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Abstract

The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and
each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose
and analyze random graph models inspired by a series of empirical observations on the web.

Our graph models differ from the traditional G, , models in two ways:

1. Independently chosen edges do not result in the statistics (degree distributions, clique multitudes)
observed on the web. Thus, edges in our model are statistically dependent on each other.

2. Our model introduces new vertices in the graph as time evolves. This captures the fact that the
web is changing with time.

Our results are two fold: we show that graphs generated using our model exhibit the statistics observed
on the web graph, and additionally, that natural graph models proposed earlier do not exhibit them.
This remains true even when these earlier models are generalized to account for the arrival of vertices
over time. In particular, the sparse random graphs in our models exhibit properties that do not arise in
far denser random graphs generated by Erdos-Rényi models.

1 Introduction

The web may be viewed as a directed graph in which each vertex is a static HTML web page, and each
edge is a hyperlink from one web page to another. Current estimates suggest that this graph has roughly a
billion vertices, and an average degree of about 7. In this paper we propose and analyze a class of random
graph models inspired by a series of empirical observations on the web graph [5, 11]. These observations
suggest that the web is not well modeled by traditional random graph models such as G, ,. For instance,
the distributions of in- and out-degrees on the web follow a power-law (rather than a Poisson or binomial
distribution, as one might expect of a random sparse graph chosen from G,, ;). Further, it is known [11]
that there are several hundred thousand disjoint instances of bipartite cliques (K;; with i,j > 3) on the
web—once again, an unlikely occurrence in a traditional sparse random graph. Finally, the web is an evolving
graph: new vertices and edges appear over time, while some older vertices and edges disappear.

We propose a family of random graph models here, very different from the traditional Erdés-Rényi random
graph model and its derivatives. Two salient features of our models are worth highlighting here: (1) Because
independently chosen edges out of each vertex will not result in the statistics (degree distributions, clique
multitude) observed on the web, our model must allow dependencies between edge choices. We achieve this
in a simple and plausible manner: some vertices choose their outgoing edges independently at random, as
in Gy,p, but other vertices replicate existing linkage patterns by “copying” edges from a randomly-chosen
vertex. We will discuss this further in Section 2. (2) Our model introduces new vertices in the graph as
time evolves, to capture the fact that the web is a changing and growing graph. To our knowledge, the only
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prior work studying the evolution of vertices in the traditional G,, , setting is [2], where the focus is on the
emergence of the giant component.

We show that a graph model with the above two features predicts certain graph properties observed on
the web. There is an obvious “evolving”! version of G, ,. Indeed, might it not be possible that such an
evolving G, , (without dependencies between the edges) could give rise to the statistical phenomena observed
in the web? We show that this is not the case: while an evolving G, , model behaves very differently from
the traditional Gy, ,, the difference is not acute enough to give rise to some of the phenomena observed on
the web.

Related work. Kumar et. al. [11] describe methods for enumerating subgraphs of the web in the context
of discovering web communities. From a graph-theoretic standpoint, a central finding in this work is the
existence of a surprising number of edge-induced complete bipartite graphs in the web. The authors also
observe the power-law distribution of in- and out-degrees in the web graph: the probability that the in-degree
of a random vertex is i is distributed by the power-law, Pr,[in-degree(u) = i] ~ 1/i”, for 8 a 2.1. These
observations are based on a web crawl from 1997. Other authors [1, 5] verify these degree distributions in
more recent web crawls. Interestingly, the power-law exponent in the later experiments is the same as that
from the earlier work, suggesting that it may be a fairly stable property of the web graph.

Perhaps the first rigorous effort to define and analyze a model for power-law distributions is due to
Herbert Simon [15]. Power-law distributions have been observed for citations in the academic literature, an
observation originally due to Lotka [14]. Gilbert [9] presents a probabilistic model supporting Lotka’s law. His
model is similar in spirit to ours, though different in details and application. The field of bibliometrics [6, 8]
is concerned with citation analysis; some of these insights have been applied to the web as well [13].

The “copying” models analyzed in this paper were first introduced by Kleinberg et. al.[10]. Motivated
by observations of power-laws for degrees on the graph of telephone calls, Aiello, Chung, and Lu [3] propose
a model for “massive graphs” (henceforth the “ACL model”), which is very different from ours in three key
respects:

e The ACL model ensures the power-law for degrees by first fixing the degrees of (the appropriate number
of) vertices to fit the distribution, then randomly introducing edges into the resulting “ports” at each
vertex. Thus, the power-law for degrees is an intrinsic feature of the model, rather than an emergent
feature of a stochastic process.

e The ACL model was developed to capture characteristics of large-scale call graphs, while ours was
developed to capture the nature of the web; thus, their models do not explain the abundance of
bipartite cliques observed in the web graph, whereas ours do. See Section 4 for details.

e With vertex degrees being prescribed before any edges are introduced, it is not clear how their model
should be adapted to capture the notion of an evolving graph.

Motivations for modeling the web graph.

1. Many problems we wish to solve on the web (such as the subgraph enumeration problems of [12]) are
computationally difficult for general graphs. Nevertheless, a suitable model of the web can help us
design and analyze algorithms that work well in practice. They could also be simulated under the
model to determine their scalability and performance.

2. The model can suggest unexpected properties of today’s web that we can then verify and exploit.

Results and organization. In Section 2, we propose our new models that incorporate evolving graphs in
which edges are introduced by stochastic copying. We study two variants of these evolving copying models:
linear growth, in which the graph grows by some absolute amount (i.e., one vertex) at each timestep, and
exponential growth, in which the graph grows by an amount that depends on its current size (e.g., twice)

Hn this paper, “evolution” in our random graph models refers to the evolution of the graph on the time-axis, rather than
on the axis of edge density, as in the seminal work of Erdds and Rényi. This clash of terminology is unfortunate, but the word
evolution describes our setting accurately.



at each timestep. We also introduce the evolving uniform model, in which the graph evolves over time, but
edge destinations are chosen independently at random (loosely referred to above as “evolving G, ,”).

In Section 3 we study the degree distributions in each of these models. Whereas the copying-based models
gives rise to power-law distributions, we show that the evolving uniform model has a much flatter degree
distribution.

Next, in Section 4, we study the number of bipartite cliques in each of these models, as well as in the
ACL model [3]. Bipartite cliques are an interesting class of subgraphs on the web since they capture the
notion of “communities” [11]. We show that whereas evolving copying models give rise to large numbers of
bipartite cliques (as observed in the web graph), the number of such cliques in the evolving uniform and
ACL models is likely to be small. We conclude (Section 5) with a number of directions for further work on
modeling and analyzing evolving graphs with and without copying.

2 Random graph models

In this section we give terminology and describe the random graph models we will study. Let G = (V, E)
denote a directed graph with vertex set V' and edge set E. For a directed edge (u,v), u is called the tail and
v the head of the edge. For a vertex u, the edges for which u is the tail (head) are called out-links (in-links)
of u. In-degree and out-degree of a vertex are denoted I, and O, respectively. The degree of a vertex w in
an undirected graph is denoted d,,.

In all our models, we assume the average vertex degree is a constant. This is in light of our focus on the
web graph, where we find that despite small average degree, one encounters structures that only arise in far
denser graphs in the Erdos-Rényi style of random graphs. For a finite set X, let £ € X denote a uniform
random choice from X, and for a distribution D let  ~ D denote that z is chosen from the distribution D.
Let [n] ={1,...,n}.

2.1 Evolving graph models

In all of our evolving graph models, the directed graph evolves over discrete timesteps t = 1,2,.... Let the
vertices be numbered 1,2,..., and let the graph at time ¢ be Gy = (V;, E;). Two functions are required
to describe the evolution of the graph in a model. The growth of vertices is captured by a (possibly
random) function f,(V;,t) which returns an integer denoting the number of vertices to be added at time
t + 1; therefore |Vig1| = |Vi| + fu(Vi,t). The growth of edges is more complicated and is described by a
probabilistic edge process f.(fy, Gt,t). This function returns the set of edges to be added at time ¢ + 1;
therefore, E;11 = E; U fo(fy, Gt,t). An evolving graph model is completely characterized by (f,, fe).

Evolving copying models. We consider two different models linear growth copying and exponential
growth copying models. We begin with an intuitive description of the two models in the context of the web.
On the web, pages arrive over time, and page creators link to existing content. We must determine which
existing content page creators will have access to in their decisions about which hyperlinks to add. If we
assume that web pages are immediately available at creation to the entire browsing population then a page
creator should be able to add an edge to any prior vertex. This is linear growth: at timestep ¢, a single
vertex arrives and may link to any of the first ¢ — 1 vertices. It is reasonable however to assume that a
page creator may not be aware of pages created in the last week or two (say). Since the web is currently
growing exponentially, this means that a page creator will not see the most recent “epoch” of pages. This
is exponential growth: at timestep t a new epoch of vertices arrives whose size is a constant fraction of the
current graph. Each of these vertices may link only to vertices from previous epochs. We now present the
formal definitions.

The linear growth copying model is parameterized by a copy factor a € (0,1) and a constant out-degree
d > 1. At each time step, one vertex u is added, so f,(V;,t) = 1, and u is then given d out-links for some
constant d. To generate the out-links, we begin by choosing a “prototype” vertex p €g V;. The i-th out-link
of u is then chosen as follows. With probability «, the destination is chosen uniformly at random from V;,
and with the remaining probability the out-link is taken to be the i-th out-link of p. Thus, the prototype



is chosen once in advance. The d out-links are chosen by a-biased independent coin flips, either randomly
from V4, or by copying the corresponding out-link of the prototype.

The intuition behind this model is the following. When an author decides to create a new web page, the
author is likely to have some topic in mind. The choice of prototype represents the choice of topic larger
topics are more likely to be chosen. The Bernoulli copying events reflect the following intuition: a new
viewpoint about the topic will probably link to many pages “within” the topic (i.e., pages already linked-to
by existing resource lists about the topic), but will also probably introduce a new spin on the topic, linking
to some new pages whose connection to the topic was previously unrecognized.

The exponential growth model is parameterized by a constant growth factor p > 0, the “self-loop”
(integral) factor v > 1, the “tail copy” factor 7' € (0, 1), and out-degree factor d > 0. In this model, degree
sequences evolve as a branching process. Let f,(V;,t) ~ B(V;,p), the standard binomial distribution. This
branching process has a non-zero extinction probability, but conditioning the process on the fact that it did
not terminate, for large t, V; is well concentrated around its mean, (1 + p)t. To simplify the analysis we
assume below (deterministically) that V; = 1 and V; = (1 + p)’. The expected number of edges generated
in time ¢ + 1 is (d + 7)pV;. Each new vertex is generated with v self-loop edges. The heads and tails of
the remaining edges are chosen according to the following process. Let u € V;. For each edge directed to u
at time ¢, we generate with probability dp/(d + 7) a new edge directed to u. Assuming that the expected
number of edges at time ¢ is (d + v)V;, the expected number of edges generated in this process is dpV;. The
tails of the new edges generated in this step are distributed as follows: (1) with probability 1 — ' a tail
of a new edges is chosen uniformly at random from among the pV; new vertices of this step and (2) with
probability 7' the tail of the edge is chosen at random among the vertices created in previous steps, with
the vertices chosen with probabilities proportional to their current out-degree. Therefore, together with the
new self-loop edges the expected number of edges at time ¢ + 1 is (d + ) Viq1.

Linear growth variants. For purposes of comparison, we also introduce a linear growth analog of the
standard G, , random graph model. Again, f,(V;,t) = 1, and the vertex generated at time ¢ has d out-links.
The destination of each out-link is chosen uniformly from the existing vertices. In other words, f. contains
d out-links of the form (¢ + 1, z) for z € V;.

2.2 Static models

For purposes of illustration, we describe some static models. All the graphs in this section are undirected.

Uniform random graphs. The most prevalent and well-studied static random graph model is G, ;, in
which V' = [n] and each possible edge (4, j) is present with probability p. See, for instance, [4].

The ACL model. Generally, given a fixed degree sequence, a family of random graph can be defined by
choosing uniformly from all graphs with that degree sequence. Aiello, Chung and Lu [3] describe “power-law
random graphs” in which the degree sequence is given by a power-law. The distribution of such graphs can
be well-approximated constructively as follows: first a degree sequence is obtained, which fixes the number
of vertices and edges. Second, a set is constructed with as many copies of each vertex as its degree. Third,
a random matching in this set is chosen. And finally, each edge in the matching between a copy of u and a
copy of v is added to the original graph as an edge (u,v).

2.3 Extensions to the models

Our evolving models are by no means complete. They can be extended in several ways. First of all, the
tails in our models were either static, chosen uniformly from the new vertices, or chosen from the existing
vertices proportional to their out-degrees. This process could be made more sophisticated to account for the
observed deviations of the out-degree distribution from the power-law distribution [5]. Similarly, the models
can be extended to include death processes, which cause vertices and edges to disappear as time evolves. A
number of other extensions are possible, but we seek to determine the properties of this simple model, in
order to understand which extensions are necessary to capture the complexity of the web.



3 Degree distributions

Let Nyj denote the number of vertices u such that I,(t) = k. In this section we obtain the in-degree
distributions in various graph models. The expected in-degree distributions in the case of evolving models
follow a power-law the probability that a random vertex has in-degree ¢ is roughly polyfl(i). Specifically,
in the linear case, we show that E[N; ] = tk—(2-2)/(1=2) and after T steps, Ny, is sharply concentrated
about its mean for ¢ up to about InT. In the exponential case, we show concentration about the mean
E[N; ] = O(tk"&«14P) for t < TOM) and pu = 1+ pd/(d + ). In contrast, for the evolving uniform model,
we show E[Ny ] = O(texp(—k/d)), i.e., exponentially small tails.

3.1 Evolving copying model: The linear case

For simplicity of exposition, we present the case d = 1. Note that this is without any loss in generality, since
the linear growth process where out-degree = d can be factored into two probabilistic processes one for
which vertex a new vertex decides to copy from, and one for how many links it copies from that vertex. The
first choice (namely, which vertex to copy from) induces a graph that has the same distribution as a graph
in the linear growth model with d = 1. This is important for clique analyses.

We first present the analysis for ¢ = 0, and build upon it to derive the distributions of IV;; for i > 0.
Our approach is to study the sequence of random variables E[N; o | Ny 0] for 0 < ¢ — k < ¢, which forms
a martingale. Clearly, E[N; o] = E[E[N;o]] = E[Nto | N1,0]. The random variable N; o has the following
distribution, which follows directly from the linear growth model:

N _ Ntfl,O Ww.p. ()éNt,L()/(t — ].)
&0 Ni1o+1 wp. 1—aN;, 10/(t—1)

)

Lemma 1 Let Soo =1, and for k > 0, let Sk.0 = Sk—1.0(1 —a/(t—k)). Then for everyt > 1 and 0 < k < t,

k—1
E[Nto | Nt—k0] = Nt—,0Sk,0 + Z S;o0-

7=0

Proof: By induction on k. The case k& = 0 is obvious; assume that the lemma holds for £ — 1 for £ > 0.
Now,

E[Nto | Ni—ko] = E[Nto| Ne—kh—1),0 = Nt—1,0] Pr[N;—(k—1),0 = Nt—#.0]
E[Nto | Ne—k—1),0 = Ne—r0 + 1] Pr[Ne_4_1),0 = Nt—p,0 + 1]
k2
N;_
= Oét%kk’o Nt g 0Sk-1,0+ Z S0
=0

N k—2
+ (1 - at—m> (Ne-ko+1)Sk10+ Y Sio

t—k ‘
7=0
N k—2
—k
= (Ni—ko+1)Sk-10—«a tt_ ];0 Sk-1,0+ Z Sj.0
=0

k-1
oY
= Nt k0Sk-1,0 (1 T k) +]Z_%Sj70

k=1
= Ni—o0Sko+ Z Sjo-

j=0
O

Next, we establish bounded differences for the martingale E[N¢ g | Ny_p o]



Lemma 2 For everyt > 1 and every k < t,
‘E[Nt,o | Ni—k,0] — E[N¢o | Ntf(k+1),0]| <2
Proof:
E[Nio | Ni—k0] — E[Nto | Ni— (k41,0

= Nt x0Sko+ Z S0 = Ni—(k+1),05k+1,0 — Z S0
i<k J<(k+1)

«
= NekaSko=Neeana (Sto (1= iy ) ) - Sk

Q

= (N¢_k.0Sko— N, Sko + N, —— — Sko.
(Nt—k,05k,0 t— (k+1),0)Sk,0 t— (k+1),0t7(k+1) k,0

In the last expression, every term is between 0 and 1, so it is bounded in absolute value by 2. It is also easy

to show that the absolute value is at most 1 + «a; a more refined analysis shows that the absolute value of

the difference is, in fact, at most 1. O

Before stating the tail bound by applying Azuma’s inequality, we pause to compute the expected value of
Nty(].
Lemma 3

t+ « t+ «

1—|——a + a
Proof: Note that E[Ny o] = E[E[N¢o | Nt—k,0]] = E[Nt,o | N1,0]. By Lemma 1, this equals Zi;é Sjo0. We
bound this sum by first expressing it as the value of a recurrence, which turns out to be easier to bound
sharply. Define the quantity @; = 0, and for k£ < ¢, let Qr = (1 — a/k)(1 + Qk+1). By unwinding the two
definitions, it is easy to see that Z;;(l] Sjo =14 Q1. The lemma follows from the following two claims.
(i) (Upper bound for Q) For every k < t, Qr < (t — k)/(1 + @); in particular, Q1 < (¢t —1)/(1 + «). and

(ii) (Lower bound for Q) Q1 > (t — 1)/(1 + @) — @*Int. PROOF OF UPPER BOUND: By finite downward
induction on k. The case k =t is trivial. For k < t, inductively assume that Q41 obeys the bound. Now

Qr = (1—a/k)(1+ Q1)
< (1a/k)(1+ﬂ)

—a?Int < E[N;g] <

—_

1+«
k N L a 1 N « . a
1+a E 14a (Q+a)k) 14+a

Y
T 14+a k\l+4a

k
1+«
PRrROOF OF LOWER BOUND: For k < t,

Qe = (1-7)1+Qun)

< since the quantity (1/(1+«a)) —1 < 0.

= 1+Qk+1*Qk+1g*%
> 14+ Q41 — <]1€+L;%) — % by the upper bound on Q1
- Qk+1+< a)_%< 1+a>
= Q1+ 57— Tra %2
Unrolling the equations, we have Q1 = Q; + 1+a) — o? 22;11 P> —a’nt. O



We summarize the consequences of Lemmas 2 and 3, together with the Azuma inequality in the following
theorem.

Theorem 4 For anyt > 0,
t+ «

1+«

t+

2
— Int < E[N, <
a’lnt < [t,O]_1+

Q

and for all £ > 0,
2
Pr{|Nio — E[Nio]| > 0] < e /4.

Corollary 5 P, = lim¢_, oo E[Nto/t] =1/(1+ a).

We now turn to the more general quantity /V; ; for ¢ > 0. The goal is to show that for a sufficiently large integer
T, after T steps, all the quantities N7, N71,..., N7, are sharply concentrated about their respective values
Py, Py, ..., P, for i up to about InT'. The strategy here is as follows: for each ¢, we will study the martingale
E[Nt; | Ngi,Nyi_1] for k& < t and where N, ;_; is a shorthand for the list No;_1, N1 i_1,...,Neio1.
The sequence E[Ny; | No]|, E[Ne; | Niil, E[Nt;i | Najl, ..., E[Nt; | N¢e—1,4] is not a martingale in itself;
however, conditioned on the values for the random variables Ny ;_1, N1,;—1,..., N¢_1,_1, this sequence forms
a martingale, which is our object of study. We first derive an expression for the quantity E[Ny; | N1 i, Nii—1]
in terms of the values of the random variables N, ;_;. Then we will inductively assume that Ng;_1/s is
bounded by P;_; £ T—2(=1 for all s > T'~*(~1) and for suitable decreasing functions a and b. The
basis for this induction is provided by Theorem 4. Using the inductive assumption, we first show that
(1/t)E[N¢i | N1i,Noj 1] is P, £T°0 for all ¢+ > T'~*@). Then by applying the Azuma inequality, we
prove that all the IV; ;’s, for ¢ > T are sharply concentrated about their mean values with small error
probability, thus completing the inductive step. The error probability for each N;; will be at most 7~ '2 7
so summing over all £ < T and all ¢+ < T still gives a negligible total error probability.

We begin by stating the stochastic recurrence for Ny ; for ¢ > 0:

alNg_1,i+(1—a)iNi_1;

Ntfl’i —1 W.p.
Nt,i = Ntfl,i +1 w.p.
N1, otherwise

t—1
aNg_1,i—1+(1—a)(i—1)Ni_1,_1
t—1

Using techniques similar to the proof of Lemma 1 and Lemma 2 we obtain:

Lemma 6 For i > 1 and integers t and k < t, define Fy;—1 = Ny—pi—1/(t — k)(a + (1 —a)(i —1)). Let

So =1 and for k> 1, let S = Sp1 (1 2% — U521 Then,

E[Nti | Ne—kis Ne—ki—1, Ne—(e—1),i—15 - s Ne—1,i-1]
k-1
= N¢_p,iSk,i + Z S;iFji1,i-1-
=0

Lemma 7 Fori > 1 and for every t > 1 and every k < t,

|E[Nt,i | Ne—g,ir Nujio1] — B[Ny

Ni—(k+1),i Nuica]| < 2.

We now proceed to compute the expected values of Ny ;. While the goal is to give an analogue of Lemma 3, we
now need to condition on the event that the random variables NN, ;_; take values close to their expectation.
As we proceed from i — 1 to i, we lose a bit both in the accuracy (i.e., the sharpness of the concentration
around the mean) and the range of #’s for which the concentration holds.

Let0; 2a+(1—a)i—1)and A; 2 a+ (1 — a)i.
E[Nt; | N1y Nuiq]
= Zsj,iFj-H,ifl

j<t



= 0;(S0,iNt—1,i-1/(t=1)+ 51 i Nt—2; 1/t —2)+ S2;iNe—3-1/(t=3)+ ...+ St—2:N1;1/1)

Ni_1.i—
_ &{_Li_il
t—1

Ni o1 A;
Ul
+ t—2 —1

G Nision (0 A L A
t—3 t—1 t—2

4.+
+ Noio <1 A ) <1 A )(15”
1 t—1 t—2 2

For h < t, recursively define the sequence Q7 , = 0 and for 1 < k <t —h, let QF = (1 + QZH)(l —
A;/(t — k)). The reason for introducing these quantities is the following. If U and L denote, respectively,

some upper and lower bound on N;_j ;_1/k for every t —k >t — h, then 0;LQ" , < E[Ny; | N1;, Ny i—1] <
0:(UQL + (QF — Q1))

Lemma 8 For all valid values of k, Q" < (t — k — A;)/(1 + A); in particular, Q% < t/(1 + A;). Also,
QF > 1+ Qi1 — Ai/(1+ Ay); in particular, Q8 > (t —h —1)/(1+ A;).

=~

Proof: In the proof, we drop the superscript A for readability.

For the upper bound, the case k = t — h is immediate, since Q;_ = 0. Now, Qx = (1 — A;/(t — k))(1 +
Qk+1); inductively assuming that Q4 satisfies the upper bound, we have Q) < (1—A;/(t—k))(1+ (t—k—
A/ (14+A;)—1/(1+A;)), which after some simple manipulation can be seen to equal (t —k—A;)/(1+A;).

For the lower bound, we write Qy as (1 — A;/(t — k))(1 + Qi41) = 1+ Qp41 — (1 + Qry1)A;/(t — k) =
1+ Qi1 — Qr1Ai/(t — k) — A;/(t — k). Applying the upper bound for Qg41 from the first part of
this lemma, we have Q > 1 + Qry1 — % — A;/(t — k), which after some manipulation gives
Qr > 14+ Qr+1—A;/(1+A;). Unrolling the recurrence, we have Q1 > Qi—p+ (t—h—1)(1 - A;/(1+A))) =
t—h-1)/14+A4;). O

As a first application of the lemma, we compute the limit of E[N;;] = E[E[Nt; | N1, Nuio1]] =
E[E[N; | Nii-1]] (since Ny is the fixed value 0). Inductively, we will assume that limg_, oo E[Ng,i—1]/k =
P;_y; the base case is Py, which, from Corollary 5, equals 1/(1 + a). Now, limy_,oo E[E[Nt; | Ny io1]] =
0;P; 1 (limg oo Q1) = 6;/(1 + A;)P;_1. This, and some crude calculations show:

Theorem 9 For r > 0, the limit P, 2 limy oo Nir /[t exists, and satisfies

_pqr  1+a/G( —a)
e T )

and

P.=0 (rifi_z) .

We finally proceed to show sharp concentration for the values Ny ;. For convenience of exposition, let a(i)
and b(7) be decreasing functions of i such that b(¢) —b(i +1) > a(i+1) (roughly, a(i) = b'(i)); for definiteness,
we take b(i) ~ 1/(Ini) and a(i) ~= 1/(i(Ini)?).

Theorem 10 For a sufficiently large integer T, after T steps in the linear growth model, with probability
at least 1 — T—00T)  for every i > 0,

LN, 1
Ta = ¢ S5 e

P, — for every t > 7',

In particular (with the choices b(i) ~ 1/(Ini) and a(i) ~ 1/(i(In4)?)), after T steps, with overwhelming
probability, Np;/T € [P; — 6, P; + 0] for some small constant § > 0 and all i <InT.



Proof: The proof proceeds in stages. We inductively assume that the statement of the theorem holds
for i — 1, and show that for every ¢ > T' %) the average value of the martingale E[Nt ;i | Nijy, Nyjio1],
conditioned on the values of IV, ;_; being in the “right range,” is bounded by F; + T-%%)_ Then, by applying
the bounded differences property for these martingales (from Lemma 7), we obtain the sharp concentration
result; this implies that for every ¢t > 7'~ every one of the values N;,; will be in the “right range,” which
allows induction to continue.

Thus, let ¢ > 0, and assume that the statement of the theorem holds for i — 1. Now,

E[Nt; | N1y Nuja]
< 0:;QV (P +T701) 1 60,(Q) — Tlib(iil))

; ' 1-b(i-1)
< o (—— )P+ 4 (— )

Thus, (1/t)E[N:; | N1y Nuio1] < P+ %”Ai(T’“(i’l) + T'-2G=1) /1), Tt suffices, therefore, to show that
the “error term” (#;/(1 4+ A))(T~°0~1 + (1/6)T' P01 is at most T~ *() for + > T1-*() . Following a
little manipulation (and assuming that 7%() = o(7*(~1Y) and using the fact that 6;/(1 + A;) < 1), this is
equivalent to showing that 7~ (t(i=1)=b() < T—a(?) which follows from the definition of a and b. The lower
bound on (1/t)E[N;; | Nii, Nk i_1] is obtained very similarly, and using the same condition on a and b.
The first part of the inductive step is now complete, namely we have shown bounds on the expectation of
E[Nt’i | Nl’i,N*’ifl] for all suitable t.

By a simple application of Azuma’s inequality, using the bounded differences from Lemma 7, we see
that the probability that any fixed Ny ;/t, for t > Tt deviates from P; by more than 7-%(%) is at most
T-0nT)  Thus, summing over all ¢ < T and i < T, the error probability is still of the same form. However,
when i ~ InT, the bound 7% becomes a constant (with the choice a(i) = 1/(i(Ini)?)), and the bounds
fail to be interesting. O

3.2 Evolving copying model: The exponential case
We now analyze the degree distribution in the evolving exponential growth copying model. We show,

Theorem 11

DO < ) < 220,

where D1 (t) and Dy(t) are functions of t,p,v and d but not k. ¢ is a function of p,y and d but not of t and
k.

Proof: Fix a vertex w and consider I,(t), the in-degree of u at time ¢. I,(t) can be viewed as a branching
process that starts with v vertices and has

d ) < d
pd+7

d
and 0% = p (1
v

d
K pd+ d+

=Pay
Let p?> > 1+ p.
Then by simple calculations (see, for example, [7]), E[I,,(t)] = yu' and

2, t—1(,t
yoru T (p' = 1) -
var[l, (t)] = ———C 2 =yt — 1).
u—1
Let ¢ = log,(k/7), and let i* be the minimum integer i such that (1 —€)u’ > 1, for some e such that
€2y > 1.
For ¢ > 4* ' ' '
Yt — k= (= pf) > eyt



Thus, by Chebyshev inequality,

Pr(L,(€ +1) < k]

Pr[|L,(¢+ 1) — p" > p'* — k]

7'u2(1f+i)71 ottt ,yu2(é+i)71
V(i —k)? T ey?p2ttD

IN

=6<1.

B[Ny ]
t—0—i* s
) 1 t—0—i"+1
_|_p)J > (]_ _ El)L
2p
j=1
t—i*+1
2p(1+p)t — (1+p" ke

Y

Y

for ¢ = log, (1 + p) and

Let 7% = %logu 2, then for j > j*,

2(6—j)—1
Pr(I,(C—j) 2 7vk] < —r—s

Y2t — pt7)
1 2
< :
T yu(pF - 1) T ypitt
E[Nt k]
t—l+j5* —j*
2(1 + p)’
t +5*
< (1+p) + (1 +p)~H Z SGETY
j=1 j=1
1 . R
< S((+ptHTT o (14 ptT Y =
p — v
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(L4 p) "L 2414 p)t+i"  Dy(t)
p(1+ p)* yu(l+p)¥t — ke
where -
Dalt) = L (14 )" (1 4+ p+ 224,
p Y

using > > 1+p. O
This yields the corollary:

Corollary 12 For t and k such that D;—Et), Dz—c(t) — 00, and for any € > 0

Pr|(1 fe)Dli( ) < Nip < (1+6)D2£t) =1-o(1).

Proof: The degrees of different vertices are independent random variables. Thus, Ny is the sum of 0-1

independent random variables. O



3.3 Evolving uniform model

Let vy, vs,... be the vertices added at time t = 1,2, .. ..

Lemma 13 Fort' < t, p = E[l,, (t)] = dIn(t/t') and Pr[(1 —0)p < I,, < (1+6)pu] > 1 — 2exp(—pd?/4)
for sufficiently small 6 > 0.

Proof: The expected increase in in-degree for vy is given by Z::t, d/i, which yields p. Also, using inde-

pendence of the choices, the distribution is concentrated around its expectation. O

Corollary 14 E[N; ;] = O(texp(—k/d)).

Proof:  Notice that for all vertices v1,. ..,V exp(—k/d), the expected degree of each of them is at least k.
Hence, E[N; ] = texp(—k/d) —texp(—(k—1)/d = O(texp(—k/d)). The degree distribution is concentrated
around the mean since each of vertices has expected degree very close to mean as shown in the previous
lemma. 0O

4 Number of cliques

Recall that K; ; is a bipartite clique when all the ij possible edges are present. Since our random graphs are
directed, we consider the situation when the edges are directed from i vertices to j vertices.

In this section, we count the number of bipartite cliques that arise in the different graph models. We
also count the number of bipartite cliques in a directed version of the ACL model to show that our evolving
copying model is fundamentally different from this model. Let K(¢,i,j) denote the expected number of
K; ;’s present in the graph at time ¢. In many of the cases, we focus only on K (t,1,i)’s. We distinguish the
evolving copying models from the other models by showing that in the copying models there are many (¢)
large cliques, while there are only very few cliques in the uniform evolving model, and very few large cliques
in the ACL model.

4.1 Evolving copying models

The following theorem shows that there are many cliques in the evolving copying model with linear growth,
even with constant out-degree. One can define a variant of the linear growth copying model in which the
tails of edges are also chosen by copying processes; for such models, we can show that there are many copies
of K; ;; we instead focus on K g4’s.

Theorem 15 In the linear growth copying model with constant out-degree d, for i < logt, K;;q =
Q(t exp(—1)).

Proof: Call a vertex v, arriving at time 7 < ¢ a leader if at least one of its d out-links is chosen uniformly, i.e.,
without copying. Notice that a given node is a leader with probability 1— (1 —a)?. Call a vertex a duplicator
if it copies all d of its out-links, and note that a node is a duplicator with probability (1 —a)?. Now, consider
a leader v,. Consider the epochs (7,27],(27,47],...,(t/2,t]. The probability that at least one vertex in the
first epoch copies from v, is at least 1 — Hsz:H_l(l —1/(r+71'")) = 1/2, and likewise for subsequent epochs.
Thus, the expected number of duplicators of v, is Q(In(¢/7)). The random variable denoting the number of
duplicators of v, is concentrated about its mean because each epoch is an independent event with constant
probability of contributing a duplicator.? Now, v, and its duplicators form a complete bipartite subgraph.?

It then follows, for i <logt, Ki ;4= Qtexp(—i)). O

2We can attain better bounds by considering duplicators of duplicators; this formulation yields a branching process similar
to the process of Section 3.2.
3For j < d, we can attain better bounds for Ky ,5; for simplicity, we treat d as a constant.



The following theorem shows that there are a lot of cliques in the evolving copying model, the exponential
growth case.

Theorem 16 There are constants ¢ = c(p,pu) < 1 and 8 = 0(p,u) < 1, independent of i and t, such that
K(t+1,i,i) = Q((1 +p)o7).

Proof: (Sketch) We condition on two events that hold with high probability: (1) For some constant b > 0
there are at least b(1 + p)!=7 vertices of degree at least u’ at time ¢; (2) For some constant a > 0 there are
no more than a(d + v)(1 + p)! edges at time t.

Let u and v be two vertices of degree at least y/ at time ¢. The probability that a new edge connects u
to v at time ¢t + 1 is at least

V' pdp? o p?
o= (1o ) et
a(d +7)(1 + p)* (1+p)

for some 0 < 0 < 1.

Partition the set of b(1 + p)!~7 vertices of degree p/ into r = (b/i)(1 + p)t~7 disjoint sets of i vertices
each. Divide the r sets into two equal size groups V and W. The probablhty that a given set in V and a
given set in W are connected by i? edges at time ¢ + 1, to complete a K; ; is ¢’

To count disjoint cliques we construct up to r/2 chques, thus each set in V/ has at least r/2 possible sets
in W to choose from. Thus, the expected number of disjoint cliques is at least (r/2)(1 — (1 — qiz)”/Z). For

j > t(log(1+p)/(log ) + o(1), 1 - (1 —¢")"/2 > 6", O

4.2 Evolving uniform model

Theorem 17 Fort > 0,i > €%+ 1, K(t,i,i) < 2.

Proof:  We assume i < d. For the formation of a K;; from vertices U = {uq,...,u;} to vertices V =
{v1,...,v;}, we need all of the i edges emanating from each u; € U to link into distinct members of V. For
the sake of establishing an upper bound on the expected number of such cliques, we will merely insist that
all of the ¢ edges emanating from each u; link into V, without insisting that they link into distinct members

of V. Enumerating over all choices of u;, v;, the expected number is bounded from above by

L L)

The above expression is an upper bound since we omit several +1 terms (in the lower limits of the integrals,
in the denominators of the probabilities, etc.) and we let the upper limits of the integrals be oo rather than
t.

We next bound (“l.l), the number of ways of choosing V from vertices to the left of u; by (eu;/i)!, and
integrate. The expectation is then bounded above by

o G )
ur=i Jus=u; \ U2 ui=u;—1 \ Wi

Integrating out, the upper bound becomes

(e’ (ei)’
MG —1)i-1(i — 22 G 2)G 1)1

621

In particular, even for i = 3, K(t,i,i) < 23 and for i > e? + 1, this number is under 2. O

<



4.3 Cliques in the ACL model

Let K (i,j) denote the expected number of K; ;’s present in a graph. We compute K (i,j) in a directed
version of the ACL model. The ACL model for given «, 3 > 0 is the following: assign uniform probability
to all graphs with N(k) = exp(a)/k” (self-loops are allowed), where N (k) is the number of nodes with
out-degree k. Let G = (V, E) be generated according to this model. The following lemma can be proved.

Lemma 18 There is a constant c (slightly above 1) such that Pr, ,[(u,v) € E] < cdyd,/(2E).
The following theorem shows that there are very few bipartite cliques in this model.
Theorem 19 For i > 2/(8 —2), K(i,i) is constant.

Proof: Computing K (i, j) is equivalent to summing over all i-tuples and j-tuples of vertices, the probability
that all the edges exist between them. Let di,d,...,d;+; be the degrees of vertices. Notice that the

maximum degree of a vertex in their model is given by exp(a/B) and the probability that a vertex has
degree d is given by exp(a)/d®. Then, the expected value of K (i, j) is upper bounded by the sum

wes (Hew@) (114 (4
i {4 4 .
/dl dis; (H dy HQE HQE

""" (=1 (=1 (=1

We restrict our attention to K (i,7), in which case the sum is upper bounded by

exp(2ia) exp § o
W/d . (di...ds) (B—1)

= exp ((22'2 + 21‘)% - i2a> .

For i > 2/(8 — 2), this quantity is constant. O

5 Further work

A number of directions for further work arise. (1) Our models allow for the web graph to evolve by the
addition of vertices and edges; more generally, we could study models with vertex- and edge-deletion. (2)
Some of our evolving models result in directed acyclic graphs; by introducing processes for deleting and
re-introducing edges, one can remedy this. What are the effects on the properties of the resulting graphs?
(3) Recent heuristic calculations [1] argue that the web graph has a small diameter; on the other hand,
observations by Broder et. al. [5] suggest that the reality is somewhat more complicated. What light can
our models shed on this? (4) What is the size of the connected components of our graph models, and how
would this reconcile with the observations of [5]7 (5) What can be said of the efficiency of algorithms on
evolving and/or copying-based random graphs?
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