
Stochastic models for the web graphRavi Kumar� Prabhakar Raghavany Sridhar Rajagopalan� D Sivakumar�Andrew Tomkins� Eli UpfalzAbstractThe web may be viewed as a directed graph each of whose vertices is a static HTML web page, andeach of whose edges corresponds to a hyperlink from one web page to another. In this paper we proposeand analyze random graph models inspired by a series of empirical observations on the web.Our graph models di�er from the traditional Gn;p models in two ways:1. Independently chosen edges do not result in the statistics (degree distributions, clique multitudes)observed on the web. Thus, edges in our model are statistically dependent on each other.2. Our model introduces new vertices in the graph as time evolves. This captures the fact that theweb is changing with time.Our results are two fold: we show that graphs generated using our model exhibit the statistics observedon the web graph, and additionally, that natural graph models proposed earlier do not exhibit them.This remains true even when these earlier models are generalized to account for the arrival of verticesover time. In particular, the sparse random graphs in our models exhibit properties that do not arise infar denser random graphs generated by Erd�os-R�enyi models.1 IntroductionThe web may be viewed as a directed graph in which each vertex is a static HTML web page, and eachedge is a hyperlink from one web page to another. Current estimates suggest that this graph has roughly abillion vertices, and an average degree of about 7. In this paper we propose and analyze a class of randomgraph models inspired by a series of empirical observations on the web graph [5, 11]. These observationssuggest that the web is not well modeled by traditional random graph models such as Gn;p. For instance,the distributions of in- and out-degrees on the web follow a power-law (rather than a Poisson or binomialdistribution, as one might expect of a random sparse graph chosen from Gn;p). Further, it is known [11]that there are several hundred thousand disjoint instances of bipartite cliques (Ki;j with i; j � 3) on theweb|once again, an unlikely occurrence in a traditional sparse random graph. Finally, the web is an evolvinggraph: new vertices and edges appear over time, while some older vertices and edges disappear.We propose a family of random graph models here, very di�erent from the traditional Erd�os-R�enyi randomgraph model and its derivatives. Two salient features of our models are worth highlighting here: (1) Becauseindependently chosen edges out of each vertex will not result in the statistics (degree distributions, cliquemultitude) observed on the web, our model must allow dependencies between edge choices. We achieve thisin a simple and plausible manner: some vertices choose their outgoing edges independently at random, asin Gn;p, but other vertices replicate existing linkage patterns by \copying" edges from a randomly-chosenvertex. We will discuss this further in Section 2. (2) Our model introduces new vertices in the graph astime evolves, to capture the fact that the web is a changing and growing graph. To our knowledge, the only�IBM Almaden Research Center, 650 Harry Road, San Jose CA 95120.yVerity Inc., 892 Ross Drive, Sunnyvale, CA 94089. Portions of this work were done while the author was at IBM's AlmadenResearch Center.zComputer Science Department, Brown University, Providence, RI 02906. This work was supported in part by the Air Forceand the Defense Advanced Research Projects Agency of the Department of Defense under grant No. No. F30602-00-2-0599,and by an NSF grant CCR-9731477.



prior work studying the evolution of vertices in the traditional Gn;p setting is [2], where the focus is on theemergence of the giant component.We show that a graph model with the above two features predicts certain graph properties observed onthe web. There is an obvious \evolving"1 version of Gn;p. Indeed, might it not be possible that such anevolvingGn;p (without dependencies between the edges) could give rise to the statistical phenomena observedin the web? We show that this is not the case: while an evolving Gn;p model behaves very di�erently fromthe traditional Gn;p, the di�erence is not acute enough to give rise to some of the phenomena observed onthe web.Related work. Kumar et. al. [11] describe methods for enumerating subgraphs of the web in the contextof discovering web communities. From a graph-theoretic standpoint, a central �nding in this work is theexistence of a surprising number of edge-induced complete bipartite graphs in the web. The authors alsoobserve the power-law distribution of in- and out-degrees in the web graph: the probability that the in-degreeof a random vertex is i is distributed by the power-law, Pru[in-degree(u) = i] � 1=i�, for � � 2:1. Theseobservations are based on a web crawl from 1997. Other authors [1, 5] verify these degree distributions inmore recent web crawls. Interestingly, the power-law exponent in the later experiments is the same as thatfrom the earlier work, suggesting that it may be a fairly stable property of the web graph.Perhaps the �rst rigorous e�ort to de�ne and analyze a model for power-law distributions is due toHerbert Simon [15]. Power-law distributions have been observed for citations in the academic literature, anobservation originally due to Lotka [14]. Gilbert [9] presents a probabilistic model supporting Lotka's law. Hismodel is similar in spirit to ours, though di�erent in details and application. The �eld of bibliometrics [6, 8]is concerned with citation analysis; some of these insights have been applied to the web as well [13].The \copying" models analyzed in this paper were �rst introduced by Kleinberg et. al.[10]. Motivatedby observations of power-laws for degrees on the graph of telephone calls, Aiello, Chung, and Lu [3] proposea model for \massive graphs" (henceforth the \ACL model"), which is very di�erent from ours in three keyrespects:� The ACL model ensures the power-law for degrees by �rst �xing the degrees of (the appropriate numberof) vertices to �t the distribution, then randomly introducing edges into the resulting \ports" at eachvertex. Thus, the power-law for degrees is an intrinsic feature of the model, rather than an emergentfeature of a stochastic process.� The ACL model was developed to capture characteristics of large-scale call graphs, while ours wasdeveloped to capture the nature of the web; thus, their models do not explain the abundance ofbipartite cliques observed in the web graph, whereas ours do. See Section 4 for details.� With vertex degrees being prescribed before any edges are introduced, it is not clear how their modelshould be adapted to capture the notion of an evolving graph.Motivations for modeling the web graph.1. Many problems we wish to solve on the web (such as the subgraph enumeration problems of [12]) arecomputationally di�cult for general graphs. Nevertheless, a suitable model of the web can help usdesign and analyze algorithms that work well in practice. They could also be simulated under themodel to determine their scalability and performance.2. The model can suggest unexpected properties of today's web that we can then verify and exploit.Results and organization. In Section 2, we propose our new models that incorporate evolving graphs inwhich edges are introduced by stochastic copying. We study two variants of these evolving copying models:linear growth, in which the graph grows by some absolute amount (i.e., one vertex) at each timestep, andexponential growth, in which the graph grows by an amount that depends on its current size (e.g., twice)1In this paper, \evolution" in our random graph models refers to the evolution of the graph on the time-axis, rather thanon the axis of edge density, as in the seminal work of Erd�os and R�enyi. This clash of terminology is unfortunate, but the wordevolution describes our setting accurately.



at each timestep. We also introduce the evolving uniform model, in which the graph evolves over time, butedge destinations are chosen independently at random (loosely referred to above as \evolving Gn;p").In Section 3 we study the degree distributions in each of these models. Whereas the copying-based modelsgives rise to power-law distributions, we show that the evolving uniform model has a much 
atter degreedistribution.Next, in Section 4, we study the number of bipartite cliques in each of these models, as well as in theACL model [3]. Bipartite cliques are an interesting class of subgraphs on the web since they capture thenotion of \communities" [11]. We show that whereas evolving copying models give rise to large numbers ofbipartite cliques (as observed in the web graph), the number of such cliques in the evolving uniform andACL models is likely to be small. We conclude (Section 5) with a number of directions for further work onmodeling and analyzing evolving graphs with and without copying.2 Random graph modelsIn this section we give terminology and describe the random graph models we will study. Let G = hV;Eidenote a directed graph with vertex set V and edge set E. For a directed edge (u; v), u is called the tail andv the head of the edge. For a vertex u, the edges for which u is the tail (head) are called out-links (in-links)of u. In-degree and out-degree of a vertex are denoted Iu and Ou respectively. The degree of a vertex u inan undirected graph is denoted du.In all our models, we assume the average vertex degree is a constant. This is in light of our focus on theweb graph, where we �nd that despite small average degree, one encounters structures that only arise in fardenser graphs in the Erd�os-R�enyi style of random graphs. For a �nite set X , let x 2R X denote a uniformrandom choice from X , and for a distribution D let x � D denote that x is chosen from the distribution D.Let [n] = f1; : : : ; ng.2.1 Evolving graph modelsIn all of our evolving graph models, the directed graph evolves over discrete timesteps t = 1; 2; : : :. Let thevertices be numbered 1; 2; : : :, and let the graph at time t be Gt = hVt; Eti. Two functions are requiredto describe the evolution of the graph in a model. The growth of vertices is captured by a (possiblyrandom) function fv(Vt; t) which returns an integer denoting the number of vertices to be added at timet + 1; therefore jVt+1j = jVtj + fv(Vt; t). The growth of edges is more complicated and is described by aprobabilistic edge process fe(fv; Gt; t). This function returns the set of edges to be added at time t + 1;therefore, Et+1 = Et [ fe(fv; Gt; t). An evolving graph model is completely characterized by hfv ; fei.Evolving copying models. We consider two di�erent models|linear growth copying and exponentialgrowth copying models. We begin with an intuitive description of the two models in the context of the web.On the web, pages arrive over time, and page creators link to existing content. We must determine whichexisting content page creators will have access to in their decisions about which hyperlinks to add. If weassume that web pages are immediately available at creation to the entire browsing population then a pagecreator should be able to add an edge to any prior vertex. This is linear growth: at timestep t, a singlevertex arrives and may link to any of the �rst t � 1 vertices. It is reasonable however to assume that apage creator may not be aware of pages created in the last week or two (say). Since the web is currentlygrowing exponentially, this means that a page creator will not see the most recent \epoch" of pages. Thisis exponential growth: at timestep t a new epoch of vertices arrives whose size is a constant fraction of thecurrent graph. Each of these vertices may link only to vertices from previous epochs. We now present theformal de�nitions.The linear growth copying model is parameterized by a copy factor � 2 (0; 1) and a constant out-degreed � 1. At each time step, one vertex u is added, so fv(Vt; t) = 1, and u is then given d out-links for someconstant d. To generate the out-links, we begin by choosing a \prototype" vertex p 2R Vt. The i-th out-linkof u is then chosen as follows. With probability �, the destination is chosen uniformly at random from Vt,and with the remaining probability the out-link is taken to be the i-th out-link of p. Thus, the prototype



is chosen once in advance. The d out-links are chosen by �-biased independent coin 
ips, either randomlyfrom Vt, or by copying the corresponding out-link of the prototype.The intuition behind this model is the following. When an author decides to create a new web page, theauthor is likely to have some topic in mind. The choice of prototype represents the choice of topic|largertopics are more likely to be chosen. The Bernoulli copying events re
ect the following intuition: a newviewpoint about the topic will probably link to many pages \within" the topic (i.e., pages already linked-toby existing resource lists about the topic), but will also probably introduce a new spin on the topic, linkingto some new pages whose connection to the topic was previously unrecognized.The exponential growth model is parameterized by a constant growth factor p > 0, the \self-loop"(integral) factor 
 > 1, the \tail copy" factor 
0 2 (0; 1), and out-degree factor d > 0. In this model, degreesequences evolve as a branching process. Let fv(Vt; t) � B(Vt; p), the standard binomial distribution. Thisbranching process has a non-zero extinction probability, but conditioning the process on the fact that it didnot terminate, for large t, Vt is well concentrated around its mean, (1 + p)t. To simplify the analysis weassume below (deterministically) that V1 = 1 and Vt = (1 + p)t. The expected number of edges generatedin time t + 1 is (d + 
)pVt. Each new vertex is generated with 
 self-loop edges. The heads and tails ofthe remaining edges are chosen according to the following process. Let u 2 Vt. For each edge directed to uat time t, we generate with probability dp=(d + 
) a new edge directed to u. Assuming that the expectednumber of edges at time t is (d+ 
)Vt, the expected number of edges generated in this process is dpVt. Thetails of the new edges generated in this step are distributed as follows: (1) with probability 1 � 
0 a tailof a new edges is chosen uniformly at random from among the pVt new vertices of this step and (2) withprobability 
0 the tail of the edge is chosen at random among the vertices created in previous steps, withthe vertices chosen with probabilities proportional to their current out-degree. Therefore, together with thenew self-loop edges the expected number of edges at time t+ 1 is (d+ 
)Vt+1.Linear growth variants. For purposes of comparison, we also introduce a linear growth analog of thestandard Gn;p random graph model. Again, fv(Vt; t) = 1, and the vertex generated at time t has d out-links.The destination of each out-link is chosen uniformly from the existing vertices. In other words, fe containsd out-links of the form (t+ 1; x) for x 2R Vt.2.2 Static modelsFor purposes of illustration, we describe some static models. All the graphs in this section are undirected.Uniform random graphs. The most prevalent and well-studied static random graph model is Gn;p, inwhich V = [n] and each possible edge (i; j) is present with probability p. See, for instance, [4].The ACL model. Generally, given a �xed degree sequence, a family of random graph can be de�ned bychoosing uniformly from all graphs with that degree sequence. Aiello, Chung and Lu [3] describe \power-lawrandom graphs" in which the degree sequence is given by a power-law. The distribution of such graphs canbe well-approximated constructively as follows: �rst a degree sequence is obtained, which �xes the numberof vertices and edges. Second, a set is constructed with as many copies of each vertex as its degree. Third,a random matching in this set is chosen. And �nally, each edge in the matching between a copy of u and acopy of v is added to the original graph as an edge (u; v).2.3 Extensions to the modelsOur evolving models are by no means complete. They can be extended in several ways. First of all, thetails in our models were either static, chosen uniformly from the new vertices, or chosen from the existingvertices proportional to their out-degrees. This process could be made more sophisticated to account for theobserved deviations of the out-degree distribution from the power-law distribution [5]. Similarly, the modelscan be extended to include death processes, which cause vertices and edges to disappear as time evolves. Anumber of other extensions are possible, but we seek to determine the properties of this simple model, inorder to understand which extensions are necessary to capture the complexity of the web.



3 Degree distributionsLet Nt;k denote the number of vertices u such that Iu(t) = k. In this section we obtain the in-degreedistributions in various graph models. The expected in-degree distributions in the case of evolving modelsfollow a power-law|the probability that a random vertex has in-degree i is roughly poly�1(i). Speci�cally,in the linear case, we show that E[Nt;k] = tk�(2��)=(1��) and after T steps, Nt;k is sharply concentratedabout its mean for t up to about lnT . In the exponential case, we show concentration about the meanE[Nt;k] = O(tklog�(1+p)) for t � TO(1) and � = 1+ pd=(d+ 
). In contrast, for the evolving uniform model,we show E[Nt;k] = O(t exp(�k=d)), i.e., exponentially small tails.3.1 Evolving copying model: The linear caseFor simplicity of exposition, we present the case d = 1. Note that this is without any loss in generality, sincethe linear growth process where out-degree = d can be factored into two probabilistic processes|one forwhich vertex a new vertex decides to copy from, and one for how many links it copies from that vertex. The�rst choice (namely, which vertex to copy from) induces a graph that has the same distribution as a graphin the linear growth model with d = 1. This is important for clique analyses.We �rst present the analysis for i = 0, and build upon it to derive the distributions of Nt;i for i > 0.Our approach is to study the sequence of random variables E[Nt;0 j Nt�k;0] for 0 � t � k � t, which formsa martingale. Clearly, E[Nt;0] = E[E[Nt;0]] = E[Nt;0 j N1;0]. The random variable Nt;0 has the followingdistribution, which follows directly from the linear growth model:Nt;0 = � Nt�1;0 w.p. �Nt�1;0=(t� 1)Nt�1;0 + 1 w.p. 1� �Nt�1;0=(t� 1)Lemma 1 Let S0;0 = 1, and for k > 0, let Sk;0 = Sk�1;0(1��=(t�k)). Then for every t � 1 and 0 � k � t,E[Nt;0 j Nt�k;0] = Nt�k;0Sk;0 + k�1Xj=0 Sj;0:Proof: By induction on k. The case k = 0 is obvious; assume that the lemma holds for k � 1 for k > 0.Now, E[Nt;0 j Nt�k;0] = E[Nt;0 j Nt�(k�1);0 = Nt�k;0] Pr[Nt�(k�1);0 = Nt�k;0]E[Nt;0 j Nt�(k�1);0 = Nt�k;0 + 1]Pr[Nt�(k�1);0 = Nt�k;0 + 1]= �Nt�k;0t� k 0@Nt�k;0Sk�1;0 + k�2Xj=0 Sj;01A+0@�1� �Nt�k;0t� k �0@(Nt�k;0 + 1)Sk�1;0 + k�2Xj=0 Sj;01A1A= (Nt�k;0 + 1)Sk�1;0 � �Nt�k;0t� k Sk�1;0 + k�2Xj=0 Sj;0= Nt�k;0Sk�1;0�1� �t� k�+ k�1Xj=0 Sj;0= Nt�k;0Sk;0 + k�1Xj=0 Sj;0:2Next, we establish bounded di�erences for the martingale E[Nt;0 j Nt�k;0].



Lemma 2 For every t � 1 and every k < t,��E[Nt;0 j Nt�k;0]�E[Nt;0 j Nt�(k+1);0]�� � 2:Proof: E[Nt;0 j Nt�k;0]�E[Nt;0 j Nt�(k+1);0]= Nt�k;0Sk;0 +Xj<k Sj;0 �Nt�(k+1);0Sk+1;0 � Xj<(k+1)Sj;0= Nt�k;0Sk;0 �Nt�(k+1);0 �Sk;0�1� �t� (k + 1)��� Sk;0= (Nt�k;0Sk;0 �Nt�(k+1);0)Sk;0 +Nt�(k+1);0 �t� (k + 1) � Sk;0:In the last expression, every term is between 0 and 1, so it is bounded in absolute value by 2. It is also easyto show that the absolute value is at most 1 + �; a more re�ned analysis shows that the absolute value ofthe di�erence is, in fact, at most 1. 2Before stating the tail bound by applying Azuma's inequality, we pause to compute the expected value ofNt;0.Lemma 3 t+ �1 + � � �2 ln t � E[Nt;0] � t+ �1 + �Proof: Note that E[Nt;0] = E[E[Nt;0 j Nt�k;0]] = E[Nt;0 j N1;0]. By Lemma 1, this equals Pt�1j=0 Sj;0. Webound this sum by �rst expressing it as the value of a recurrence, which turns out to be easier to boundsharply. De�ne the quantity Qt = 0, and for k < t, let Qk = (1 � �=k)(1 + Qk+1). By unwinding the twode�nitions, it is easy to see that Pt�1j=0 Sj;0 = 1 + Q1. The lemma follows from the following two claims.(i) (Upper bound for Qk) For every k � t, Qk � (t � k)=(1 + �); in particular, Q1 � (t � 1)=(1 + �). and(ii) (Lower bound for Qk) Q1 � (t � 1)=(1 + �) � �2 ln t. Proof of upper bound: By �nite downwardinduction on k. The case k = t is trivial. For k < t, inductively assume that Qk+1 obeys the bound. NowQk = (1� �=k)(1 +Qk+1)� (1� �=k)�1 + k + 11 + ��= k1 + � + 1� �k � 11 + � + �(1 + �)(k) � �1 + �= k1 + � + �k � 11 + � � 1�� k1 + � since the quantity (1=(1 + �)) � 1 < 0:Proof of Lower bound: For k < t,Qk = �1� �k � (1 +Qk+1)= 1 +Qk+1 �Qk+1�k � �k� 1 +Qk+1 �� k + 11 + � �k�� �k by the upper bound on Qk+1= Qk+1 +�1� �1 + ��� �k �1� 11 + ��= Qk+1 + 11 + � � �2kUnrolling the equations, we have Q1 = Qt + (t�1)1+� � �2Pt�1k=1 1k � t�11+� � �2 ln t: 2



We summarize the consequences of Lemmas 2 and 3, together with the Azuma inequality in the followingtheorem.Theorem 4 For any t > 0, t+ �1 + � � �2 ln t � E[Nt;0] � t+ �1 + �and for all ` > 0, Pr[jNt;0 �E[Nt;0]j > `] < e�`2=4t:Corollary 5 P0 �= limt!1E[Nt;0=t] = 1=(1 + �).We now turn to the more general quantityNt;i for i > 0. The goal is to show that for a su�ciently large integerT , after T steps, all the quantities NT;0; NT;1; : : : ; NT;i are sharply concentrated about their respective valuesP0; P1; : : : ; Pi, for i up to about lnT . The strategy here is as follows: for each t, we will study the martingaleE[Nt;i j Nk;i; N�;i�1] for k < t and where N�;i�1 is a shorthand for the list N0;i�1; N1;i�1; : : : ; Nt;i�1.The sequence E[Nt;i j N0;i]; E[Nt;i j N1;i]; E[Nt;i j N2;i]; : : : ; E[Nt;i j Nt�1;i] is not a martingale in itself;however, conditioned on the values for the random variablesN0;i�1; N1;i�1; : : : ; Nt�1;i�1, this sequence formsa martingale, which is our object of study. We �rst derive an expression for the quantity E[Nt;i j N1;i; N�;i�1]in terms of the values of the random variables N�;i�1. Then we will inductively assume that Ns;i�1=s isbounded by Pi�1 � T�a(i�1) for all s � T 1�b(i�1) and for suitable decreasing functions a and b. Thebasis for this induction is provided by Theorem 4. Using the inductive assumption, we �rst show that(1=t)E[Nt;i j N1;i; N�;i�1] is Pi � T�a(i) for all t � T 1�b(i). Then by applying the Azuma inequality, weprove that all the Nt;i's, for t � T 1�b(i), are sharply concentrated about their mean values with small errorprobability, thus completing the inductive step. The error probability for each Nt;i will be at most T� lnT ,so summing over all t < T and all i < T still gives a negligible total error probability.We begin by stating the stochastic recurrence for Nt;i for i > 0:Nt;i = 8><>: Nt�1;i � 1 w.p. �Nt�1;i+(1��)iNt�1;it�1Nt�1;i + 1 w.p. �Nt�1;i�1+(1��)(i�1)Nt�1;i�1t�1Nt�1;i otherwiseUsing techniques similar to the proof of Lemma 1 and Lemma 2 we obtain:Lemma 6 For i � 1 and integers t and k < t, de�ne Fk;i�1 = Nt�k;i�1=(t � k)(� + (1 � �)(i � 1)). LetS0;i = 1 and for k � 1, let Sk;i = Sk�1;i �1� �t�k � (1��)it�k �. Then,E[Nt;i j Nt�k;i; Nt�k;i�1; Nt�(k�1);i�1; : : : ; Nt�1;i�1]= Nt�k;iSk;i + k�1Xj=0 Sj;iFj+1;i�1:Lemma 7 For i � 1 and for every t � 1 and every k < t,��E[Nt;i j Nt�k;i; N�;i�1]�E[Nt;i j Nt�(k+1);i; N�;i�1]�� � 2:We now proceed to compute the expected values of Nt;i. While the goal is to give an analogue of Lemma 3, wenow need to condition on the event that the random variables N�;i�1 take values close to their expectation.As we proceed from i � 1 to i, we lose a bit both in the accuracy (i.e., the sharpness of the concentrationaround the mean) and the range of t's for which the concentration holds.Let �i �= �+ (1� �)(i� 1) and �i �= �+ (1� �)i.E[Nt;i j N1;i; N�;i�1]= Xj<t Sj;iFj+1;i�1



= �i (S0;iNt�1;i�1=(t� 1) + S1;iNt�2;i�1=(t� 2) + S2;iNt�3;i�1=(t� 3) + : : :+ St�2;iN1;i�1=1)= �i �Nt�1;i�1t� 1 1+Nt�2;i�1t� 2 �1� �it� 1�+Nt�3;i�1t� 3 �1� �it� 1��1� �it� 2�+ : : :++ N1;i�11 �1� �it� 1��1� �it� 2� : : :�1� �i2 �� :For h < t, recursively de�ne the sequence Qht�h = 0 and for 1 � k � t � h, let Qhk = (1 + Qhk+1)(1 ��i=(t � k)). The reason for introducing these quantities is the following. If U and L denote, respectively,some upper and lower bound on Nt�k;i�1=k for every t� k > t� h, then �iLQht�h � E[Nt;i j N1;i; N�;i�1] ��i(UQ11 + (Q11 �Qh1)).Lemma 8 For all valid values of k, Qhk � (t � k � �i)=(1 + �i); in particular, Qh1 � t=(1 + �i). Also,Qhk � 1 +Qk+1 ��i=(1 +�i); in particular, Qh1 � (t� h� 1)=(1 +�i).Proof: In the proof, we drop the superscript h for readability.For the upper bound, the case k = t� h is immediate, since Qt�h = 0. Now, Qk = (1��i=(t� k))(1 +Qk+1); inductively assuming that Qk+1 satis�es the upper bound, we have Qk � (1��i=(t�k))(1+(t�k��i)=(1+�i)�1=(1+�i)), which after some simple manipulation can be seen to equal (t�k��i)=(1+�i).For the lower bound, we write Qk as (1��i=(t� k))(1 +Qk+1) = 1 +Qk+1 � (1 +Qk+1)�i=(t� k) =1 + Qk+1 � Qk+1�i=(t � k) � �i=(t � k). Applying the upper bound for Qk+1 from the �rst part ofthis lemma, we have Qk � 1 + Qk+1 � (t�(k+1)��i)�i(1+�i)(t�k) � �i=(t � k), which after some manipulation givesQk � 1+Qk+1��i=(1+�i). Unrolling the recurrence, we have Q1 � Qt�h+(t�h�1)(1��i=(1+�i)) =(t� h� 1)=(1 +�i). 2As a �rst application of the lemma, we compute the limit of E[Nt;i] = E[E[Nt;i j N1;i; N�;i�1]] =E[E[Nt;i j N�;i�1]] (since N1;i is the �xed value 0). Inductively, we will assume that limk!1 E[Nk;i�1]=k =Pi�1; the base case is P0, which, from Corollary 5, equals 1=(1 + �). Now, limk!1 E[E[Nt;i j N�;i�1]] =�iPi�1(limk!1Q11) = �i=(1 +�i)Pi�1. This, and some crude calculations show:Theorem 9 For r > 0, the limit Pr �= limt!1Nt;r=t exists, and satis�esPr = P0�ri=1 1 + �=(i(1� �))1 + 2=(i(1� �))and Pr = ��r� 2��1�� � :We �nally proceed to show sharp concentration for the values Nt;i. For convenience of exposition, let a(i)and b(i) be decreasing functions of i such that b(i)�b(i+1) � a(i+1) (roughly, a(i) = b0(i)); for de�niteness,we take b(i) � 1=(ln i) and a(i) �= 1=(i(ln i)2).Theorem 10 For a su�ciently large integer T , after T steps in the linear growth model, with probabilityat least 1� T�
(lnT ), for every i > 0,Pi � 1T a(i) � Nt;it � Pi + 1T a(i) for every t > T 1�b(i):In particular (with the choices b(i) � 1=(ln i) and a(i) � 1=(i(ln i)2)), after T steps, with overwhelmingprobability, NT;i=T 2 [Pi � �; Pi + �] for some small constant � > 0 and all i � lnT .



Proof: The proof proceeds in stages. We inductively assume that the statement of the theorem holdsfor i � 1, and show that for every t > T 1�b(i), the average value of the martingale E[Nt;i j N�;i; N�;i�1],conditioned on the values of N�;i�1 being in the \right range," is bounded by Pi�T�a(i). Then, by applyingthe bounded di�erences property for these martingales (from Lemma 7), we obtain the sharp concentrationresult; this implies that for every t > T 1�b(i), every one of the values Nt;i will be in the \right range," whichallows induction to continue.Thus, let i > 0, and assume that the statement of the theorem holds for i� 1. Now,E[Nt;i j N1;i; N�;i�1]� �iQ11(Pi�1 + T�a(i�1)) + �i(Q11 �QT 1�b(i�1)1 )� �i � t1 +�i� (Pi�1 + T�a(i�1)) + �i �T 1�b(i�1)1 +�i � :Thus, (1=t)E[Nt;i j N1;i; N�;i�1] � Pi + �i1+�i (T�a(i�1) + T 1�b(i�1)=t). It su�ces, therefore, to show thatthe \error term" (�i=(1 + �i))(T�a(i�1) + (1=t)T 1�b(i�1)) is at most T�a(i) for t � T 1�b(i). Following alittle manipulation (and assuming that T a(i) = o(T a(i�1)) and using the fact that �i=(1 + �i) < 1), this isequivalent to showing that T�(b(i�1)�b(i)) � T�a(i), which follows from the de�nition of a and b. The lowerbound on (1=t)E[Nt;i j N1;i; N�;i�1] is obtained very similarly, and using the same condition on a and b.The �rst part of the inductive step is now complete, namely we have shown bounds on the expectation ofE[Nt;i j N1;i; N�;i�1] for all suitable t.By a simple application of Azuma's inequality, using the bounded di�erences from Lemma 7, we seethat the probability that any �xed Nt;i=t, for t > T 1�b(i), deviates from Pi by more than T�a(i) is at mostT�
(lnT ). Thus, summing over all t � T and i � T , the error probability is still of the same form. However,when i � lnT , the bound T�a(i) becomes a constant (with the choice a(i) = 1=(i(ln i)2)), and the boundsfail to be interesting. 23.2 Evolving copying model: The exponential caseWe now analyze the degree distribution in the evolving exponential growth copying model. We show,Theorem 11 D1(t)kc � E[Nt;k] � D2(t)kc ;where D1(t) and D2(t) are functions of t; p; 
 and d but not k. c is a function of p; 
 and d but not of t andk.Proof: Fix a vertex u and consider Iu(t), the in-degree of u at time t. Iu(t) can be viewed as a branchingprocess that starts with 
 vertices and has� = 1+ p dd+ 
 and �2 = p dd+ 
 (1� p dd+ 
 ) � p dd+ 
 :Let �2 > 1 + p.Then by simple calculations (see, for example, [7]), E[Iu(t)] = 
�t andvar[Iu(t)] = 
�2�t�1(�t � 1)�� 1 = 
�t�1(�t � 1):Let ` = log�(k=
), and let i� be the minimum integer i such that (1 � �)�i � 1, for some � such that�2
� > 1:For i � i� 
�`+i � k = 
(�`+i � �`) � �
�`+i:



Thus, by Chebyshev inequality,Pr [Iu(`+ i) < k]� Pr �jIu(`+ i)� �`+ij > �`+i � k�� 
�2(`+i)�1 � 
�`+i�1
2(�`+i � k)2 � 
�2(`+i)�1�2
2�2(`+i) = � < 1:E[Nt;k]� t�`�i�Xj=1 (1� �)(1 + p)j � (1� �1) (1 + p)t�`�i�+12p� (1� �1) (1 + p)t�i�+12p(1 + p)` � D1(t)(1 + p)` = D1(t)kc ;for c = log�(1 + p) and D1(t) = 1� �2p 
c(1 + p)t�i�+1:Let j� = 12 log� 2, then for j � j�,Pr[Iu(`� j) � 
k] � 
�2(`�j)�1
2(�` � �`�i)� 1
�(�2j � 1) � 2
�2j+1 :E[Nt;k]� t�`+j�Xj=1 (1 + p)j + (1 + p)t�`+j� `�j�Xj=1 2(1 + p)j
(�2j+1)� 1p ((1 + p)t�`+j�+1 � 1) + (1 + p)t�`+j� `�j�Xj=1 2
�� (1 + p)t+j�+1p(1 + p)` + 2t(1 + p)t+j�
�(1 + p)` � D2(t)kc ;where D2(t) = 
cp (1 + p)t+j�(1 + p+ 2pt
� );using �2 > 1 + p. 2This yields the corollary:Corollary 12 For t and k such that D1(t)kc ; D2(t)kc !1, and for any � > 0Pr�(1� �)D1(t)kc � Nt;k � (1 + �)D2(t)kc � = 1� o(1):Proof: The degrees of di�erent vertices are independent random variables. Thus, Nt;k is the sum of 0-1independent random variables. 2



3.3 Evolving uniform modelLet v1; v2; : : : be the vertices added at time t = 1; 2; : : :.Lemma 13 For t0 < t, � = E[Ivt0 (t)] = d ln(t=t0) and Pr[(1� �)� � Ivt0 � (1 + �)�] > 1 � 2 exp(���2=4)for su�ciently small � > 0.Proof: The expected increase in in-degree for vt0 is given by Pti=t0 d=i, which yields �. Also, using inde-pendence of the choices, the distribution is concentrated around its expectation. 2Corollary 14 E[Nt;k] = O(t exp(�k=d)).Proof: Notice that for all vertices v1; : : : ; vt exp(�k=d), the expected degree of each of them is at least k.Hence, E[Nt;k] = t exp(�k=d)� t exp(�(k�1)=d = O(t exp(�k=d)). The degree distribution is concentratedaround the mean since each of vertices has expected degree very close to mean as shown in the previouslemma. 24 Number of cliquesRecall that Ki;j is a bipartite clique when all the ij possible edges are present. Since our random graphs aredirected, we consider the situation when the edges are directed from i vertices to j vertices.In this section, we count the number of bipartite cliques that arise in the di�erent graph models. Wealso count the number of bipartite cliques in a directed version of the ACL model to show that our evolvingcopying model is fundamentally di�erent from this model. Let K(t; i; j) denote the expected number ofKi;j 's present in the graph at time t. In many of the cases, we focus only on K(t; i; i)'s. We distinguish theevolving copying models from the other models by showing that in the copying models there are many (t�)large cliques, while there are only very few cliques in the uniform evolving model, and very few large cliquesin the ACL model.4.1 Evolving copying modelsThe following theorem shows that there are many cliques in the evolving copying model with linear growth,even with constant out-degree. One can de�ne a variant of the linear growth copying model in which thetails of edges are also chosen by copying processes; for such models, we can show that there are many copiesof Ki;j ; we instead focus on Ki;d's.Theorem 15 In the linear growth copying model with constant out-degree d, for i � log t, Kt;i;d =
(t exp(�i)).Proof: Call a vertex v� arriving at time � � t a leader if at least one of its d out-links is chosen uniformly, i.e.,without copying. Notice that a given node is a leader with probability 1�(1��)d. Call a vertex a duplicatorif it copies all d of its out-links, and note that a node is a duplicator with probability (1��)d. Now, considera leader v� . Consider the epochs (�; 2� ]; (2�; 4� ]; : : : ; (t=2; t]. The probability that at least one vertex in the�rst epoch copies from v� is at least 1�Q2�� 0=�+1(1� 1=(� + � 0)) � 1=2, and likewise for subsequent epochs.Thus, the expected number of duplicators of v� is 
(ln(t=�)). The random variable denoting the number ofduplicators of v� is concentrated about its mean because each epoch is an independent event with constantprobability of contributing a duplicator.2 Now, v� and its duplicators form a complete bipartite subgraph.3It then follows, for i � log t, Kt;i;d = 
(t exp(�i)). 22We can attain better bounds by considering duplicators of duplicators; this formulation yields a branching process similarto the process of Section 3.2.3For j < d, we can attain better bounds for Kt;i;j; for simplicity, we treat d as a constant.



The following theorem shows that there are a lot of cliques in the evolving copying model, the exponentialgrowth case.Theorem 16 There are constants c = c(p; �) < 1 and � = �(p; �) < 1, independent of i and t, such thatK(t+ 1; i; i) = 
((1 + p)ct�i2).Proof: (Sketch) We condition on two events that hold with high probability: (1) For some constant b > 0there are at least b(1 + p)t�j vertices of degree at least �j at time t; (2) For some constant a > 0 there areno more than a(d+ 
)(1 + p)t edges at time t.Let u and v be two vertices of degree at least �j at time t. The probability that a new edge connects uto v at time t+ 1 is at least q = 1��1� 
0pd�ja(d+ 
)(1 + p)t��j = � �2j(1 + p)tfor some 0 < � < 1.Partition the set of b(1 + p)t�j vertices of degree �j into r = (b=i)(1 + p)t�j disjoint sets of i verticeseach. Divide the r sets into two equal size groups V and W . The probability that a given set in V and agiven set in W are connected by i2 edges at time t+ 1, to complete a Ki;i is qi2 .To count disjoint cliques we construct up to r=2 cliques; thus each set in V has at least r=2 possible setsin W to choose from. Thus, the expected number of disjoint cliques is at least (r=2)(1 � (1� qi2)r=2): Forj > t(log(1 + p)=(2 log�) + o(1)), 1� (1� qi2)r=2 � �i2 . 24.2 Evolving uniform modelTheorem 17 For t > 0; i > e2 + 1, K(t; i; i) < 2.Proof: We assume i � d. For the formation of a Ki;i from vertices U = fu1; : : : ; uig to vertices V =fv1; : : : ; vig, we need all of the i edges emanating from each uj 2 U to link into distinct members of V . Forthe sake of establishing an upper bound on the expected number of such cliques, we will merely insist thatall of the i edges emanating from each uj link into V , without insisting that they link into distinct membersof V . Enumerating over all choices of uj ; vj , the expected number is bounded from above byZ 1u1=i�u1i �� iu1�i Z 1u2=u1 � iu2�i � � � Z 1ui=ui�1 � iui�i :The above expression is an upper bound since we omit several +1 terms (in the lower limits of the integrals,in the denominators of the probabilities, etc.) and we let the upper limits of the integrals be 1 rather thant. We next bound �u1i �, the number of ways of choosing V from vertices to the left of u1 by (eu1=i)i, andintegrate. The expectation is then bounded above by(ii�1e)i Z 1u1=i Z 1u2=u1 � 1u2�i � � � Z 1ui=ui�1 � 1ui�iIntegrating out, the upper bound becomes(ii�1e)ii!(i� 1)i�1(i� 2)ii(i�2) = (ei)ii!(i� 2)(i� 1)i�1< e2i(i� 2)(i� 1)i�1 :In particular, even for i = 3, K(t; i; i) < 23 and for i > e2 + 1, this number is under 2. 2



4.3 Cliques in the ACL modelLet K(i; j) denote the expected number of Ki;j 's present in a graph. We compute K(i; j) in a directedversion of the ACL model. The ACL model for given �; � > 0 is the following: assign uniform probabilityto all graphs with N(k) = exp(�)=k� (self-loops are allowed), where N(k) is the number of nodes without-degree k. Let G = (V;E) be generated according to this model. The following lemma can be proved.Lemma 18 There is a constant c (slightly above 1) such that Pru;v[(u; v) 2 E] < cdudv=(2E).The following theorem shows that there are very few bipartite cliques in this model.Theorem 19 For i > 2=(� � 2), K(i; i) is constant.Proof: Computing K(i; j) is equivalent to summing over all i-tuples and j-tuples of vertices, the probabilitythat all the edges exist between them. Let d1; d2; : : : ; di+j be the degrees of vertices. Notice that themaximum degree of a vertex in their model is given by exp(�=�) and the probability that a vertex hasdegree d is given by exp(�)=d� . Then, the expected value of K(i; j) is upper bounded by the sumZ exp ��d1;:::;di+j  i+jỲ=1 exp(�)d�̀ ! cij  iỲ=1 dj̀2E! jỲ=1 dì2E! :We restrict our attention to K(i; i), in which case the sum is upper bounded byexp(2i�)(2E)i2 Z exp ��d1;:::;d2i(d1 : : : d2i)�(��i)= exp�(2i2 + 2i)�� � i2�� :For i > 2=(� � 2), this quantity is constant. 25 Further workA number of directions for further work arise. (1) Our models allow for the web graph to evolve by theaddition of vertices and edges; more generally, we could study models with vertex- and edge-deletion. (2)Some of our evolving models result in directed acyclic graphs; by introducing processes for deleting andre-introducing edges, one can remedy this. What are the e�ects on the properties of the resulting graphs?(3) Recent heuristic calculations [1] argue that the web graph has a small diameter; on the other hand,observations by Broder et. al. [5] suggest that the reality is somewhat more complicated. What light canour models shed on this? (4) What is the size of the connected components of our graph models, and howwould this reconcile with the observations of [5]? (5) What can be said of the e�ciency of algorithms onevolving and/or copying-based random graphs?References[1] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the World-Wide Web. Nature 401:130{131,1999.[2] D. Aldous and B. Pittel. On a random graph with immigrating vertices: Emergence of the giantcomponent. Preprint, 2000.[3] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. Proc. ACM Symp. onTheory of Computing, pp. 171{180, 2000.[4] B. Bollob�as. Random Graphs. Academic Press, 1985.
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