
Chapter 3

Strong and Weak Ties

From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
By David Easley and Jon Kleinberg. Cambridge University Press, 2010.
Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/

One of the powerful roles that networks play is to bridge the local and the global — to

offer explanations for how simple processes at the level of individual nodes and links can have

complex effects that ripple through a population as a whole. In this chapter, we consider

some fundamental social network issues that illustrate this theme: how information flows

through a social network, how different nodes can play structurally distinct roles in this

process, and how these structural considerations shape the evolution of the network itself

over time. These themes all play central roles throughout the book, adapting themselves

to different contexts as they arise. Our context in this chapter will begin with the famous

“strength of weak ties” hypothesis from sociology [190], exploring outward from this point

to more general settings as well.

Let’s begin with some backgound and a motivating question. As part of his Ph.D.

thesis research in the late 1960s, Mark Granovetter interviewed people who had recently

changed employers to learn how they discovered their new jobs [191]. In keeping with earlier

research, he found that many people learned information leading to their current jobs through

personal contacts. But perhaps more strikingly, these personal contacts were often described

by interview subjects as acquaintances rather than close friends. This is a bit surprising:

your close friends presumably have the most motivation to help you when you’re between

jobs, so why is it so often your more distant acquaintances who are actually to thank for

crucial information leading to your new job?

The answer that Granovetter proposed to this question is striking in the way it links

two different perspectives on distant friendships — one structural, focusing on the way

these friendships span different portions of the full network; and the other interpersonal,

considering the purely local consequences that follow from a friendship between two people

being either strong or weak. In this way, the answer transcends the specific setting of job-
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, offering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from
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Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.
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Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in
distinct connected components. Bridges provide nodes with access to parts of the network
that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coefficient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coefficient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively different

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a different part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

differences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B offers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two different components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very different background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the
figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties
to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same
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role that bridges do, though in a less extreme way — they provide their endpoints with

access to parts of the network, and hence sources of information, that they would otherwise

be far away from. And so this is a first network context in which to interpret Granovetter’s

observation about job-seeking: we might expect that if a node like A is going to get truly

new information, the kind that leads to a new job, it might come unusually often (though

certainly not always) from a friend connected by a local bridge. The closely-knit groups that

you belong to, though they are filled with people eager to help, are also filled with people

who know roughly the same things that you do.

The Strong Triadic Closure Property. Of course, Granovetter’s interview subjects

didn’t say, “I learned about the job from a friend connected by a local bridge.” If we believe

that local bridges were overrepresented in the set of people providing job leads, how does

this relate to the observation that distant acquaintances were overrepresented as well?

To talk about this in any detail, we need to be able to distinguish between different levels

of strength in the links of a social network. We deliberately refrain from trying to define

“strength” precisely, but we mean it to align with the idea that stronger links represent closer

friendship and greater frequency of interaction. In general, links can have a wide range of

possible strengths, but for conceptual simplicity — and to match the friend/acquaintance

dichotomy that we’re trying to explain — we’ll categorize all links in the social network as

belonging to one of two types: strong ties (the stronger links, corresponding to friends), and

weak ties (the weaker links, corresponding to acquaintances).1

Once we have decided on a classification of links into strong and weak ties, we can take a

social network and annotate each edge with a designation of it as either strong or weak. For

example, assuming we asked the nodes in the social network of Figure 3.4 to report which

of their network neighbors were close friends and which were acquaintances, we could get an

annotated network as in Figure 3.5.

It is useful to go back and think about triadic closure in terms of this division of edges

into strong and weak ties. If we recall the arguments supporting triadic closure, based on

opportunity, trust, and incentive, they all act more powerfully when the edges involved are

1In addition to the difficulty in reducing a range of possible link strengths to a two-category strong/weak
distinction, there are many other subtleties in this type of classification. For example, in the discussion here,
we will take this division of links into strong and weak ties as fixed in a single snapshot of the network. In
reality, of course, the strength of a particular link can vary across different times and different situations.
For example, an employee of a company who is temporarily assigned to work with a new division of the
company for a few months may find that her full set of available social-network links remains roughly the
same, but that her links to people within the new division have been temporarily strengthened (due to the
sudden close proximity and increased contact), while her links to her old division have been temporarily
weakened. Similarly, a high-school student may find that links to fellow members of a particular sports team
constitute strong ties while that sport is in season, but that some of these links — to the teammates he
knows less well outside of the team — become weak ties in other parts of the year. Again, for our purposes,
we will consider a single distinction between strong and weak ties that holds throughout the analysis.
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strong ties than when they are weak ties. This suggests the following qualitative assumption:

If a node A has edges to nodes B and C, then the B-C edge is especially likely

to form if A’s edges to B and C are both strong ties.

To enable some more concrete analysis, Granovetter suggested a more formal (and somewhat

more extreme version) of this, as follows.

We say that a node A violates the Strong Triadic Closure Property if it has strong

ties to two other nodes B and C, and there is no edge at all (either a strong or

weak tie) between B and C. We say that a node A satisfies the Strong Triadic

Closure Property if it does not violate it.

You can check that no node in Figure 3.5 violates the Strong Triadic Closure Property, and

hence all nodes satisfy the Property. On the other hand, if the A-F edge were to be a strong

tie rather than a weak tie, then nodes A and F would both violate the Strong Triadic Closure

Property: Node A would now have strong ties to nodes E and F without there being an

E-F edge, and node F would have strong ties to both A and G without there being an

A-G edge. As a further check on the definition, notice that with the labeling of edges as

in Figure 3.5, node H satisfies the Strong Triadic Closure Property: H couldn’t possibly

violate the Property since it only has a strong tie to one other node.

Clearly the Strong Triadic Closure Property is too extreme for us to expect it hold across

all nodes of a large social network. But it is a useful step as an abstraction to reality,

making it possible to reason further about the structural consequences of strong and weak

ties. In the same way that an introductory physics course might assume away the effects of

air resistance in analyzing the flight of a ball, proposing a slightly too-powerful assumption

in a network context can also lead to cleaner and conceptually more informative analysis.

For now, then, let’s continue figuring out where it leads us in this case; later, we’ll return to

the question of its role as a modeling assumption.

Local Bridges and Weak Ties. We now have a purely local, interpersonal distinction

between kinds of links — whether they are weak ties or strong ties — as well as a global,

structural notion — whether they are local bridges or not. On the surface, there is no direct

connection between the two notions, but in fact using triadic closure we can establish a

connection, in the following claim.

Claim: If a node A in a network satifies the Strong Triadic Closure Property and

is involved in at least two strong ties, then any local bridge it is involved in must

be a weak tie.

In other words, assuming the Strong Triadic Closure Property and a sufficient number of

strong ties, the local bridges in a network are necessarily weak ties.
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Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a different kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and
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A-C edges are both strong ties, the B-C edge must exist. This contradiction shows that our

initial premise, the existence of a local bridge that is a strong tie, cannot hold, finishing the

argument.

This argument completes the connection we’ve been looking for between the local prop-

erty of tie strength and the global property of serving as a local bridge. As such, it gives us

a way to think about the way in which interpersonal properties of social-network links are

related to broader considerations about the network’s structure. But since the argument is

based on some strong assumptions (mainly Strong Triadic Closure, since the other assump-

tion is very mild), it is also worth reflecting on the role that simplifying assumptions play in

a result like this.

First, simplifying assumptions are useful when they lead to statements that are robust

in practice, making sense as qualitative conclusions that hold in approximate forms even

when the assumptions are relaxed. This is the case here: the mathematical argument can

be summarized more informally and approximately as saying that in real life, a local bridge

between nodes A and B tends to be a weak tie because if it weren’t, triadic closure would

tend to produce short-cuts to A and B that would eliminate its role as a local bridge. Again,

one is tempted to invoke the analogy to freshman physics: even if the assumptions used

to derive the perfectly parabolic flight of a ball don’t hold exactly in the real world, the

conclusions about flight trajectories are a very useful, conceptually tractable approximation

to reality.

Second, when the underlying assumptions are stated precisely, as they are here, it becomes

possible to test them on real-world data. In the past few years researchers have studied the

relationship of tie strength and network structure quantitatively across large populations,

and have shown that the conclusions described here in fact hold in an approximate form.

We describe some of this empirical research in the next section.

Finally, this analysis provides a concrete framework for thinking about the initially sur-

prising fact that life transitions such as a new jobs are often rooted in contact with distant

acquaintances. The argument is that these are the social ties that connect us to new sources

of information and new opportunities, and their conceptual “span” in the social network

(the local bridge property) is directly related to their weakness as social ties. This dual role

as weak connections but also valuable conduits to hard-to-reach parts of the network — this

is the surprising strength of weak ties.

3.3 Tie Strength and Network Structure in Large-Scale
Data

The arguments connecting tie strength with structural properties of the underlying social

network make intriguing theoretical predictions about the organization of social networks
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in real life. For many years after Granovetter’s initial work, however, these predictions

remained relatively untested on large social networks, due to the difficulty in finding data

that reliably captured the strengths of edges in large-scale, realistic settings.

This state of affairs began to change rapidly once detailed traces of digital communication

became available. Such “who-talks-to-whom” data exhibits the two ingredients we need

for empirical evaluation of hypotheses about weak ties: it contains the network structure

of communication among pairs of people, and we can use the total time that two people

spend talking to each other as a proxy for the strength of the tie — the more time spent

communicating during the course of an observation period, the stronger we declare the tie

to be.

In one of the more comprehensive studies of this type, Onnela et al. studied the who-

talks-to-whom network maintained by a cell-phone provider that covered roughly 20% of a

national population [334]. The nodes correspond to cell-phone users, and there is an edge

joining two nodes if they made phone calls to each other in both directions over an 18-

week observation period. Because the cell phones in this population are generally used for

personal communication rather than business purposes, and because the lack of a central

directory means that cell-phone numbers are generally exchanged among people who already

know each other, the underlying network can be viewed as a reasonable sampling of the

conversations occurring within a social network representing a significant fraction of one

country’s population. Moreover, the data exhibits many of the broad structural features

of large social networks discussed in Chapter 2, including a giant component — a single

connected component containing most (in this case 84%) of the individuals in the network.

Generalizing the Notions of Weak Ties and Local Bridges. The theoretical formu-

lation in the preceding section is based on two definitions that impose sharp dichotomies

on the network: an edge is either a strong tie or a weak tie, and it is either a local bridge

or it isn’t. For both of these definitions, it is useful to have versions that exhibit smoother

gradations when we go to examine real data at a large scale.

Above, we just indicated a way to do this for tie strength: we can make the strength of

an edge a numerical quantity, defining it to be the total number of minutes spent on phone

calls between the two ends of the edge. It is also useful to sort all the edges by tie strength,

so that for a given edge we can ask what percentile it occupies this ordering of edges sorted

by strength.

Since a very small fraction of the edges in the cell-phone data are local bridges, it makes

sense to soften this definition as well, so that we can view certain edges as being “almost”

local bridges. To do this, we define the neighborhood overlap of an edge connecting A and

B to be the ratio

number of nodes who are neighbors of both A and B

number of nodes who are neighbors of at least one of A or B
, (3.1)
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Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
[334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of

B and B is a neighbor of A). As an example of how this definition works, consider the edge

A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F is determined by

the nodes B, C, D, E, G, and J , since these are the ones that are a neighbor of at least one

of A or F . Of these, only C is a neighbor of both A and F , so the neighborhood overlap is

1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the

numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge

is contained within this definition — local bridges are the edges of neighborhood overlap 0

— and hence we can think of edges with very small neighborhood overlap as being “almost”

local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes

that travel in “social circles” having almost no one in common.) For example, this definition

views the A-F edge as much closer to being a local bridge than the A-E edge is, which

accords with intuition.
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Empirical Results on Tie Strength and Neighborhood Overlap. Using these defi-

nitions, we can formulate some fundamental quantitative questions based on Granovetter’s

theoretical predictions. First, we can ask how the neighborhood overlap of an edge depends

on its strength; the strength of weak ties predicts that neighborhood overlap should grow as

tie strength grows.

In fact, this is borne out extremely cleanly by the data. Figure 3.7 shows the neigh-

borhood overlap of edges as a function of their percentile in the sorted order of all edges

by tie strength. Thus, as we go to the right on the x-axis, we get edges of greater and

greater strength, and because the curve rises in a strikingly linear fashion, we also get edges

of greater and greater neighborhood overlap. The relationship between these quantities thus

aligns well with the theoretical prediction.2

The measurements underlying Figure 3.7 describe a connection between tie strength

and network structure at a local level — in the neighborhoods of individual nodes. It is

also interesting to consider how this type of data can be used to evaluate the more global

picture suggested by the theoretical framework, that weak ties serve to link together different

tightly-knit communities that each contain a large number of stronger ties. Here, Onnela et

al. provided an indirect analysis to address this question, as follows. They first deleted edges

from the network one at a time, starting with the strongest ties and working downward in

order of tie strength. The giant component shrank steadily as they did this, its size going

down gradually due to the elimination of connections among the nodes. They then tried the

same thing, but starting from the weakest ties and working upward in order of tie strength.

In this case, they found that the giant component shrank more rapidly, and moreover that

its remnants broke apart abruptly once a critical number of weak ties had been removed.

This is consistent with a picture in which the weak ties provide the more crucial connective

structure for holding together disparate communities, and for keeping the global structure

of the giant component intact.

Ultimately, this is just a first step toward evaluating theories of tie strength on net-

work data of this scale, and it illustrates some of the inherent challenges: given the size

and complexity of the network, we cannot simply look at the structure and “see what’s

there.” Indirect measures must generally be used, and since one knows relatively little about

the meaning or significance of any particular node or edge, it remains an ongoing research

challenge to draw richer and more detailed conclusions in the way that one can on small

datasets.

2It is of course interesting to note the deviation from this trend at the very right-hand edge of the plot
in Figure 3.7, corresponding to the edges of greatest possible tie strength. It is not clear what causes this
deviation, but it is certainly plausible that these extremely strong edges are associated with people who are
using their cell-phones in some unusual fashion.
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3.4 Tie Strength, Social Media, and Passive Engage-
ment

As an increasing amount of social interaction moves on-line, the way in which we maintain

and access our social networks begins to change as well. For example, as is well-known

to users of social-networking tools, people maintain large explicit lists of friends in their

profiles on these sites — in contrast to the ways in which such friendship circles were once

much more implicit, and in fact relatively difficult for individuals even to enumerate or

mentally access [244]. What effect does this have on social network structure more broadly?

Understanding the changes arising from these forms of technological mediation is a challenge

that was already being articulated in the early 1990s by researchers including Barry Wellman

[414, 413], as the Internet began making remote interaction possible for a broad public; these

issues have of course grown steadily more pervasive between then and now.

Tie strength can provide an important perspective on such questions, providing a lan-

guage for asking how on-line social activity is distributed across different kinds of links —

and in particular, how it is distributed across links of different strengths. When we see

people maintaining hundreds of friendship links on a social-networking site, we can ask how

many of these correspond to strong ties that involve frequent contact, and how many of these

correspond to weak ties that are activated relatively rarely.

Tie Strength on Facebook. Researchers have begun to address such questions of tie

strength using data from some of the most active social media sites. At Facebook, Cameron

Marlow and his colleagues analyzed the friendship links reported in each user’s profile, ask-

ing to what extent each link was actually used for social interaction, beyond simply being

reported in the profile [286]. In other words, where are the strong ties among a user’s friends?

To make this precise using the data they had available, they defined three categories of links

based on usage over a one-month observation period.

• A link represents reciprocal (mutual) communication, if the user both sent messages to

the friend at the other end of the link, and also received messages from them during

the observation period.

• A link represents one-way communication if the user sent one or more messages to the

friend at the other end of the link (whether or not these messages were reciprocated).

• A link represents a maintained relationship if the user followed information about the

friend at the other end of the link, whether or not actual communication took place;

“following information” here means either clicking on content via Facebook’s News

Feed service (providing information about the friend) or visiting the friend’s profile

more than once.
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All Friends

One-way Communication Mutual Communication

Maintained Relationships

Figure 3.8: Four different views of a Facebook user’s network neighborhood, showing the
structure of links coresponding respectively to all declared friendships, maintained relation-
ships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from
[286].)

Notice that these three categories are not mutually exclusive — indeed, the links classified

as reciprocal communication always belong to the set of links classified as one-way commu-

nication.

This stratification of links by their use lets us understand how a large set of declared

friendships on a site like Facebook translates into an actual pattern of more active social

interaction, corresponding approximately to the use of stronger ties. To get a sense of the

relative volumes of these different kinds of interaction through an example, Figure 3.8 shows

the network neighborhood of a sample Facebook user — consisting of all his friends, and all

links among his friends. The picture in the upper-left shows the set of all declared friendships

in this user’s profile; the other three pictures show how the set of links becomes sparser once

we consider only maintained relationships, one-way communication, or reciprocal communi-
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Figure 3.9: The number of links corresponding to maintained relationships, one-way com-
munication, and reciprocal communication as a function of the total neighborhood size for
users on Facebook. (Image from [286].)

cation. Moreover, as we restrict to stronger ties, certain parts of the network neighborhood

thin out much faster than others. For example, in the neighborhood of the sample user in

Figure 3.8, we see two distinct regions where there has been a particularly large amount of

triadic closure: one in the upper part of the drawing, and one on the right-hand side of the

drawing. However, when we restrict to links representing communication or a maintained

relationship, we see that a lot of the links in the upper region survive, while many fewer of

the links in the right-hand region do. One could conjecture that the right-hand region rep-

resents a set of friends from some earlier phase of the user’s life (perhaps from high school)

who declare each other as friends, but do not actively remain in contact; the upper region,

on the other hand, consists of more recent friends (perhaps co-workers) for whom there is

more frequent contact.

We can make the relative abundance of these different types of links quantitative through

the plot in Figure 3.9. On the x-axis is the total number of friends a user declares, and the

curves then show the (smaller) numbers of other link types as a function of this total. There

are several interesting conclusions to be drawn from this. First, it confirms that even for

users who report very large numbers of friends on their profile pages (on the order of 500),
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Figure 3.10: The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [222].)

the number with whom they actually communicate is generally between 10 and 20, and the

number they follow even passively (e.g. by reading about them) is under 50. But beyond this

observation, Marlow and his colleagues draw a further conclusion about the power of media

like Facebook to enable this kind of passive engagement, in which one keeps up with friends

by reading news about them even in the absence of communication. They argue that this

passive network occupies an interesting middle ground between the strongest ties maintained

by regular communication and the weakest ties from one’s distant past, preserved only in

lists on social-networking profile pages. They write, “The stark contrast between reciprocal

and passive networks shows the effect of technologies such as News Feed. If these people

were required to talk on the phone to each other, we might see something like the reciprocal

network, where everyone is connected to a small number of individuals. Moving to an

environment where everyone is passively engaged with each other, some event, such as a new

baby or engagement can propagate very quickly through this highly connected network.”

Tie Strength on Twitter. Similar lines of investigation have been carried out recently on

the social media site Twitter, where individual users engage in a form of micro-blogging by

posting very short, 140-character public messages known as “tweets.” Twitter also includes

social-network features, and these enable one to distinguish between stronger and weaker

ties: each user can specify a set of other users whose messages he or she will follow, and each

user can also direct messages specifically to another user. (In the latter case, the message
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remains public for everyone to read, but it is marked with a notation indicating that it is

intended for a particular user.) Thus, the former kind of interaction defines a social network

based on more passive, weak ties — it is very easy for a user to follow many people’s messages

without ever directly communicating with any of them. The latter kind of interaction —

especially when we look at users directing multiple messages to others — corresponds to a

stronger kind of direct interaction.

In a style analogous to the work of Marlow et al., Huberman, Romero, and Wu analyzed

the relative abundance of these two kinds of links on Twitter [222]. Specifically, for each

user they considered the number of users whose messages she followed (her “followees”), and

then defined her strong ties to consist of the users to whom she had directed at least two

messages over the course of an observation period. Figure 3.10 shows how the number of

strong ties varies as a function of the number of followees. As we saw for Facebook, even

for users who maintain very large numbers of weak ties on-line, the number of strong ties

remains relatively modest, in this case stabilizing at a value below 50 even for users with

over 1000 followees.

There is another useful way to think about the contrast between the ease of forming

links and the relative scarcity of strong ties in environments like Facebook and Twitter. By

definition, each strong tie requires the continuous investment of time and effort to maintain,

and so even people who devote a lot of their energy to building strong ties will eventually

reach a limit — imposed simply by the hours available in a day — on the number of ties

that they can maintain in this way. The formation of weak ties is governed by much milder

constraints — they need to be established at their outset but not necessarily maintained

continuously — and so it is easier for someone to accumulate them in large numbers. We

will encounter this distinction again in Chapter 13, when we consider how social networks

differ at a structural level from information networks such as the World Wide Web.

Understanding the effect that on-line media have on the maintenance and use of social

networks is a complex problem for which the underlying research is only in its early stages.

But some of these preliminary studies already highlight the ways in which networks of strong

ties can still be relatively sparse even in on-line settings where weak ties abound, and how

the nature of the underlying on-line medium can affect the ways in which different links are

used for conveying information.

3.5 Closure, Structural Holes, and Social Capital

Our discussion thus far suggests a general view of social networks in terms of tightly-knit

groups and the weak ties that link them. The analysis has focused primarily on the roles

that different kinds of edges of a network play in this structure — with a few edges spanning

different groups while most are surrounded by dense patterns of connections.
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the different positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that different nodes

play in this structure as well. In social networks, access to edges that span different groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the effect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the different experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coefficient. (Recall that the

clustering coefficient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in
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the ratio that defines the neighborhood overlap in Equation (3.1) from Section 3.3. Second,

we observe that local bridges are precisely the edges that have an embeddedness of zero —

since they were defined as those edges whose endpoints have no neighbors in common.

In the example shown in Figure 3.11, what stands out about A is the way in which all

of his edges have significant embeddedness. A long line of research in sociology has argued

that if two individuals are connected by an embedded edge, then this makes it easier for

them to trust one another, and to have confidence in the integrity of the transactions (social,

economic, or otherwise) that take place between them [117, 118, 193, 194, 395]. Indeed, the

presence of mutual friends puts the interactions between two people “on display” in a social

sense, even when they are carried out in private; in the event of misbehavior by one of the

two parties to the interaction, there is the potential for social sanctions and reputational

consequences from their mutual friends. As Granovetter writes, “My mortification at cheat-

ing a friend of long standing may be substantial even when undiscovered. It may increase

when a friend becomes aware of it. But it may become even more unbearable when our

mutual friends uncover the deceit and tell one another” [194].

No similar kind of deterring threat exists for edges with zero embeddedness, since there

is no one who knows both people involved in the interaction. In this respect, the interactions

that B has with C and D are much riskier than the embedded interactions that A experiences.

Moreover, the constraints on B’s behavior are made complicated by the fact that she is

subject to potentially contradictory norms and expectations from the different groups she

associates with [116].

Structural holes. Thus far we have been discussing the advantages that accrue to node A

in Figure 3.11 from the closure in his network neighborhood, and the embedded edges that

result from this. But a related line of research in sociology, catalyzed by influential work of

Burt [86], has argued that network positions such as node B’s, at the ends of multiple local

bridges, confer a distinct set of equally fundamental advantages.

The canonical setting for this argument is the social network within an organization or

company, consisting of people who are in some ways collaborating on common objectives and

in other ways implicitly competing for career advancement. Note that although we may be

thinking about settings in which there is a formal organizational hierarchy — encoding who

reports to whom — we’re interested in the more informal network of who knows whom, and

who talks to whom on a regular basis. Empirical studies of managers in large corporations has

correlated an individual’s success within a company to their access to local bridges [86, 87].

At a more abstract level, the central arguments behind these studies are also supported by

the network principles we have been discussing, as we now explore further.

Let’s go back to the network in Figure 3.11, imagining the network to represent the

interaction and collaboration among managers in a large company. In Burt’s language,
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node B, with her multiple local bridges, spans a structural hole in the organization — the

“empty space” in the network between two sets of nodes that do not otherwise interact

closely. (Unlike the term “local bridge,” which has a precise mathematical definition in

terms of the underlying graph, we will keep the term “structural hole” somewhat informal in

this discussion.) The argument is that B’s position offers advantages in several dimensions

relative to A’s. The first kind of advantage, following the observations in the previous

section, is an informational one: B has early access to information originating in multiple,

non-interacting parts of the network. Any one person has a limited amount of energy they

can invest in maintaining contacts across the organization, and B is investing her energy

efficiently by reaching out to different groups rather than basing all her contacts in the same

group.

A second, related kind of advantage is based on the way in which standing at one end of a

local bridge can be an amplifier for creativity [88]. Experience from many domains suggests

that innovations often arise from the unexpected synthesis of multiple ideas, each of them on

their own perhaps well-known, but well-known in distinct and unrelated bodies of expertise.

Thus, B’s position at the interface between three non-interacting groups gives her not only

access to the combined information from these groups, but also the opportunity for novel

ideas by combining these disparate sources of information in new ways.

Finally, B’s position in the network provides an opportunity for a kind of social “gate-

keeping” — she regulates the access of both C and D to the tightly-knit group she belongs

to, and she controls the ways in which her own group learns about information coming from

C’s and D’s groups. This provides B with a source of power in the organization, and one

could imagine that certain people in this situation might try to prevent triangles from form-

ing around the local bridges they’re part of — for example, another edge from C or D into

B’s group would reduce B’s gatekeeping role.

This last point highlights a sense in which the interests of node B and of the organization

as a whole may not be aligned. For the functioning of the organization, accelerating the flow

of information between groups could be beneficial, but this building of bridges would come

at the expense of B’s latent power at the boundaries of these groups. It also emphasizes that

our analysis of structural holes is primarily a static one: we look at the network at a single

point in time, and consider the effects of the local bridges. How long these local bridges last

before triadic closure produces short-cuts around them, and the extent to which people in an

organization are consciously, strategically seeking out local bridges and trying to maintain

them, is less well understood; it is a topic of ongoing research [90, 188, 252, 259].

Ultimately, then, there are trade-offs in the relative positions of A and B. B’s position at

the interface between groups means that her interactions are less embedded within a single

group, and less protected by the presence of mutual network neighbors. On the other hand,

this riskier position provides her with access to information residing in multiple groups, and
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the opportunity to both regulate the flow of this information and to synthesize it in new

ways.

Closure and Bridging as Forms of Social Capital. All of these arguments are framed

in terms of individuals and groups deriving benefits from an underlying social structure or

social network; as such, they are naturally related to the notion of social capital [117, 118,

279, 342, 344]. Social capital is a term in increasingly widespread use, but it is a famously

difficult one to define [138]. In Alejandro Portes’s review of the topic, he writes, “Consensus

is growing in the literature that social capital stands for the ability of actors to secure benefits

by virtue of membership in social networks or other social structures” [342].

The term “social capital” is designed to suggest its role as part of an array of different

forms of capital, all of which serve as tangible or intangible resources that can be mobilized

to accomplish tasks. James Coleman and others speak of social capital alongside physical

capital — the implements and technologies that help perform work — and human capital —

the skills and talents that individual people bring to a job or goal [118]. Pierre Bourdieu offers

a related but distinct taxonomy, considering social capital in relation to economic capital —

consisting of monetary and physical resources — and cultural capital — the accumulated

resources of a culture that exist at a level beyond any one individual’s social circle, conveyed

through education and other broad social institutions [17, 75].

Borgatti, Jones, and Everett [74], summarizing discussions within the sociology commu-

nity, observe two important sources of variation in the use of the term “social capital.” First,

social capital is sometimes viewed as a property of a group, with some groups functioning

more effectively than others because of favorable properties of their social structures or net-

works. Alternately, it has also been considered as a property of an individual; used in this

sense, a person can have more or less social capital depending on his or her position in the

underlying social structure or network. A second, related, source of terminological variation

is based on whether social capital is a property that is purely intrinsic to a group — based

only on the social interactions among the group’s members — or whether it is also based on

the interactions of the group with the outside world.

A view at this level of generality does not yet specify what kinds of network structures

are the most effective for creating social capital, and our discussion earlier in this section

highlights several different perspectives on the question. The writings of Coleman and oth-

ers on social capital emphasize the benefits of triadic closure and embedded edges for the

reasons discussed above: they enable the enforcement of norms and reputational effects, and

hence can help protect the integrity of social and economic transactions. Burt, on the other

hand, discusses social capital as a tension between closure and brokerage — with the former

referring to Coleman’s conception and the latter referring to benefits arising from the ability

to “broker” interactions at the interface between different groups, across structural holes.
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In addition to the structural distinctions between these perspectives, they also illustrate

different focuses on groups versus individuals, and on the activity within a group versus

its contacts with a larger population. The contrasts are also related to Robert Putnam’s

dichotomy between bonding capital and bridging capital [344]; these terms, while intended

informally, correspond roughly to the kinds of social capital arising respectively from con-

nections within a tightly-knit group and from connections between such groups.

The notion of social capital thus provides a framework for thinking about social structures

as facilitators of effective action by individuals and groups, and a way of focusing discussions

of the different kinds of benefits conferred by different structures. Networks are at the heart

of such discussions — both in the way they produce closed groups where transactions can be

trusted, and in the way they link different groups and thereby enable the fusion of different

sources of information residing in these groups.

3.6 Advanced Material: Betweenness Measures and
Graph Partitioning

This is the first in a series of sections throughout the book labeled “Advanced Material.”

Each of these sections comes at the end of a chapter, and it explores mathematically more

sophisticated aspects of some of the models developed earlier in the chapter. They are

strictly optional, in that nothing later in the book builds on them. Also, while these sections

are technically more involved, they are written to be completely self-contained, except where

specific pieces of mathematical background are needed; this necessary background is spelled

out at the beginnings of the sections where it is required.

In this section, we will try formulating more concrete mathematical definitions for some of

the basic concepts from earlier in the chapter. The discussion in this chapter has articulated

a way of thinking about networks in terms of their tightly-knit regions and the weaker ties

that link them together. We have formulated precise definitions for some of the underlying

concepts, such as the clustering coefficient and the definition of a local bridge. In the process,

however, we have refrained from trying to precisely delineate what we mean by a “tightly-knit

region,” and how to formally characterize such regions.

For our purposes so far, it has been useful to be able to speak in this more general,

informal way about tightly-knit regions; it helps to be flexible since the exact characterization

of the notion may differ depending on the different domains in which we encounter it. But

there are also settings in which having a more precise, formal definition is valuable. In

particular, a formal definition can be crucial if we are faced with a network dataset and

actually want to identify densely connected groups of nodes within it.

This will be our focus here: describing a method that can take a network and break it

down into a set of tightly-knit regions, with sparser interconnections between the regions.
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

We will refer to this as the problem of graph partitioning, and the constituent parts the

network is broken into as the regions arising from the partitioning method. Formulating a

method for graph partitioning will implicitly require working out a set of definitions for all

these notions that are both mathematically tractable and also useful on real datasets.

To give a sense for what we might hope to achieve from such a method, let’s consider

two examples. The first, shown in Figure 3.12, depicts the co-authorships among a set of

physicists and applied mathematicians working on networks [322]. Recall that we discussed

co-authorship networks in Chapter 2 as a way of encoding the collaborations within a profes-

sional community. It’s clear from the picture that there are tightly-knit groups within this

community, and some people who sit on the boundaries of their respective groups. Indeed it

resembles, at a somewhat larger scale, some of the pictures of tightly-knit groups and weak

ties that we drew in schematic form earlier, in examples such as Figure 3.11. Is there a

general way to pull these groups out of the data, beyond using just our visual intuition?
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Figure 3.13: A karate club studied by Wayne Zachary [421] — a dispute during the course
of the study caused it to split into two clubs. Could the boundaries of the two clubs be
predicted from the network structure?

A second example, in Figure 3.13, is a picture of the social network of a karate club studied

by Wayne Zachary [421] and discussed in Chapter 1: a dispute between the club president

(node 34) and the instructor (node 1) led the club to split into two. Figure 3.13 shows the

network structure, with the membership in the two clubs after the division indicated by the

shaded and unshaded nodes. Now, a natural question is whether the structure itself contains

enough information to predict the fault line. In other words, did the split occur along a weak

interface between two densely connected regions? Unlike the network in Figure 3.12, or in

some of the earlier examples in the chapter, the two conflicting groups here are still heavily

interconnected. So to identify the division in this case, we need to look for more subtle

signals in the way in which edges between the groups effectively occur at lower “density”

than edges within the groups. We will see that this is in fact possible, both for the definitions

we consider here as well as other definitions.

A. A Method for Graph Partitioning

Many different approaches have been developed for the problem of graph partitioning, and

for networks with clear divisions into tightly-knit regions, there is often a wide range of

methods that will prove to be effective. While these methods can differ considerably in their

specifics, it is useful to identify the different general styles that motivate their designs.
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General Approaches to Graph Partitioning. One class of methods focuses on iden-

tifying and removing the “spanning links” between densely-connected regions. Once these

links are removed, the network begins to fall apart into large pieces; within these pieces,

further spanning links can be identified, and the process continues. We will refer to these as

divisive methods of graph partitioning, since they divide the network up as they go.

An alternate class of methods starts from the opposite end of the problem, focusing on the

most tightly-knit parts of the network, rather than the connections at their boundaries. Such

methods find nodes that are likely to belong to the same region and merge them together.

Once this is done, the network consists of a large number of merged chunks, each containing

the seeds of a densely-connected region; the process then looks for chunks that should be

further merged together, and in this way the regions are assembled “bottom-up.” We refer

to these as agglomerative methods of graph partitioning, since they glue nodes together into

regions as they go.

To illustrate the conceptual differences between these two kinds of approaches, let’s con-

sider the simple graph in Figure 3.14(a). Intuitively, as indicated in Figure 3.14(b), there

appears to be a broad separation between one region consisting of nodes 1-7, and another

consisting of nodes 8-14. Within each of these regions, there is a further split: on the left

into nodes 1-3 and nodes 4-6; on the right into nodes 9-11 and nodes 12-14. Note how this

simple example already illustrates that the process of graph partitioning can usefully be

viewed as producing regions in the network that are naturally nested: larger regions poten-

tially containing several smaller, even more tightly-knit regions “nested” within them. This

is of course a familiar picture from everyday life, where — for example — a separation of

the gobal population into national groups can be further subdivided into sub-populations

within particular local areas within countries.

In fact, a number of graph partitioning methods will find the nested set of regions indi-

cated in Figure 3.14(b). Divisive methods will generally proceed by breaking apart the graph

first at the 7-8 edge, and subsequently at the remaining edges into nodes 7 and 8. Agglom-

erative methods will arrive at the same result from the opposite direction, first merging the

four triangles into clumps, and then finding that the triangles themselves can be naturally

paired off.

This is a good point at which to make the discussion more concrete, and to do so we

focus on a particular divisive method proposed by Girvan and Newman [184, 322]. The

Girvan-Newman method has been applied very widely in recent years, and to social network

data in particular. Again, however, we emphasize that graph partitioning is an area in which

there is an especially wide range of different approaches in use. The approach we discuss is

an elegant and particular widely-used one; however, understanding which types of methods

work best in different situations remains a subject of active research.
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in different parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “traffic” on the network, and look for the edges that carry the most of

this traffic. Like crucial bridges and highway arteries, we might expect these edges to link

different densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of traffic as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to different connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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(c) Step 3

Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3 · 11 = 33. The same goes for

the edges 6-7, 8-9, and 8-12.

• The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its

betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

• Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.

This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most traffic.

In fact, the idea of using betweenness to identify important edges draws on a long history

in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,

169]. Its use by sociologists has traditionally focused more on nodes than on edges, where

the definition the same: the betweenness of a node is the total amount of flow that it carries,

when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network
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Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of traffic along shortest paths. Based on the premise that these are the most “vital” edges

for connecting different regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17



3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING77

we show how the method operates on the graphs from Figures 3.14(a) and 3.15 respectively.

Note how smaller regions emerge from larger ones as edges are successively removed.

The sequence of steps in Figure 3.17 in fact exposes some interesting points about how

the method works.

• When we calculate the betweennesses in the first step, the 5-7 edge carries all the flow

from nodes 1-5 to nodes 7-11, for a betweenness of 25. The 5-6 edge, on the other hand,

only carries flow from node 6 to each of nodes 1-5, for a betweenness of 5. (Similarly

for the 6-7 edge.)

• Once the 5-7 edge is deleted, however, we recalculate all the betweennesses for the

second step. At this point, all 25 units of flow that used to be on this deleted edge

have shifted onto the path through nodes 5, 6, and 7, and so the betweenness of the

5-6 edge (and also the 6-7 edge) has increased to 5 + 25 = 30. This is why these two

edges are deleted next.

In their original presentation of the method, Girvan and Newman showed its effectiveness

at partitioning a number of real network datasets into intuitively reasonable sets of regions.

For example, on Zachary’s karate club network in Figure 3.13, when the method is used to

remove edges until the graph first separates into two pieces, the resulting partition agrees

with the actual split that occurred in the club except for a single person — node 9 in the

figure. In real life, node 9 went with the instructor’s club, even though the graph partitioning

analysis here would predict that he would join the president’s club.

Zachary’s original analysis of the karate club employed a different approach that also

used the network structure. He first supplemented the network with numerical estimates of

tie strength for the edges, based on his empirical study of the relationships within the karate

club. He then identified a set of edges of minimum total strength whose removal would place

node 1 and node 34 (the rival leaders) in different connected components, and he predicted

this as the split. The approach Zachary used, deleting edges of minimum total strength so

as to separate two specified nodes, is known as the problem of finding a minimum cut in a

graph, and it has the been the subject of extensive research and applications [8, 164, 253]. On

the karate-club network, this minimum-cut approach produced the same split as the Girvan-

Newman method: it agreed with the split that actually occurred except for the outcome

of node 9, an alignment of predictions that emphasizes how different approaches to graph

partitioning can produce corresponding results. It is also interesting to note that Zachary

traced the anomalous nature of node 9 to a fact that the network structure could not capture:

at the time of the actual split, the person corresponding to node 9 was three weeks away

from completing a four-year quest to obtain a black belt, which he could only do with the

instructor (node 1).
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Figure 3.18: The first step in the efficient method for computing betweenness values is to
perform a breadth-first search of the network. Here the results of breadth-first from node A
are shown; over the course of the method, breadth-first search is performed from each node
in turn.

Among the other examples discussed by Girvan and Newman, they provide a partition

of the co-authorship network from Figure 3.12, with the top level of regions suggested by

the different shadings of the nodes in that figure.

Ultimately, it is a challenge to rigorously evaluate graph partitioning methods and to

formulate ways of asserting that one is better than another — both because the goal is hard

to formalize, and because different methods may be more or less effective on different kinds

of networks. Moreover, a line of recent work by Leskovec et al. has argued that in real social-

network data, it is much easier to separate a tightly-knit region from the rest of the network

when it is relatively small, on the order of at most a few hundred nodes [275]. Studies on

a range of different social and information networks suggest that beyond this size, sets of

nodes become much more “inextricable” from the rest of the network, suggesting that graph

partitioning approaches on this type of data may produce qualitatively different kinds of

results for small networks and small regions than for large ones. This is an area of ongoing

investigation.

In the remainder of this section, we address a final important issue: how to actually

compute the betweenness quantities that are needed in order to make the Girvan-Newman

method work.
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B. Computing Betweenness Values

In order to perform the Girvan-Newman method, we need a way to find the edges of highest

betweenness in each step. This is done by computing all the betweennesses of all edges and

then looking for the ones with the highest values. The tricky part is that the definition

of betweenness involves reasoning about the set of all the shortest paths between pairs of

nodes. Since there could be a very large number of such shortest paths, how can we efficiently

compute betweenness without the overhead of actually listing out all such paths? This is

crucial for implementing the method on a computer to work with datasets of any reasonable

size.

In fact, there is a clever way to compute betweennesses efficiently [77, 317], and it is

based on the notion of breadth-first search from Section 2.3. We will consider the graph

from the perspective of one node at a time; for each given node, we will compute how the

total flow from that node to all others is distributed over the edges. If we do this for every

node, then we can simply add up the flows from all of them to get the betweennesses on

every edge.

So let’s consider how we would determine the flow from one node to all other nodes in

the graph. As an example, we’ll look at the graph in Figure 3.18(a), focusing on how the

flow from node A reaches all other nodes. We do this in three high-level steps; below we

explain the details of how each of these steps works.

(1) Perform a breadth-first search of the graph, starting at A.

(2) Determine the number of shortest paths from A to each other node.

(3) Based on these numbers, determine the amount of flow from A to all other nodes that

uses each edge.

For the first step, recall that breadth-first search divides a graph into layers starting at a

given node (A in our case), with all the nodes in layer d having distance d from A. Moreover,

the shortest paths from A to a node X in layer d are precisely the paths that move downward

from A to X one layer at a time, thereby taking exactly d steps. Figure 3.18(b) shows the

result of breadth-first search from A in our graph, with the layers placed horizontally going

downward from A. Thus, for example, some inspection of the figure shows that there are

two shortest paths (each of length two) from A to F : one using nodes A, B, and F , and the

other using nodes A, C, and F .

Counting Shortest Paths. Now, let’s consider the second step: determining the number

of shortest paths from A to each other node. There is a remarkably clean way to do this, by

working down through the layers of the breadth-first search.
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Figure 3.19: The second step in computing betweenness values is to count the number of
shortest paths from a starting node A to all other nodes in the network. This can be done
by adding up counts of shortest paths, moving downward through the breadth-first search
structure.

To motivate this, consider a node like I in Figure 3.18(b). All shortest-paths from A to

I must take their last step through either F or G, since these are the two nodes above it

in the breadth-first search. (For terminological convenience, we will say that a node X is

above a node Y in the breadth-first search if X is in the layer immediately preceding Y , and

X has an edge to Y .) Moreover, in order to be a shortest path to I, a path must first be a

shortest path to one of F or G, and then take this last step to I. It follows that the number

of shortest paths from A to I is precisely the number of shortest paths from A to F , plus

the number of shortest paths from A to G.

We can use this as a general method to count the number of shortest paths from A to

all other nodes, as depicted in Figure 3.19. Each node in the first layer is a neighbor of A,

and so it has only one shortest path from A: the edge leading straight from A to it. So

we give each of these nodes a count of 1. Now, as we move down through the BFS layers,

we apply the reasoning discussed above to conclude that the number of shortest paths to
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from
the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

each node should be the sum of the number of shortest paths to all nodes directly above it

in the breadth-first search. Working downward through the layers, we thus get the number

of shortest paths to each node, as shown in Figure 3.19. Note that by the time we get to

deeper layers, it may not be so easy to determine these number by visual inspection — for

example, to immediately list the six different shortest paths from A to K — but it is quite

easy when they are built up layer-by-layer in this way.

Determining Flow Values. Finally, we come to the third step, computing how the flow

from A to all other nodes spreads out across the edges. Here too we use the breadth-first

search structure, but this time working up from the lowest layers. We first show the idea in

Figure 3.20 on our running example, and then describe the general procedure.

• Let’s start at the bottom with node K. A single unit of flow arrives at K, and an equal

number of the shortest paths from A to K come through nodes I and J , so this unit
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of flow is equally divided over the two incoming edges. Therefore we put a half-unit of

flow on each of these edges.

• Now, working upward, the total amount of flow arriving at I is equal to the one unit

actually destined for I plus the half-unit passing through to K, for a total of 3/2. How

does this 3/2 amount of flow get divided over the edges leading upward from I, to F

and G respectively? We see from the second step that there are twice as many shortest

paths from A through F as through G, so twice as much of the flow should come from

F . Therefore, we put one unit of the flow on F , and a half-unit of the flow on G, as

indicated in the figure.

• We continue in this way for each other node, working upward through the layers of the

breadth-first search.

From this, it is not hard to describe the principle in general. When we get to a node

X in the breadth-first search structure, working up from the bottom, we add up all the

flow arriving from edges directly below X, plus 1 for the flow destined for X itself. We then

divide this up over the edges leading upward from X, in proportion to the number of shortest

paths coming through each. You can check that applying this principle leads to the numbers

shown in Figure 3.20.

We are now essentially done. We build one of these breadth-first structures from each

node in the network, determine flow values from the node using this procedure, and then sum

up the flow values to get the betweenness value for each edge. Notice that we are counting

the flow between each pair of nodes X and Y twice: once when we do the breadth-first search

from X, and once when we do it from Y . So at the end we divide everything by two to

cancel out this double-counting. Finally, using these betweenness values, we can identify the

edges of highest betweenness for purposes of removing them in the Girvan-Newman method.

Final Observations. The method we have just described can be used to compute the

betweennesses of nodes as well as edges. In fact, this is already happening in the third step:

notice that we are implicitly keeping track of the amounts of flow through the nodes as well

as through the edges, and this is what is needed to determine the betweennesses of the nodes.

The original Girvan-Newman method described here, based on repeated removal of high-

betweenness edges, is a good conceptual way to think about graph partitioning, and it

works well on networks of moderate size (up to a few thousand nodes). However, for larger

networks, the need to recompute betweenness values in every step becomes computationally

very expensive. In view of this, a range of different alternatives have been proposed to identify

similar sets of tightly-knit regions more efficiently. These include methods of approximating

the betweenness [34] and related but more efficient graph partitioning approaches using
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divisive and agglomerative methods [35, 321]. There remains considerable interest in finding

fast partitioning algorithms that can scale to very large network datasets.

3.7 Exercises

1. In 2-3 sentences, explain what triadic closure is, and how it plays a role in the formation

of social networks. You can draw a schematic picture in case this is useful.

2. Consider the graph in Figure 3.21, in which each edge — except the edge connecting

b and c — is labeled as a strong tie (S) or a weak tie (W).

According to the theory of strong and weak ties, with the strong triadic closure as-

sumption, how would you expect the edge connecting b and c to be labeled? Give a

brief (1-3 sentence) explanation for your answer.

a

b c

d

e f

W

W W

S

S

S

S

?

Figure 3.21:

3. In the social network depicted in Figure 3.22, with each edge labeled as either a strong

or weak tie, which nodes satisfy the Strong Triadic Closure Property from Chapter 3,

and which do not? Provide an explanation for your answer.

4. In the social network depicted in Figure 3.23 with each edge labeled as either a strong

or weak tie, which two nodes violate the Strong Triadic Closure Property? Provide an

explanation for your answer.

5. In the social network depicted in Figure 3.24, with each edge labeled as either a strong

or weak tie, which nodes satisfy the Strong Triadic Closure Property from Chapter 3,

and which do not? Provide an explanation for your answer.



84 CHAPTER 3. STRONG AND WEAK TIES

A

B

D

C

E

S

S

SW

S

S W

W

Figure 3.22:

A

B C

S W

E

S

D

S

S

W

W S
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