaced by p everywhere,
(2) the components Gj

1 are grown only from nodes in 3, and
(3) we only compute the bound on radius for components containing a node

from 3. e

COROLLARY 9. For any graph G, any distance function with total weight W, and
any set 3 of p nodes with nonzero node weight, we can either

(1) find a component T with radius 1/ 2p2 for which p(T) $ 2p/3, or
(2) find a cut of G with weighted ratio cost O(W log p).

PROOF. The proof follows from Lemma 8 in a manner analogous to the proof
of Corollary 4. e

LEMMA 10. For any node-weighted graph G, if there is a distance function d
with total weight W and a subset of nodes T # V for which p(T) $ 2p/3 and

O
u[32T

p~u!d~T, u! $
1

2p
,

then we can find a cut with ratio cost O(W).

PROOF. The proof is identical to that of Lemma 5 except that

(1) measures of the number of nodes such as ni and uT u are replaced by the
weight of those nodes (such as p(V 2 Vi) and p(T)),

(2) we define Ri to be the weighted ratio cost of the cut ^Vi, V 2 Vi& in G, and
(3) dG(T, u) and dG1(T, u) are scaled by a factor of p(u). e
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LEMMA 11. Given a node-weighted graph G and a distance function with total
weight W that satisfies the (weighted) distance-constraint, we can find a cut with
weighted ratio cost O(W log p).

PROOF. Similar to the proof of Lemma 6. In particular, we first partition the
graph as in Lemma 8 with D 5 1/ 2p2. By Corollary 9, we can then either find a
cut with weighted ratio cost O(W log p) (in which case we are done) or we can
find a component T with radius 1/ 2p2 for which p(T) $ 2p/3. In the latter case,
we apply Lemma 10 to find a cut with weighted ratio cost O(W) (thereby
concluding the proof), but we must first show that

O
u[32T

p~u!d~T, u! $
1

2p
.

Arguing as in Lemma 6, we find that

O
{u ,v}[32

p~u!p~v!d~u, v! 5
1

2
O
uÞv

p~u!p~v!d~u, v!

#
1

2
O
uÞv

p~u!p~v!S d~T, u! 1 d~T, v! 1
1

p2D
, p O

u[32T

p~u!d~T, u! 1
1

2
.

(Here we have used the facts that (u[Vp(u) 5 p and (uÞvp(u)p(v) , p2.)
Because of the distance constraint, this means that

O
u[32T

p~u!d~T, u! .
1

2p
,

as desired. e

2.4. DEALING WITH DIRECTED GRAPHS. The results of Sections 2.2 and 2.3
can also be extended to hold for directed multicommodity flow problems. In a
directed MFP, each edge has a specified direction, and flow is restricted to move
only in the direction of each edge.

In a directed UMFP, we will assume that the demand from u to v is 1 for each
u Þ v. (Hence, there is a flow of 1 from u to v as well as from v to u.) For a
directed PMFP, the demand from u to v is p(u)p(v), although we will restrict
our attention to the case of UMFPs for the sake of simplicity in what follows.

The min-cut of a directed UMFP is defined to be

min
U#V

C~U, U# !

uU u uU# u
,
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where C(U, U# ) is defined to be the sum of the capacities of the edges in the cut
^U, U# & that are directed from U to U# . The max-flow and min-cut of a directed
UMFP are related by the following theorem.

THEOREM 12. For any directed UMFP with n nodes,

VS 6

log nD # f # 6 ,

where f is the max-flow and 6 is the min-cut of the UMFP.

The fact that f # 6 follows immediately from the definitions. The algorithm
for finding a directed cut ^U, U# & with small ratio cost is somewhat more
complicated than the algorithm for UMFPs described in Section 2.2, however.
The main difference is that we need to keep track of two different notions of
radius, one using edges directed inwards towards a common root and one using
edges directed outwards from a common root. In particular, we define 1in

D (v, G)
to be the set of nodes from which v can be reached by a directed path of length
at most D in G and 1out

D (v, G) to be the set of nodes that are reachable from v
by a directed path of length at most D in G.

LEMMA 13. For any directed graph G 5 (V, E) with arbitrary edge capacities,
any D . 0, and any distance function with total weight W, it is possible to partition
V into subsets V1, V2, . . . , Vr so that

(1) the total capacity of all edges in the set {(u, v) uu [ Vi, v [ Vj, 1 # j , i ,
r} is at most 8W log n/D, and

(2) for each i # r, there is a node v [ Vi for which u1in
D (v, G) u $ uViu and

u1out
D (v, G) u $ uViu.

PROOF. The proof is similar to that of Lemma 3. In particular, C, G1, and
C1 # 2C are defined as before, and we assume without loss of generality that D
$ (8W log n/C). The sets V1, V2, . . . , Vr are formed as follows: We begin by
selecting an arbitrary node v [ G1 that corresponds to a node in G. For each
i $ 0, define Gi,in

1 (respectively, Gi,out
1 ) to be the subgraph of G1 induced by

1in
i (v, G1) (respectively, 1out

i (v, G1)). In other words, Gi,in
1 is the subgraph of

G1 induced by the nodes from which v can be reached by a directed path of
length at most i in G1.

Let C0 5 (2C/n), and for i . 0, define Ci,in to be the total capacity of the
edges in Gi,in

1 and Ci,out to be the total capacity of the edges in Gi,out
1 . Let j

denote the smallest i for which either

Case 1. Gi,in
1 , has no more nodes of G than Gi,out

1 and Ci11,in , (1 1
e)Ci,in, or

Case 2. Gi,out
1 has no more nodes of G than Gi,in

1 and Ci11,out , (1 1
e)Ci,out, where e 5 (2W log n/DC) # 1/4.

In the event of Case 1, we define U1
1 to be the set of nodes in Gj,in

1 and we say
that U1

1 is an in-set. In the event of Case 2, we define U1
1 to be the set of nodes

in Gj,out
1 and we say that U1

1 is an out-set. In either event, we remove U1
1 and all

edges incident to a node in U1
1 from G1. The process is then repeated, creating
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U2
1, U3

1, . . . , Ur
1, until there are no longer any nodes in G1 that correspond to

nodes in G.
Once the process is terminated, the sets U1

1, U2
1, . . . , Ur

1 are reordered to
produce V1

1, V2
1, . . . , Vr

1 as follows:

(1) all in-sets precede all out-sets in V1
1, V2

1, . . . , Vr
1,

(2) the relative order of in-sets in U1
1, U2

1, . . . , Ur
1 is preserved in V1

1, V2
1,

. . . , Vr
1,

(3) and the relative order of out-sets in U1
1, U2

1, . . . , Ur
1 is reversed in V1

1, V2
1,

. . . , Vr
1.

(For example, if U1
1 is an in-set, then V1

1 5 U1
1. If U1

1 is an out-set, then Vr
1 5

U1
1.) We then define Vi 5 V ù Vi

1 for 1 # i # r. In what follows, we will show
that V1, V2, V3, . . . , Vr have the properties claimed in the statement of the
Lemma. The proof is similar to that for Lemma 3.

We say that an edge of G1 is a boundary edge if it has one endpoint in Vi
1 and

the other endpoint outside Vi
1 for some i. Moreover, we say that a boundary

edge is relevant if either

(1) the head of the edge is contained in some in-set Vj
1 and the edge was present

in G1 when Vj
1 was being created or

(2) the tail of the edge is contained in some out-set Vi
1 and the edge was present

in G1 when Vi
1 was being created.

Arguing as in the proof of Lemma 3, we can conclude that the capacity of all
relevant boundary edges is at most

e~C1 1 nC0! # 4eC.

Because of the way that U1
1, U2

1, . . . , Ur
1 were reordered to form V1

1,
V2

1, . . . , Vr
1, we also know that for every edge e [ {(u, v) uu [ Vi, v [ Vj, 1 #

j , i # r}, we can identify a distinct relevant boundary edge in G1 with the
same capacity as e. Hence, the total capacity of the edges in {(u, v) uu [ Vi, v [
Vj, 1 # j , i # r} is at most 4eC 5 (8W log n/D), as desired.

We next show that for each i # r, there is a node v [ Vi for which both
u1in

D (v, G) u and u1out
D (v, G) u are at least uViu. We do this by upper-bounding the

radius of the subgraph of G1 that was used to create Vi
1. For simplicity, we will

consider only the case when Vi
1 is an in-set. (A symmetric analysis can be used

when Vi
1 is an out-set.)

Let Gj,in
1 denote the radius j subgraph of G1 that was removed from G1 to

form Vi
1. By the construction of Gj,in

1 , we know that for all 0 # s , j

(1) Cs11,in $ Cs,in and Cs11,out $ Cs,out and
(2) Cs11,in $ (1 1 e)Cs,in or Cs11,out $ (1 1 e)Cs,out.

Define Cj 5 max{Cj,in, Cj,out}. By the preceding facts, we know that

Cj $ ~1 1 e! j/ 2C0

5 ~1 1 e! j/ 22C/n .
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Also, Cj # C1 # 2C, and so

j #
2 log n

e
.

Let v denote the first node that was placed in Gj,in. By the preceding analysis,
we know that

Vi
1 # 1 in

~2 log n!/e~v, G1! .

Given a path of length l in G1, the corresponding path in G has length at most
Wl/C. Since W/C(2 log n/e) 5 D, this means that

vi # 1 in
D ~v, G! ,

and thus that u1in
D (v, G) u $ uViu.

Since Gj,in
1 has no more nodes of G than Gj,out

1 by construction, we also know
that u1out

D (v, G) u # uViu, as desired. e

COROLLARY 14. For any directed graph G and any distance function with total
weight W, we can either

(1) find a node v for which u1in
1/4n2

(v, G) u $ 2n/3 and u1out
1/4n2

(v, G) u $ 2n/3, or
(2) find a directed cut of G with ratio cost O(W log n).

PROOF. We apply the result of Lemma 13 with D 5 1/4n2. If one of the sets
Vi in the partition of Lemma 13 has at least 2n/3 nodes, then we are done.
Otherwise, we can find an s , r such that

n

6
# uV1 ø V2 ø · · · ø Vsu #

5n

6
.

The desired directed cut is ^Vs11 ø . . . ø Vr, V1 ø . . . ø Vs&. By Lemma 13,
the ratio cost of this cut is at most

8W log n

D~n/6!~5n/6!
# O~W log n! ,

as desired. e

LEMMA 15. For any graph G and distance function d with total weight W, if
there is a subset of nodes T # V for which uTu $ 2n/3 and either

O
u[V2T

d~T, u! $
1

4n

or

O
u[V2T

d~u, T! $
1

4n
,

then we can find a directed cut with ratio cost O(W).
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PROOF. The proof is virtually identical to that of Lemma 5. In the case when

O
u[V2T

d~T, u! $
1

4n
,

we consider edges directed away from T. In the case when (u[V2Td(u, T) $
1/4n, we consider edges directed towards T. e

LEMMA 16. Given a directed graph G and a distance function with total weight
W that satisfies the distance constraint, we can find a directed cut with ratio cost
O(W log n).

PROOF. By Corollary 14, we can either find the desired cut or a node v for
which u1in

1/4n2

(v, G) u $ 2n/3 and u1out
1/4n2

(v, G) u $ 2n/3.
Let T in 5 1in

1/4n2

(v, G) and Tout 5 1out
1/4n2

(v, G). If (u[V2T in
d(u, T in) $ 1/4n

or (u[V2Tout
d(Tout, u) $ 1/4n, then we can find a cut of size O(W) by Lemma

15. One of these conditions must hold since otherwise

O
(u ,v)[V2

d~u, v! , O
u[V

O
v[V

S d~u, T in! 1 d~Tout, v! 1
1

2n2D
5 n O

u[V

d~u, T in! 1 n O
v[V

d~Tout, v! 1
1

2

,
1

4
1

1

4
1

1

2

5 1,

which violates the distance constraint. e

The proof of Theorem 12 follows immediately from Lemma 16. The result can
also be easily extended to directed PMFPs by using the techniques developed in
Section 2.3. We state this result without proof as Theorem 17.

THEOREM 17. For any directed product multicommodity flow problem with k
commodities,

VS 6

log kD # f # 6 ,

where f is the max-flow and 6 is the directed min-cut of the PMFP.

2.5. FLOWS WITH SHORT PATHS. Thus far, we have focused on finding cuts
with small ratio cost in graphs. As a consequence of this work, we have found
that the max-flow of a UMFP or PMFP is nearly as large as the limit implied by
the min-cut. In this section, we will show that the max-flow of a UMFP or PMFP
is large even if the flow paths are restricted to have short length in the underlying
graph. This result will be very useful later when we describe algorithms for
routing paths with low congestion and dilation in communication networks. In
particular, we will make use of the following theorem.
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THEOREM 18. Given, any n-node uniform multicommodity flow problem for
which the min-cut has size 6, we can find a flow of size f $ V(6/log n) for which
every flow path has length at most L # O(Cmaxlog n/n6), where Cmax is the
maximum total capacity of the edges incident to any single node.

The fact there is a flow of size V(6/log n) follows from Theorem 2. The fact
that the flow can be routed using only short flow paths involves some additional
work. In what follows, we will show that such a flow exists. The flow itself can be
found using linear programming or other polynomial-time algorithms.

To formulate the flow problem as a linear program, we use a separate variable
for each demand, each edge, and each distance that the flow has traveled
through the network. We will then maximize the amount of flow that has traveled
distance at most L 5 Q(Cmaxlog n/n6). Although we do not know the precise
value of L, a good approximation can be obtained by computing f or using binary
search.

The dual of the short-path UMFP is the same as before except that the
distance between two nodes in the distance constraint is computed using only
paths with at most L edges in G. (Note that it is possible for the shortest path
between two nodes using the distance metric to use more than L edges of G.
Such paths are not allowed in this case. As a consequence, the restricted distance
between two nodes in the dual may be infinite.)

The proof that the short-path flow exceeds V(6/log n) is similar to the proof
of Theorem 2. The main difference is that we now need to keep track of path
lengths according to two metrics: the distance measure and the number of edges.
In addition, we only need an existence proof and so it will suffice to show that
W $ V(6/log n) for any distance function that satisfies the distance constraint.
We begin with a strengthening of Lemma 3.

LEMMA 19. For any graph G with total capacity C, any D . 0 and any distance
function with total weight W, it is possible to partition G into components with
edge-radius DC/W and distance-radius D so that the capacity of the edges connecting
nodes in different components is at most 4W log n/D.

PROOF. The proof is identical to that of Lemma 3. We need only observe that
the edge-radius of a component of G is upper bounded by the radius of a
component of G1, which is at most (log n/e) 5 (DC/W). e

COROLLARY 20. For any graph G with min-cut 6 and any distance function
with total weight W # 6/36 log n, we can find a component of G with edge-radius
C/2Wn2 and distance-radius 1/2n2 that contains at least 2/3 of the nodes of G.

PROOF. The proof is nearly identical to that of Corollary 4. We apply Lemma
19 with D 5 1/2n2. If there is a component in the partition with at least 2n/3
nodes, then we are done. Otherwise, we can find a cut with ratio cost strictly less
than 36W log n # 6, which contradicts the minimality of 6.8 e

8 We can obtain a cut with ratio cost strictly less than 36W log n since either (1) we can divide the
components into two sets where each set has strictly more than n/3 nodes, or (2) there are three
components each with exactly n/3 nodes in which case we can arrange the components into 2 sets
(each with at least n/3 nodes) for which the capacity in the corresponding cut is strictly less than 4W
log n/D.
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LEMMA 21. For any graph G with min-cut 6, any distance function with total
weight W, any length L $ (12Cmaxln n/n6), and any subset of nodes T # V for
which uTu $ 2n/3,

O
u[V2T

d~T, u! #
6W

n6
,

where d(T, u) is computed using only paths with at most L/4 edges.

PROOF. The proof is similar to that of Lemma 5 except that we need to be
more careful about how Gi

1 is defined in order to ensure that we only use paths
with at most L/4 edges when upper bounding the sum of distances.

In particular, we will now define Gi
1 iteratively, beginning (as before) with G0

1

as the subgraph of G1 induced on T. Given Gi
1, we produce Gi11

1 , as follows:
Define Si to be the set of edges that would be cut if Gi

1 were to be removed from
G1, Ci to be the total capacity of the edges in Si, and C9i to be the total capacity
of the edges in Si that link Gi

1 to a node of G not in Gi
1. If C9i $ Ci/ 2, then

Gi11
1 is the graph induced on Gi

1 and all nodes of G1 within distance one of Gi
1

in G1. If C9i , Ci/ 2, then Gi11
1 is defined to be the graph induced on Gi

1 and
all nodes of G1 2 G that are within distance one of Gi

1 in G1. (In the latter
case, we do not add nodes of G that are adjacent to Gi

1 when forming Gi11
1 .

This will help ensure that the edge-radius of the corresponding components in G
do not grow too quickly.)

We will begin by showing that there are not many levels i for which nodes of G
were added to Gi

1 to form Gi11
1 . Let ni denote the number of nodes of G not in

Gi. By the minimality of 6, we know that Ci $ (2nni6/3). If nodes of G were
added to Gi

1 to form Gi11
1 , then

C9i $
Ci

2
$

nni6

3
.

Let Cmax denote the maximum amount of total capacity on the edges incident
to any single node. Then at least

C9i

Cmax

$
nni6

3Cmax

nodes of G are added to Gi
1 to form Gi11

1 . In other words,

ni11 # S 1 2
n6

3Cmax
Dni.

There are at most (3Cmaxln n/n6) # L/4 levels for which ni can be decreased
in this fashion without running out of nodes of G. Hence, there are at most L/4
levels i for which nodes of G are added to Gi

1 to form Gi11
1 .

We next upper-bound the sum of the ni. By the construction of Gi11
1 , we know

that at least (Ci/ 2) $ (nni6/3) capacity is contained in edges that are entirely
contained in Gi11

1 but not Gi
1. Since the total capacity of G1 is at most C1 #
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2C, this means that

O
i$0

nni6

3
# 2C

and thus that

O
i$0

ni #
6C

n6
.

We can now upper bound (u[V2Td(T, u). Let P1(u) denote the path in G1

from T to u formed by the process of growing the Gi
1. If u first appears in Gi

1,
then this path has length d*G

1(T, u) 5 i in G1. Let P(u) denote the
corresponding path in G. By construction, P(u) contains at most L/4 edges. Let
d*G(T, u) denote the distance of this path in G. Then

O
u[V2T

d~T, u! # O
u[V2T

d*G~T, u!

#
W

C
O

u[V2T

d*G1~T, u!

#
W

C
O
i$0

ni

#
6W

n6
,

as claimed. e

PROOF OF THEOREM 18. Set L 5 (36Cmaxlog n/n6) 5 O(Cmaxlog n/n6). It
remains to show that W $ V(6/log n) if the distance constraint (restricted to
paths of length at most L) is satisfied. The proof is by contradiction. Suppose
that W # 6/36 log n. Then, there is a feasible solution with W 5 6/36 log n
(by simply increasing the distances). Then, by Corollary 20, we can find a
component T of G with edge-radius (C/ 2Wn2) # L/4 and distance-radius 1/ 2n2

that contains 2n/3 nodes.
By Lemma 21, we know that

O
u[V2T

d~T, u! #
6W

n6

5
1

6n log n
,
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where d(T, u) is computed using paths with at most L/4 edges. Hence

O
u ,v

d~u, v! 5
1

2
O

(u ,v)

d~u, v!

#
1

2
O

(u ,v)
S d~T, u! 1 d~T, v! 1

1

n2D
, n O

u[V2T

d~T, u! 1
1

2

#
1

6 log n
1

1

2

, 1

where d(u, v) is computed using paths of length at most L. This violates the
distance constraint. Thus the flow with paths of length L is at least V(6/log n) as
claimed. e

It is not difficult to show that the bound on L in Theorem 18 is tight up to a
constant factor for many flow problems. For example, if G is a t-regular
expander (for any t) with uniform capacities, then L 5 Q(log n), which is
optimal up to a factor of Q(log t).

Theorem 18 can also be extended to product MFPs and directed UMFPs and
PMFPs, but we will not present all the details here. The results can be worked
out by using the methods of Sections 2.3 and 2.4 in combination with the proof of
Theorem 18. In the case of PMFPs with (2

p) commodities and total node weight
p, the path length is defined as the number of nodes of nonzero weight in the
path and a bound on the length is

OSmax$Cmax, ~2C/p!%log p

p6
D ,

where Cmax is the maximum value over the nodes with nonzero weight of the
capacity incident to the node divided by the weight of the node.

3. Applications to Approximation Algorithms

The max-flow min-cut theorems proved in Section 2 can be applied to develop
good approximation algorithms for a surprisingly wide variety of NP-hard
problems. We describe several of these algorithms in this section, beginning with
approximation algorithms for most variants of the graph partitioning problem in
Sections 3.1–3.7.

Graph partitioning is a critical component of many divide-and-conquer algo-
rithms in practice. Unfortunately nearly every variation of the problem is
NP-hard and little in the way of approximation algorithms has previously been
discovered. In what follows, we describe O(log n)-times optimal approximation
algorithms for most variants of the problem. We then build upon these results to
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derive approximation algorithms for a wide variety of more complex problems
such as minimum feedback arc set, crossing number, and PRAM emulation in a
distributed network.

The performance guarantees of the algorithms described in this section are
closely tied to the performance guarantee for the sparsest cut algorithm de-
scribed in Section 3.1. If the performance guarantee of this algorithm is
improved (as it has been for certain classes of graphs such as planar graphs or
graphs with excluded minors [Park and Phillips 1993; Rao 1992; Klein et al. 1993]
and dense graphs [Arora et al. 1995]), then it will be possible to derive
corresponding improvements in the performance guarantees in the other algo-
rithms described in the section.

All of the algorithms described in the section run in polynomial time. The
fastest implementations can be derived by using algorithms developed by Klein et
al. [1994], Leighton et al. [1992], Awerbuch and Leighton [1994], and Leong et
al. [1991] for finding approximately optimal flows and/or distance functions. The
fastest implementation of the sparsest cut algorithm runs in Õ(n2) steps and is
due to Benczur and Karger [1996].9 Finally, we mention that algorithms based on
our approach were found experimentally to be useful for graph partitioning in a
class of geometric graphs in Lang and Rao [1993], for certain VLSI benchmark
circuits in Lang and Rao [1993] and Yeh et al. [1992], and certain benchmark
sparse matrices [Klein et al. 1991].

3.1. SPARSEST CUTS. The sparsest cut of a graph G 5 (V, E) is a partition
^U, U# & for which

u^U, U# & u

uU u uU# u

is minimized where u^U, U# & u denotes the number of edges connecting U to V 2
U. Computing the sparsest cut of a graph is NP-hard [Matula and Shahrokhi
1986]. The sparsest cut can be approximated to within an O(log n) factor using
the algorithm of Section 2.2. In this case, we simply set all demands and
capacities to be 1 and we find a cut with ratio cost O( f log n).

Edge-weighted, node-weighted, and directed versions of the sparsest cut
problem can also be solved to within an O(log p) factor where p is the number of
nodes with nonzero weight. In its most general form, we desire to find a partition
^U, U# & for which

C~U, U# !

p~U!p~U# !

is minimized where C(U, U# ) is the sum of the weights of the edges that lead
from U to U# , and p(U) is the sum of the weights of the nodes in U. The sparsest
cut can be approximated to within a factor of O(log p) using the methods in
Sections 2.2 and 2.3. In this case, we set the capacity of an edge to equal its

9 The notation Õ is similar to O except that it ignores logarithmic factors in addition to constant
factors.
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weight and p(v) to be the node weight of v for all v [ V. We then find a cut
with directed weighted ratio cost O( f log n).

3.2. FLUX, EXPANSION, AND MINIMUM QUOTIENT SEPARATORS. A closely
related quantity to the sparsest cut of a graph is the minimum edge expansion or
flux of a graph, defined by

a 5 min
U#V

C~U, U# !

min~ uU u , uU# u!
.

In other words, a graph has flux at least a if every subset U with at most half of
the nodes is connected to the rest of the graph with edges of total weight at least
a uU u. For example, unweighted (i.e., C(e) 5 1 for all e [ E) expander graphs
have flux at least V(1). A cut that achieves the flux is called the minimum
quotient separator and is related by a constant factor to the sparsest cut since

n

2
6 # a # n6

for any n-node graph. (This is because n/ 2 # max( uU u, uU# u) # n).)
Computing the minimum quotient separator is NP-hard, even for unweighted

graphs. (The proof is identical to that for graph bisection [Garey and Johnson
1979].)

The sparsest cut algorithms mentioned in Section 3.1 provide O(log n)
approximation algorithms for the flux and minimum quotient separator prob-
lems, even in the case where edges and nodes are weighted and where edges are
directed.

3.3. BALANCED CUTS AND SEPARATORS. In some applications, we desire to
find a small cut in a graph G 5 (V, E) that partitions the graph into nearly
equal-size pieces. In general, we say that a cut ^U, U# & is b-balanced or a (b, 1 2
b)-separator (for b # 1/ 2) if

bp~V! # p~U! # ~1 2 b!p~V!

where p(U) denotes the sum of the node weights in U.
Finding b-balanced cuts of minimum edge weight is NP-hard, even in the

special case when all node and edge weights are 1. In what follows, we describe a
kind of approximation algorithm for this problem. In particular, if G has a
b-balanced cut of size S, then we will show how to find a b9-balanced cut of size
O(S log n/b 2 b9) for any b9 where b9 , b and b9 # 1/3.10

10 In Leighton and Rao [1988], it was erroneously claimed that there is a polylogarithmic times
optimal approximation algorithm for the case when b9 5 b. Such a result is not known. The best
bound known for b-balanced cuts is O(=S uE ulog n). This result (which holds only for unweighted
graphs) can be obtained by setting b9 so that b 2 b9 5 =S log n/ uE u and then finding a b9-balanced
cut of size O(S log n/b 2 b9) 5 O(=S uE ulog n). This cut can be transformed into a b-balanced cut
by taking n* # (b 2 b9)n nodes from the larger side of the cut and moving them to the smaller side.
By selecting the n* nodes carefully, this step adds at most O((n*/n) uE u) # O((b 2 b9) uE u) #

O(=S uE ulog n) edges to the cut. To select the n* nodes, we partition the nodes on the larger side
into sets of size n* and then select the set which results in the smallest cut.
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The algorithm is very simple and does not need to know the value of S or b.
We start by finding an approximate sparsest cut ^U, U# & for G0 5 G using the
algorithm described in Section 3.1. We then remove the smaller (in node weight)
of U or U# from G, and call the residual graph G1. Given a residual graph Gi, we
find an approximate sparsest cut for Gi and remove the smaller set (call it Ui) to
produce Gi11. The algorithm continues until p(Gj11) # (1 2 b9)p(G) for
some j. The desired cut is then ^U0 ø U1 ø . . . ø Uj, U0 ø U1 ø . . . ø Uj&.

The cut is easily seen to be b9-balanced since b9 # 1/3. In order to bound the
weight of the edges in the cut, we first observe that for each i [ [0, j], Gi always
has a cut with ratio cost at most

S

~b 2 b9!p~G!~1 2 b!p~G!
#

2S

~b 2 b9!p~G!2
.

This is because G has a b-balanced cut of size S and we have removed at most
b9p(G) node weight from G to form Gi.

Let a ip(G) denote the node weight removed from Gi to form Gi11, and let Si

denote the edge weight in the corresponding cut. Since Si is derived from an
approximate sparsest cut, we know that

Si

a ip~G!~p~Gi! 2 a ip~G!!
# OS S log n

~b 2 b9!p~G!2D
and thus that

Si # OSa iS log n

~b 2 b9!
D .

By construction, (0#i#ja i # 2/3. Hence the total weight of the edges in the cut
is at most

O
0#i#j

Si # OSS log n

b 2 b9
D ,

as claimed.
In a recent paper, Even et al. [1997] give an alternative approach to finding

balanced separators using a generalized version of the dual to the UMFP. In
addition, M. Goemans, B. Scheiber, M. Sudan, and D. Williamson (personal
communications) have extended the balanced cut algorithm to hold when b9 ,
1/ 2. An adaptation of their extension is explained in what follows.

Set e 5 (b 2 b9)/ 2 and let S9 denote a threshold parameter that starts at 1
and doubles until a (b9, 1 2 b9)-separator is found. Assume without loss of
generality that p(V) 5 n. Recursively partition G 5 (V, E) into pieces G1 5
(V1, E1), . . . , Gr 5 (Vr, Er) in accordance with the following rules:

(1) if p(Vi) $ en for any i, then find a (e, 1 2 e)-separator for Gi using the
algorithm described for the case when b9 # 1/3,

(2) if the cost of the (e, 1 2 e)-separator is at most S9, then partition Gi into two
pieces and proceed recursively.

814 T. LEIGHTON AND S. RAO



The result of this process is a partition of G into pieces of size at least e2n.
Hence, there are at most 1/e2 pieces. The cost of the partition is thus at most
S9/e.11

We next consider all possible separators that can be formed from the r # 1/e2

pieces. If there is a (b9, 1 2 b9)-separator among the possibilities, then we
terminate. Otherwise, we double the value of S9 and continue cutting pieces of
the graph. In what follows, we show that this algorithm terminates for some S9 5
O(S log n/e) where S is the size of any (b, 1 2 b)-separator for which b9 , b #
1/ 2. Hence, the algorithm always finds a (b9, 1 2 b9)-separator of size
O(S log n/(b 2 b9)3).

Suppose that G has a (b, 1 2 b)-separator of size S. Divide each piece Gi of
the partition of G into two subpieces G9i and G 0i according to the (b, 1 2
b)-separator for G (and so that bn# ( i51

r p(V9i) # (n/ 2)). Note that if p(Vi)
$ en there is a S9 5 O(S log n/e), where either p(V9i) or p(V 0i) is at most
2ep(Vi). (Otherwise, we would have cut Gi during the partitioning phase.)

We next consider the collection # of Gi for which p(Vi) $ en and p(V9i) $
p(Vi)/ 2. We then add as many Gi as possible for which p(Vi) # en so that the
overall weight of the collection is at most n/ 2 1 2en. If p(V9i) or p(V 0i) is at
most 2ep(Vi) whenever p(Vi) $ en, then the total weight of the collection will
be at least bn 2 2en and at most n/ 2 1 2en. Hence, we will have produced a
(b9, 1 2 b9)-separator for G for some S9 5 O(S log n/e), as claimed.

3.4. DIRECTED CUTS. The balanced cut algorithm from Section 3.3 can also
be applied to directed graphs, but we might lose a factor of 2 in the balance b9.
This is because U0, U1, . . . , Uj must be divided into two classes depending on
whether the sparse cut that was used to identify Ui consisted of edges directed
towards Ui or away from Ui. One of the two classes must contain half the node
weight of the total, however, and this class forms a directed b9/ 2-balanced cut of
size O(S log n/b 2 b9) where S is the size of a (b, 1 2 b)-balanced directed
cut.

The factor of 2 for directed cuts can be recovered by using an alternative
definition of a directed cut (which we refer to as a 3-way directed cut). Consider a
partition of the nodes into 3 sets V1, V2, and V1 ø V2. The edges in a 3-way
directed cut ^V1, V2, V1 ø V2& are those leaving V1 and those entering V2. The
balance of the 3-way directed cut is defined to be

min$p~V1! 1 p~V2! , p~V1 ø V2!%

p~G!
.

In this context, V1 (respectively, V2) consists of those Ui for which edges are
directed away from (respectively, towards) the set. The corresponding 3-way cut
has balance b9 and size O(S log n/(b 2 b9)) where S is the size of a (b, 1 2
b)-balanced 3-way directed cut.

11 If e is not too small, this can be accomplished by exhaustive search. If e is small, then we can still
run in polynomial time provided that p(V) is polynomial in n. The algorithm is not polynomial-time
if p(V) is large and e is small (since we are solving a problem that is at least as hard as the knapsack
problem.)
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3.5. NODE CUTS. Thus far, we have focused our attention on edge cuts for
graphs. These same methods can also be used to derive approximation algo-
rithms for node cuts by converting the node-cut problem for an undirected graph
into an edge-cut problem for a directed graph. (A node cut is a subset of nodes
whose removal from the graph separates the remaining nodes into two discon-
nected pieces.) The transformation, which is well known, is explained in what
follows.

Given a graph G 5 (V, E) with node weights p for which we want to find a
small node cut, we will produce a directed graph G* 5 (V*, E*) where

~V* 5 $v uv [ V% ø $v9 uv [ V%!

and

E* 5 $~v, v9! uv [ V% ø $~u9, v! u~u, v! [ E%

ø $~v9, u! u~u, v! [ E% .

Weights are assigned to each edge so that C(v, v9) 5 p(v) and C(u9, v) 5 `
for u Þ v.

If we define the weight on one side of a node cut as the weight of the nodes on
the side plus half the weight of the nodes in the cut, any node cut in G
corresponds to a directed edge cut in G* with the same cost and balance. (The
correspondence is as follows: Let U denote the set of nodes that cuts V 2 U into
V1 and V2. Then, the cut of G* is ^V*1, V*2& where V*1 5 {v uv [ V1 ø U} ø
{v9 uv [ U}.) And any directed edge cut in G* with noninfinite cost corresponds
to a node cut in G with the same cost and balance. Hence, the approximation
algorithm for directed cuts in Section 3.4 can be extended to give an approxima-
tion algorithm for balanced node cuts.

The algorithm can be further extended to work with two different node weight
functions: one (call it p1) for the cost of removing a node, and one (call it p2) for
the contribution of the node to the balance. In this case, we set C(v, v9) 5
p1(v) and p(v) 5 p(v9) 5 p2(v). This construction is useful for the
hypergraph partitioning algorithm described in Section 3.7.

3.6. MULTI-WAY CUTS. The sparsest cut algorithm of Section 3.1 can also be
used iteratively to find near optimal partitions of a graph into components of size
m. For example, Leighton et al. [1990] show that if the sparsest cut algorithm is
used repeatedly until every component has size at most m, then the total weight
of the removed edges is at most O(log n log n/m)OPTm/3 where OPTm/3 is the
minimum edge weight that needs to be removed to split the graph into
components of size at most m/3. In the special case when m 5 O(log n), the
total weight that is removed by a closely related algorithm is at most
O(log2n)OPTm which is O(log2n) times optimal [Leighton et al. 1990].

Recently, Even et al. [1997] gave an O(log n log log n) approximation
algorithm for this problem. The algorithm of Even et al. [1997] makes use of a
generalization of the dual of the uniform multicommodity flow problems used
here. Better bounds are possible for planar graphs [Leighton et al. 1990].

3.7. HYPERGRAPH PARTITIONING. Leighton et al. [1990] also show how to
extend the graph partitioning algorithms described above to hypergraphs. The
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key idea behind the work is to convert a hypergraph Gh 5 (Vh, Eh) (with node
weights p and edge weights C) into a bipartite graph G 5 (V1, V2, E) with two
node weight functions: one (call it p1) for the cost of removing a node, and
another (call it p2) for the contribution that a node makes to the balance. We
can then apply the node-cut algorithm described in Section 3.5. We note that this
transformation was also used in the experimental studies of Lang and Rao [1993]
and Yeh et al. [1992] as well as numerous other studies involving VLSI circuits.

The transformation proceeds as follows:

V1 5 $u uu [ Eh% ,
V2 5 $v uv [ Vh% ,
E 5 $~u, v! uv [ u in Gh% ,

p1~u! 5 C~u! and p2~u! 5 0 for u [ Eh,

and

p1~v! 5 ` and p2~v! 5 p~v! for v [ Vh.

Then there is a 1–1 correspondence between edge partitions in Gh and non-
infinite-cost node partitions in G.

3.8. MINIMUM CUT LINEAR ARRANGEMENT. One of the most famous NP-hard
ordering/cut problems is the minimum cut linear arrangement problem. Given a
graph G 5 (V, E), we desire to find an ordering of the nodes v1, v2, . . . , vn

which minimizes the value of

# 5 max
1#i#n

C~$v1, v2, . . . , vi% , $vi11, vi12, . . . , vn%! .

In other words, we desire to find the minimum value of # (which is known as the
cutwidth of G) for which there is an ordering of the nodes of G so that at most #
edges connect any initial segment of the nodes to the remainder of the nodes.
Like graph partitioning, min-cut linear arrangement arises in numerous applica-
tions.

In what follows, we will describe an O(log2n)-times optimal approximation
algorithm for min-cut linear arrangement. The algorithm is quite simple. Given a
graph G, we begin by using the algorithm described in Section 3.3 to find a
1/3-balanced cut of size O(S log n) for G, where S is the size of an optimal
1/2-balanced cut (or bisection) of G. Let G1 and G2 denote the subgraphs of G
formed by the cut. We then find a good ordering for G1 and G2 recursively,
placing all the nodes of G1 before the nodes of G2 in the final ordering.

The algorithm for ordering the nodes of G forms a “decomposition tree” of
subgraphs of G with depth at most log3/2n 5 O(log n). For any node vj, let Gi1

,
Gi2

, . . . , GiO(log n)
denote those subgraphs in the decomposition tree that contain

vj. Then the number of edges in the cut ^{v1, v2, . . . , vj}, {vj11, vj12, . . . ,
vn}& for the ordering v1, v2, . . . , vn produced by the algorithm is at most O(Si1

log n) 1 O(Si2
log n) 1 . . . 1 O(SiO(log n)

log n), where Sir
denotes the optimal

bisection width of Gir
for 1 # r # O(log n).
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Let # denote the optimal cutwidth for G. Note that # is lower bounded by the
optimal bisection width of any subgraph of G. Thus, Sir

# # for all r. This means
that the cutwidth produced by the algorithm is at most O(# log2n), as desired.

The preceding algorithm can be extended to directed graphs by ordering G1
and G2 so that the smaller set of directed edges in the cut always points from left
to right.

3.9. MINIMUM FEEDBACK ARC SET. The minimum feedback arc set problem
consists of removing the smallest number of edges F from a digraph G so that
the residual graph is acyclic. The problem is NP-hard and arises in numerous
applications (such as circuit testing).

An equivalent formulation of the problem is to find an ordering v1, v2, . . . , vn

of the nodes of G so that the number of forward edges F (i.e., edges of the form
(vi, vj) where i , j) is minimized. In what follows, we will describe an O(log2n)
times optimal approximation algorithm for this problem.

Somewhat surprisingly, the approximation algorithm for minimum feedback
arc set is identical to the algorithm just described for directed min-cut linear
arrangement. In order to show that this algorithm produces an ordering with
O(F log2n) forward edges where F is the optimal value for the graph, we again
examine the decomposition tree of subgraphs produced by the algorithm. In
particular, let Gi, j denote the jth subgraph on level i of the decomposition tree,
and let Si, j denote the optimal directed bisection for Gi, j. Then the number of
forward edges for the ordering produced by the algorithm is

Falg # Q~log n! O
i51

Q~log n!

O
j51

2 i

Si, j.

We next observe that

(1) the minimum number of forward edges for any graph is at least as large as
the minimum directed bisection for that graph, and

(2) if G9 and G0 are disjoint subgraphs of G, then FG $ FG9 1 FG0.

Hence,

Falg # Q~log n! O
i51

Q~log n!

O
j51

2 i

F~Gi, j!

# Q~log n! O
i51

Q~log n!

F

5 O~F log2 n! ,

as desired.
An O(log n log log n) approximation algorithm was implicitly described by

Seymour [1995] for this problem using similar ideas to those presented here.
Even et al. [1998] made this algorithm explicit.

3.10. MINIMUM REGISTER SUFFICIENCY. Given a DAG G, the register suffi-
ciency problem is to find a topological ordering of the vertices of the DAG v1,
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v2, . . . , vn for which

M 5 max
1#i#n

Mi

is minimized where Mi is the number of nodes in {v1, v2, . . . , vi} incident to a
node in {vi11, . . . , vn}. The value of M is known as the optimal register cost,
because it specifies the number of pebbles that are needed to pebble the
computation graph represented by G.

The minimum register sufficiency problem is NP-hard and is very similar to the
minimum cut linear arrangement problem. The main difference is that we have a
DAG and are worried about node cuts instead of edge cuts. Ravi et al. [1991]
describe an O(log2n) times optimal approximation algorithm for this problem.
The algorithm combines techniques of Sections 3.5 and 3.8 along with some
other ideas to obtain approximately optimal register cost.

3.11. UNIPROCESSOR SCHEDULING. Ravi et al. [1991] have also applied the
method developed in this paper to find approximation algorithms for several
uniprocessor scheduling problems. For example, let G be a DAG in which each
node v corresponds to a task with execution time l(v) and each edge e 5 (u, v)
has a weight w(e) that represents the amount of storage required to save the
intermediate results generated by task u until they are consumed by task v. The
goal is to find a topological ordering of the nodes v1, v2, . . . , vn for which

# 5 O
e

s~e!w~e!

is minimized where s(e) for edge e 5 (vi, vj) is the sum of the execution times
of all tasks ordered between vi and vj, inclusive (i.e. s(e) 5 ( i#k#jl(vk)).

In Ravi et al. [1991], an O(log n log L) times optimal algorithm is presented
for this problem where L 5 (1#i#nl(vi) is the sum of the execution times of the
tasks.

Ravi et al. [1991] provide an O(log n log L) times optimal approximation
algorithm for the minimum weighted completion time problem. In this problem,
the goal is to produce a topological ordering v1, v2, . . . , vn for which

O
1#i#n

w~vi!s~vi!

is minimized, where w(vi) is the weight of task vi and s(vi) 5 (1#j#il(vj) is the
completion time of task vi under the schedule.

These results were recently improved by Even et al. [1995] who give an O(log
n log log n) approximation algorithm for this (and several other) problems.
Their algorithm is based on a generalization of the dual to the multicommodity
flow problem and the partitioning methods developed by Seymour [1995]
mentioned earlier for approximating minimum feedback arc set.

3.12. CROSSING NUMBER. The crossing number # of a graph G is the mini-
mum number of pairwise edge crossings that must appear in any drawing of G in
the plane. For example, the crossing number of a planar graph is 0 and the
crossing number of Kn is Q(n4) for n $ 5. Determining the crossing number of
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a graph is NP-hard [Garey and Johnson 1979] and no good approximations are
known for this problem in the general case.

Bhatt and Leighton [1984] showed how to obtain a planar drawing for any
bounded-degree graph with O((# 1 n) B2(n) log2n) crossings provided that a
B(n)-times optimal approximation algorithm for the graph bisection problem can
be used as a subroutine. Like most of the algorithms described in Section 3, the
algorithm uses the bisection algorithm to recursively partition the graph into two
subgraphs, each of which is then drawn by recursion. Although no approximation
algorithm for the graph bisection problem is yet known, it is sufficient for this
application to find a (1/3, 2/3)-separator for the graph with size at most
O(B log n) where B is the optimal bisection of the graph. Such an algorithm is
described in Section 3.3. Then it is straightforward to modify the analysis of
Bhatt and Leighton [1984] to show that the resulting drawing has O((# 1
n)log4n) crossings.

At first glance, this approximation algorithm seems fairly weak since we are
only approximating # 1 n and only for bounded-degree graphs. However, # .
v(n) for any graph with bisection width v(=n) as well as any graph with 4n or
more edges [Bhatt and Leighton 1984]. These conditions are satisfied by many
graphs of interest, however. Moreover, this approximation algorithm is strong
enough to be the basis of polylogarithmic times optimal solutions to other
problems of interest. (See Sections 3.13 and 3.14.)

3.13. BIFURCATORS AND RECURSIVE SEPARATORS. As we have already seen, it
is often useful to be able to repeatedly decompose a graph into smaller and
smaller subgraphs with smaller and smaller edge-cuts. Any recursive decomposi-
tion into smaller and smaller subgraphs may be viewed as a decomposition tree.
In particular, Bhatt and Leighton [1984] say that a graph G has an (F0, F1, . . . ,
Fr)-decomposition tree when G can be decomposed into two subgraphs G0 and
G1 by removing no more than F0 edges, and, in turn, both G0 and G1 can be
decomposed into smaller subgraphs by removing no more than F1 edges from
each and so on until each subgraph is empty or an isolated node. A particularly
useful type of decomposition tree is called a bifurcator. An N-node graph has an
a-bifurcator of size F (or an (F, a)-bifurcator) if it has an (F, F/a, . . . ,
1)-decomposition tree. In particular, a =2-bifurcator is interesting since it was
shown in Bhatt and Leighton [1984] that it can be used in the solution of a wide
variety of problems in VLSI layout: minimizing capacitive delay, producing fault
tolerant layouts, producing layouts for graphs using prefabricated chips, produc-
ing regular layouts, producing layouts without too many wire crossings, and a few
other problems. (See Bhatt and Leighton [1984] for a detailed discussion of these
problems.) Unfortunately, finding an optimal =2-bifurcator (i.e., a =2-bifurca-
tor for which the value of F is minimized) involves the problem of graph
partitioning, or graph bisection which is NP-hard. However, our methods can be
combined with those of Bhatt and Leighton [1984] to produce an O(log2.5n)
times optimal =2-bifurcator for any graph.

The approximation algorithm for bifurcators uses the approximation algorithm
for crossing numbers described in Section 3.12 as a preprocessing step. In
particular, given an n-node bounded-degree graph G, we first draw G in the
plane using O((# 1 n)log4n) pairwise edge crossings, where # is the minimum
crossing number of G. We can then use the planar separator theorem [Lipton
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and Tarjan 1979] as in Bhatt and Leighton [1984] to find a =2-bifurcator of size
O(=(# 1 n)log4n) 5 O(=# 1 n log2n). Since the =2-bifurcator of any
graph must have size V(=(# 1 n)/log n) Bhatt and Leighton [1984], this means
that the =2-bifurcator produced by the algorithm is O(log2.5n) times optimal, as
claimed.

3.14. VLSI LAYOUT PROBLEMS. When designing a layout for a VLSI circuit,
it is often useful to find a layout with minimum size. This problem can often be
conveniently modeled by a graph embedding problem. In particular, let G denote
the underlying graph for the circuit. In the special case, when G has maximum
degree 4, then the layout problem corresponds to finding an embedding of G
into a m 3 m grid H where the nodes of G are mapped injectively to the nodes
of H and where the edges of G are mapped to edge-disjoint paths of H. The goal
is to find an embedding for which the layout area A 5 m2 is minimized. (The
case when G has nodes with degree greater than 4 is similar, but slightly more
complicated.)

Finding the minimum layout area is NP-hard, even when G is a forest of trees
[Dolov et al. 1983]. By combining the methods of Bhatt and Leighton [1984] with
the algorithm for crossing number just presented, we can find an O(log6n) times
optimal approximation algorithm for this problem. In fact, the algorithm is quite
simple. We first find a drawing of G in the plane with O((# 1 n)log4n)
crossings, where # is the crossing number of G. We then create a planar graph
G* with n* 5 O((# 1 n)log4n) nodes by replacing each edge crossing of G
with a “dummy” node of degree 4. Using the layout algorithm of Leiserson
[1980] and Valiant [1981], we can embed G* in an m 3 m grid where m 5
O(=n*log n*). The embedding of G* induces an embedding of G with layout
area

A 5 m2

5 O~n*log2n!

5 O~~# 1 n!log6n! .

Since # 1 n is a lower bound on the layout area of G, the area achieved by the
algorithm is within an O(log6n) factor of optimal.

In some circumstances, it is necessary to restrict the embedding so that the
nodes of G are located on the perimeter of the grid H. In this case, we desire to
find a rectangular m 3 O(n) grid containing G where m is minimized. The
resulting embedding is known as a colinear layout [Leighton 1983]. The minimum
value of m can be approximated to within an O(log2n) factor by using the
min-cut linear arrangement algorithm described in Section 3.8.

Several other VLSI-related problems such as minimum wire volume and via
minimization can also be approximately solved using the methods developed in
this paper. We refer the reader to Bhatt and Leighton [1984] for further
information on VLSI layout problems.

3.15. GEOMETRIC EMBEDDINGS. The geometric embedding problem consists of
an edge-weighted graph G 5 (V, E) and a set of points P in a d-dimensional
Euclidean space. The goal is to find an injection f: V 3 P that minimizes the
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total edge length D induced on P, where

D 5 O
(u ,v)[E

d~ f~u! , f~v!!w~u , v! ,

d( x, y) is the Euclidean distance between points x and y, and w(u, v) is the
weight of edge (u, v). The geometric embedding problem is similar to the VLSI
layout problem when d 5 2 except that we do not need to worry about wire
width or separation and we can embed into arbitrary point sets.

In the case when the points of P are arranged as a d-dimensional array in
480d, Hansen [1989] has applied the algorithms described in Sections 3.1–3.3 to
obtain an O(log2n)-times optimal approximation algorithm for D for any graph.
A similar result is obtained with high probability in the case when the points of P
are distributed uniformly in the unit sphere of Rd.

As with Uniprocessor Scheduling, Even et al. [1995] have recently discovered
an O(log n log log n) approximation algorithm for geometric embedding
problems into d-dimensional arrays.

3.16. EMBEDDINGS IN GENERAL GRAPHS. In Sections 3.14 –3.15, we men-
tioned algorithms for embedding arbitrary graphs into grids. The methods
developed in Section 2 can also be used to find a good embedding of an arbitrary
graph G into an arbitrary graph H. By a good embedding, we mean an
embedding that has small congestion and dilation. (An embedding maps nodes of
G to nodes in H and edges in G to paths in H. The congestion of the embedding
is the maximum for any edge e of H of the number of paths in the embedding
that contain e. The dilation of an embedding is the maximum number of edges in
any path in the embedding.)

In what follows, we will describe how to find a good embedding in the special
case that G and H have bounded degree and unweighted edges (i.e., capacity 1
edges). (This result can be generalized to handle weighted graphs with un-
bounded node degree, but the quality of the embedding may degrade according-
ly.) In particular, we will prove the following theorem. (The definition of flux is
given in Section 3.2.)

THEOREM 22. Consider any n-node bounded degree graph G and any 1–1
mapping h of the nodes of G onto the nodes of an n-node bounded degree graph H
with flux a. The edges of G can be routed as paths in H with congestion and dilation
O(log n/a).

PROOF. In order to produce the embedding, we would like to view each edge
e 5 (u1, u2) of G as incurring a demand of one unit of flow for commodity r(e)
between h(u1) and h(u2) in H. Unfortunately, the resulting flow problem is not
uniform (nor is it a PMFP) and so we must modify the demands so that they
appear uniform. We do this as follows: For each edge e 5 (u1, u2) of G, we
create 2n commodities r1(e), . . . , r2n(e) each with demand 1/n, where
commodity r i(e) is routed between h(u1) and vi, and rn1i(e) is routed between
vi and h(u2) for 1 # i # n, where vi is the ith node of H.

When all the commodities {r i(e) u1 # i # 2n, e [ E(G)} are taken together,
we will have 1 unit of flow for each (u, v) [ E(G) and we will have at most
2dmax/n demand for each pair of nodes in H where dmax is the maximum node
degree in G. Hence, we can view the flow problem as a UMFP on H with
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demands of size 2dmax/n. By Theorem 18, we can find a flow that satisfies the
demands using flow paths of length L # O(Cmaxlog n/n6) provided that f 5
c6/log n $ 2dmax/n, where c is the constant hidden in the V-bound of Theorem
18.

If every edge of H is assigned capacity G, then 6 $ Ga/n. Hence, we can find
the desired flow provided that cGa/n log n $ 2dmax/n, which is true provided
that

G $
2dmaxlog n

ca

5 QS log n

a
D ,

which is the desired bound on congestion. Hence, we can solve the original flow
problem where each edge e 5 (u1, u2) of G incurs demand 1 between h(u1) and
h(u2) in H using flow paths of length

2L # OSCmaxlog n

n6
D

5 OS G log n

n~2Ga/n!
D

5 OS log n

a
D ,

provided that every edge of H is assigned capacity G 5 O(log n/a).
It remains to find a single flow path with unit volume for every edge of G. This

can be accomplished by using the rounding method of Raghavan [1988]. This
method increases the capacity by a constant multiplicative factor and an additive
log n term. Since a # O(1) for bounded-degree graphs, however, the resulting
rounded flow still requires capacity only O(log n/a). Hence, we can embed the
edges of G into H with congestion and dilation O(log n/a), as claimed. e

As a corollary, we can conclude that any bounded-degree graph can be
embedded into any expander with O(log n) congestion and dilation.

3.17. PRAM EMULATION AND PACKET ROUTING IN DISTRIBUTED NETWORKS.
Communication in a distributed network is an important area of research in
which it is very difficult to prove precise results. For example, given an arbitrary
n-processor network, we might wish to know how well it can simulate a
well-studied network or other parallel machine such as the butterfly or PRAM.
Some progress has been made on this problem in the special case that the graph
is an expander. For example, Peleg and Upfal [1989] have shown how to solve
any n-packet routing problem on any n-node expander in O(log n) expected
steps using queues of size O(log n) at each node. For general graphs, relatively
little is known except that it has been observed by many researchers that flux and
diameter are important parameters that influence performance (e.g., they are
both lower bounds on the time needed to route a random permutation).
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In what follows, we provide the first step towards a general solution to the
problem by showing how any n-node bounded-degree graph, H, with flux a can
simulate any other n-node bounded-degree graph, G, with delay O(log n/a) and
constant size queues. The result is optimal in the sense that there are simulation
problems that require this much time, and is robust in the sense that the
simulation can take place for any 1–1 embedding of the nodes of G onto nodes of
H. The main drawback of the simulation result is that it requires off-line
computation. However, once the off-line embedding is performed for one G,
simulation of another G9 can be performed on-line by using G to simulate G9.
For example, by embedding a butterfly or other universal network into H
off-line, we can then use H to simulate any CRCW PRAM algorithm in an
on-line fashion with delay O(log2n/a) and constant size queues.

Conceivably, such a result could have a substantive impact on the theory of
distributed computation, where the complexity of algorithms for operations such
as sorting is typically measured in terms of numbers of nodes and edges and
(sometimes) diameter. While such algorithms are of interest for some graphs,
they can be far from optimal for many others. By using our flux-based approach,
however, it is possible to devise a single on-line algorithm to sort in any network
in O(log2n) steps times the optimal for that graph. Of course, we will still need
off-line computation to set up routing tables for the graph, but if the sorting is to
be done many times, the algorithm will be asymptotically much better than
currently known techniques for general graphs.

The proof that any n-node bounded-degree graph H with flux a can simulate
any other n-node bounded-degree graph G with delay O(log n/a) follows from
Theorem 22 and the result of Leighton et al. [1994] (or the constructive version
of Leighton and Maggs [1995] and Leighton et al. [1995] that any packet routing
problem can be solved in O(congestion 1 dilation) steps using constant size
queues.

Unfortunately, the LMR routing algorithm is fairly complicated. We can
circumvent this drawback by introducing randomness and queues, however. In
particular, we can use Theorem 18 to embed Kn in G with congestion O(n log n/
a) and dilation O((log n)/a). This can be performed in polynomial time off-line.
We can then route a random permutation using queues of size O((log n)/a) by
introducing a random delay selected uniformly from [1, (log n)/a] for each
packet and multiplexing the packets as they arrive at each edge. It is shown in
Leighton et al. [1994] that the congestion on any edge is only O(log n) with high
probability in a random permutation; thus one only needs to multiplex each edge
O(log n) times to get the congestion down to one. So each packet travels
through at most O(logn/a) edges, and it takes O(log n) steps to traverse any
edge. Thus, a random permutation is routed in O(log2n/a) expected steps. See
Leighton et al. [1994] for a more extensive discussion of these details.

One final comment is relevant here. The observant reader will notice that we
are routing arbitrary paths in G within time O((log n)/a) without regard for the
diameter of G. At first glance, this would not seem to be possible if the diameter
were v((log n)/a). Such a scenario is not possible, however, since a consequence
of our proof is that the diameter of any bounded-degree graph is always
O((log n)/a).
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3.18. EMBEDDING DISJOINT OR LOW CONGESTION PATHS IN GRAPHS. Given a
set of k request pairs in a network, and a constant c, the path embedding problem
is to route a path between each pair so that at most c paths use the same wire.

Leighton and Rao [1996] use Theorem 18 to show that the path embedding
problem can be solved in polynomial time for any sufficiently strong expander
graph when k 5 O(n/(log n)11e) for a sufficiently large constant c. Also,
Leighton and Rao [1996] existentially show that the disjoint paths problem (a path
embedding problem with c 5 1) has a solution for any k 5 V(n/(log n log log
n)2) in a sufficiently strong expander.

This can be compared to a previous algorithm based on random walks
developed by Broder et al. [1992], which obtains paths in polynomial time with
congestion 1 for k 5 O(n/logkn) requests where k seems to be at least 6. Broder
et al. [1997] have extended their random walks approach to obtain existential
bounds for k 5 V(n/(log n)2). Recently, Leighton et al. [1998] matched and
generalized these results using the multicommodity flow approach.

3.19. FORWARDING INDEX PROBLEM. Given an n-node graph G and an
embedding of Kn in G, Chung et al. [1987] defined the forwarding index of the
embedding to be the maximum number of paths (each corresponding to an edge
of Kn) that pass through any node of G. For applications involving network
communications, the goal is to find an embedding that minimizes the forwarding
index. As noted by Heydemann et al. [1989], it is also desirable to minimize the
maximum number of paths passing through any edge (which they define as the
edge-forwarding index).

Several bounds on forwarding indices have been proved based on properties of
the underlying graph such as connectivity, edge distribution, factorization, or
some special structure [Chung et al. 1987; Heydemann et al. 1989; 1992; 1994].
Although the bounds are nearly tight for some graphs, they can be far apart for
others. By applying the methods described in Sections 3.16 –3.17, however, it is
possible to bound the node and edge-forwarding indices to within an O(log n)-
factor for every graph G in terms of the flux of the graph.

3.20. ROUTING IN OPTICAL NETWORKS. Given a graph G 5 (V, E) and a set
of requests R that consist of pairs of nodes in V, the optical routing problem is to
partition the set of requests into a minimum number of sets or rounds {R1, . . . ,
Rk} and to find for each i a set of edge-disjoint paths connecting the nodes of
each request in Ri.

Aumann and Rabani [1995] apply the methods developed in this paper to
devise an algorithm that can solve the problem using O(log2n/a2) rounds (where
a is the flux of G) for any bounded-degree graph and any set of requests for
which each node is the source or destination of at most one request. This result is
within an O(log2n) factor of optimal since there is such a problem that requires
at least V(1/a2) rounds for any a. This improves the results of Raghavan and
Upfal [1994] who use a random walk based algorithm with a worst case bound of
O(log2n/a4) rounds.

3.21. INTERVAL GRAPH COMPLETION. Given a graph G, the interval graph
completion problem is to find an n-node interval graph G* with the minimum
number of edges for which G is a subgraph of G*. Ravi et al. [1991] apply a
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balanced node separator algorithm like that in Section 3.5 to obtain an O(log2n)
times optimal approximation algorithm for this problem.

These results were improved in Even et al. [1995] to yield an O(log n log log
n) times optimal approximation algorithm.

3.22. CHORDAL GRAPH COMPLETION. Given a graph G, the chordal graph
completion problem is to find an n-node chordal graph G* with the minimum
number of edges for which G is a subgraph of G*. Agrawal et al. [1993] use the
results of Section 2 to obtain an O(=dmaxlog4n) times optimal approximation
algorithm for this problem where dmax is the maximum degree of a node in G.

3.23. PLANAR EDGE DELETION. Tragoudas [1990] uses the approximation
algorithm for balanced separators described in Section 3.3 to find a set of

RALG # OS ~R log n 1 ÎnR!log
n

RD
edges whose removal from a bounded-degree graph G results in a planar graph,
where R is the minimum number of edges that need to be removed from G
before it becomes planar. Whether or not, there is a polylog n times optimal
approximation algorithm for R remains an interesting open question.

3.24. TREEWIDTH AND PATHWIDTH. As defined in Bodlaender et al. [1995], a
tree decomposition of a graph G 5 (V, E) is a pair ({Xiui [ I}, T 5 (I, F)),
where T is a tree and {Xi} is a collection of subsets of V, such that

—ø i[IXi 5 V.
—For all (v, w) [ E, there exists an i [ I with v, w [ Xi.
—For all i, j, k [ I, if j is on the path from i to k in T, then Xi ù Xk # Xj.

The treewidth of a tree decomposition ({Xi}, T) is maxuXiu 2 1. The treewidth
of a graph is the minimum treewidth of any tree decomposition. The pathwidth of
a graph G is the minimum treewidth over all tree decompositions ({Xi}, T) of G
where T is a path.

Our algorithms are used to give an O(log n) approximation algorithm for
treewidth and an O(log2n) approximation for pathwidth in Bodlaender et al.
[1995].

3.25. ELIMINATION ORDERING PROBLEMS. Agrawal et al. [1993] use the re-
sults of Section 2 to derive a near optimal elimination ordering of the variables
for solving a symmetric system of linear equations without pivoting. Their
ordering results in O(Mdmaxlog6n) multiplications being performed during the
elimination, where dmax is the maximum number of nonzero entries in any row of
the matrix and M is the number of multiplications required for the optimal
ordering.

The elimination tree height of G is the minimum parallel depth in terms of
elimination steps for any elimination algorithm on G. The minimum front size of
a graph G is the minimum over elimination orderings of G of the maximum
degree of v in the filled (chordal) graph corresponding to nodes that are later in
the elimination order. (See, e.g., Bodlaender et al. [1995] for the definition of an
elimination algorithm.)
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The algorithm of Section 2 is used to approximate front size in Bodlaender et
al. [1995] and elimination tree height in Bodlaender et al. [1995] and Agarwal et
al. [1993]. The approximation factors are O(log n) for minimum front size and
O(log2n) for elimination tree height.

3.26. SEARCH NUMBER. As described in Ellis et al. [1994], the search number
of a graph is the number of searchers needed to capture a fugitive that can move
with arbitrary speed about the edges of the graph. A search step is the placing of
a searcher on a vertex, the movement of a searcher along an edge, or the removal
of a searcher from a vertex. A search sequence is a sequence of search steps. All
edges are initially contaminated. An edge e 5 ( x, y) becomes clear when either
there is a searcher on x and a second searcher moves from x to y or all the edges
other than e incident to x are clear and a searcher moves from x to y. A clear
edge e can become contaminated again if the movement or removal of a searcher
results in a path from a contaminated edge to e that includes no nodes containing
a searcher. A search strategy for a graph is a search sequence that results in all
edges being simultaneously clear. The search number of a graph is the minimum
number of searchers for which a search strategy exists.

The node search number of a graph, defined in Kirousis and Papadimitriou
[1986], is similar except that a searcher does not need to move along an edge;
looking along it is sufficient to catch a fugitive.

Kirousis and Papadimitriou [1986] show that the node search number of a
graph is equal to its pathwidth plus one. Ellis et al. [1994] showed that the search
number of a graph is equal to its pathwidth plus two.

Thus, using the result described in Section 3.24, our results give an O(log2n)
approximation algorithm for finding the search number and node search number
of a graph.

3.27. RESISTANCE, CONDUCTANCE, AND RAPIDLY-MIXING MARKOV CHAINS.
Reversible Markov Chains are often identified with a weighted directed graph
G 5 (V, E) where the weight p(v) of a node v is the probability of being in
state v in the stationary distribution and the weight w(e) of an edge e 5 (u, v) is
p(u) P(u, v) where P(u, v) is the probability of moving to state v from state u.
The conductance C of the chain is equal to the flux of G and is useful in
quantifying the most severe transition bottleneck in the chain. The resistance R of
the chain is the minimum capacity needed on each edge in order that there exist
a solution to the PMFP where p(u)p(v) flow is passed between u and v for all u,
v [ V.

As a consequence of Theorem 7, we can conclude that for any chain, C21 and
R are equal up to a Q(log p) factor, where p is the number of states in the chain
with nonzero stationary probability. (Sinclair [1993] uses similar methods to
prove a slightly weaker bound.)

A Markov chain is said to be rapidly-mixing if the chain reaches equilibrium
quickly. The mixing rate of a chain is often characterized in terms of its second
eigenvalue [Diaconis and Stroock 1991], which is known to be within a square of
the conductance [Sinclair and Jerrum 1989]. Diaconis and Strook [1991] have
also devised bounds on mixing rate derived directly from the resistance. Sinclair
[1991] applies Theorem 7 to connect these methods and to derive improved
approximation algorithms for a variety of difficult combinatorial problems.
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The connection between max-flow, min-cut theorems and Markov chains is
important and worthy of further exploration. (For further information on
rapidly-mixing Markov chains, we refer the reader to Diaconis and Stroock
[1991], Lovász [1991], Sinclair [1991; 1993], and Sinclair and Jerrum [1989].) The
connection is particularly important in the domain of approximation algorithms,
where it is known that the methods perform within a quadratic factor of each
other. For some problems (such as path routing), however, the quadratic factor
can be substantial and so it is necessary to try each method independently to
obtain the best approximation algorithm. (For example, see Section 3.20.)

4. Remarks and Open Questions

Since the initial results of this work first appeared in 1988, dramatic progress has
been made on a wide variety of problems involving multicommodity flow. Two
central questions still remain unresolved, however:

(1) Is there a max-flow min-cut theorem similar to Theorem 2 for directed
multicommodity flow problems with general demands?

Currently, such a result is known only if the demands are symmetric [Klein et
al. 1997; Even et al. 1998], and even in this case, the bounds are not tight.
Negative results are only known for restricted notions of cuts. (In general, any set
of edges might be considered to be a cut, even if the set of edges does not
correspond to a partition of the graph.)

(2) Is there a polynomial-time approximation algorithm for balanced separators
that achieves a o(log n)-times optimal performance guarantee?

No such result is currently known for general graphs, and no lower bounds are
known for this problem. Arora et al. [1995] give a fully polynomial time
randomized approximation scheme for the special case of dense graphs. Any
improvement in the O(log n)-times optimal performance guarantee provided in
this paper would immediately result in improved performance guarantees for all
of the approximation algorithms in Section 3.
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