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Situations in which agents’ choices depend on 
choices of those in close proximity, be it social 
or geographic, are ubiquitous. Selecting a new 
computer platform, signing a political petition, 
or even catching the flu are examples in which 
social interactions have a significant role. While 
some behaviors or states propagate and explode 
within the population (e.g., Windows OS, the 
HIV virus) others do not (e.g., certain computer 
viruses).� Our goal in this paper is twofold. First, 
we provide a general dynamic model in which 
agents’ choices depend on the underlying social 
network of connections. Second, we show the 
usefulness of the model in determining when a 
given behavior expands within a population or 
disappears as a function of the environment’s 
fundamentals.

We study a framework in which agents face a 
choice between two actions, 0 and 1 (e.g., whether 
to pursue a certain level of education, switch to 
Linux OS, etc.). Agents are linked through a 
social network, and an agent’s payoffs from each 
action depend on the number of neighbors she 
has and her neighbors’ choices. The diffusion 
process is defined so that at each period, each 
agent best responds to the actions taken by her 
neighbors in the previous period, assuming that 
her neighbors follow the population distribution 
of actions (a mean-field approximation). Steady 
states correspond to equilibria of the static 
game. Under some simple conditions, equilibria 
take one of two forms. Some are stable, so that 
a slight perturbation to any such equilibrium 

1 See �Everett M. Rogers (1995), as well as virus prev-
alence data at http://www.virusbtn.com/ and summary 
statistics in Romualdo Pastor-Satorras and Alessandro 
Vespignani (2000).
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would lead the diffusion process to converge 
back to that equilibrium point. Other equilibria 
are unstable, so that a slight change in the distri-
bution of actions leads to a new distribution of 
actions and eventually to a stable steady state. 
We call such equilibria tipping points. We ana-
lyze how the environment’s fundamentals (cost 
distribution, payoffs, and network structure) 
affect the set of equilibria, and characterize the 
adoption patterns within the network.

The paper relates to recent work on network 
games and network diffusion, including work 
by Stephen Morris (2000); Pastor-Satorras and 
Vespignani (2000); Mark E. J. Newman (2002); 
Dunia López-Pintado (2004); Jackson and Brian 
W. Rogers (2007); Jackson and Yariv (2005); 
and Andrea Galeotti et al. (2005, henceforth 
GGJVY). Its contribution is in characterizing 
diffusion of strategic behavior and analyzing the 
stability properties of equilibria, and employing 
methods that allow us to make comparisons 
across general network structures and settings. 
Given that social networks differ substantially 
and systematically in structure across settings 
(e.g., ethnic groups, professions, etc.), under-
standing the implications of social structure 
on diffusion is an important undertaking for a 
diverse set of applications.

I.  The Model

A. Social Networks and Payoffs

We consider a set of agents and capture the 
social structure by its underlying network. We 
model the network through the distribution of 
the number of neighbors, or degree, that each 
agent has. Agent i’s degree is denoted di.  The 
fraction of agents in the population with d 
neighbors is described by the degree distribu-
tion P(d) for d 5 0, 1, … , D (with the possi- 
bility that D 5 ` ), where oD

d51 P(d) 5 1.
Let P~(d) K P(d)d/d̄ , where d̄  5 EP [d] 5 

g d  P(d)d. This is a standard calculation of the 
probability of the degree of an agent conditional 
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on that agent being at the end of a randomly cho-
sen link in the network.

Agents each have a choice between taking an 
action 0 or an action 1. Without loss of general-
ity, we consider the action 0 to be the default 
behavior (for example, the status-quo technol-
ogy). Agent i has a cost of choosing 1, denoted 
ci . Costs are randomly and independently dis-
tributed across society according to a distri-
bution Hc that we assume to be atomless. We 
normalize the payoff from taking the action 0 to 
be 0.� Agent i’s payoff from adopting behavior 1 
when i has di  neighbors and expects them each 
independently to choose 1 with a probability x 
is v 1di, x 2 2 ci.  Therefore, i prefers action 1 if 
ci # v 1di, x 2 .

We illustrate the generality of the framework 
by noting a few special cases:

	•	 v 1d, x 2 5 u 1dx 2 —an agent’s payoffs are a 
function of the expected number of neighbors 
adopting the action 1. This corresponds to the 
framework analyzed in GGJVY.

	•	 v 1d, x 2 5 u 1x 2 —agents care only about the 
average play of their neighbors. Network 
structure does not enter.

	•	 v 1d, x 2  is a step function, for instance, taking 
one value if x lies below a threshold (possibly 
depending on d), and taking another value if 
x exceeds the threshold.

B. Bayesian Equilibrium

We consider symmetric Bayesian equilibria 
of the network game:

	•	 Each agent i knows only her own degree di  
and cost ci , the distribution of degrees in the 
population, and assumes that degrees and cost 
parameters are independently allocated. Thus, 
the game is a Bayesian game in the Harsanyi 
sense where types are given by degrees and 
costs.

	•	 The play is symmetric in that any agent per-
ceives the distribution of play of each of her 

� In Jackson and Yariv (2006), we analyze the more 
general case in which Hc may contain atoms, and payoffs 
to the action 0 may depend on an agent’s degree. The lat-
ter is important for welfare implications, but the nor-
malization here is without loss of generality for strategic 
considerations.

neighbors to be independent and to correspond 
to the distribution of play in the population.�

Existence of symmetric Bayesian equilib-
ria follows from standard arguments. In cases 
where v is nondecreasing in x for each d,  exis-
tence is a direct consequence of Tarski’s Fixed 
Point Theorem, and then there exists an equi-
librium in pure strategies. In other cases, pro-
vided v is continuous in x for each d,  we find a 
fixed point by appealing to standard fixed point 
theorems (e.g., Kakutani) and admitting mixed 
strategies.

A simple equation is sufficient to character-
ize equilibria. Let x be the probability that a 
randomly chosen neighbor chooses the action 1. 
Then H 1d, x 2 K Hc 3v 1d, x 2 4 is the probability  
that a random (best responding) neighbor of 
degree d chooses the action 1. It must be that

(1) 	  x 5 f 1x 2 ; a
d

P| 1d 2H 1d, x 2 .
Equation 1 characterizes equilibria in the 

sense that any symmetric equilibrium results 
in an x which satisfies the equation, and any 
x that satisfies the equation corresponds to an 
equilibrium where type 1di,ci 2  chooses 1 if 
and only if ci # v 1di, x 2 . Given that equilib-
ria can be described by their corresponding x, 
we often refer to some value of x as being an 
equilibrium.

C. A Diffusion Process

Consider a diffusion process governed by 
best responses in discrete time. At time t 5 0,  
a fraction x0  of the population is exogenously 
and randomly assigned the action 1, and the 
rest of the population is assigned the action 0. 
At each time t . 0,  each agent, including the 
agents assigned to action 1 at the outset, best 
responds to the distribution of agents choosing 
the action 1 in period t 2 1 , presuming that 
their neighbors will be a random draw from the 
population.

� This is an extension of the concept from GGJVY, 
where agents have identical costs. The equilibrium is sym-
metric in that it depends only on an agent’s type (di, ci), and 
not her label i.
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Let xt
d  denote the fraction of those agents with 

degree d who have adopted behavior 1 at time t,  
and let xt  denote the link-weighted fraction of 
agents who have adopted the behavior at time t.  
That is, xt 5 odP

, 1d 2xt
d and x t

d 5 H 1d, xt21 2 . 
Therefore, xt 5 odP

, 1d 2H 1d, xt212 .
If payoffs exhibit complementarities, then con-

vergence of behavior from any starting point is 
monotone, either upward or downward. Once an 
agent (voluntarily) switches behaviors, the agent 
will not want to switch back. Thus, although best 
responses are myopic, any changes in behavior 
are equivalently forward looking. Any rest point 
of the system corresponds to a static Bayesian 
equilibrium of the system. If actions are strate-
gic substitutes, convergence may not be guar-
anteed for all starting points. Our results will 
still be useful in characterizing the potential rest 
points, or equilibria, of such systems, however.

II.  Equilibrium Structure

A. Multiplicity

The multiplicity of equilibria is determined 
by the properties of f, which, in turn, corre-
spond to properties of P

,
 and H.� In general, as 

long as the graph of f 1x 2  crosses the 45 degree 
line only once, there is a unique equilibrium 
(see Figure 1). There is a conceptual connection 
between our analysis and the recent literature on 
global games identifying forms of heterogene-
ity guaranteeing uniqueness when a game with 
complementarities admits multiple equilibria 
(see Morris and Hyun Shin 2003). The hetero-
geneity determining uniqueness in our setup is 
introduced through the cost agents experience, 
as well as through the different degrees agents 
have. Our analysis allows us to study the set 
of stable and unstable equilibria, regardless of 
multiplicity.

B. Stability

Some equilibria are robust to small pertur-
bations and are therefore stable, while other 
equilibria are not robust and, from them, small 
perturbations lead to significant changes in the 

� Jackson and Yariv (2006) discuss multiplicity and 
when 0 is an equilibrium point.

distribution of play in the population. These are 
captured in the following definitions.

Definition 1 (Stability and Tipping): An equi-
librium x is stable if there exists e r . 0  such that 
f 1x 2 e 2 . x 2 e  and f 1x 1 e 2 , x 1 e  for 
all e r . e . 0 . An equilibrium x is unstable or 
a tipping point if there exists e r . 0  such that 
f 1x 2 e 2 , x 2 e  and f 1x 1 e 2 . x 1 e  for 
all e r . e . 0 .

Definition 2 (Regular Environment): An 
environment is regular if all fixed points are 
either stable or unstable, and H is continuous.

Definition 3 (Greater Diffusion): One envi-
ronment, with corresponding mapping f| 1x 2 ,  
generates greater diffusion than another with 
corresponding mapping f 1x 2 ,  if for any stable 
equilibrium of the latter there exists a (weakly) 
higher stable equilibrium of the former, and for 
any unstable equilibrium of the latter there is 
either a (weakly) lower unstable equilibrium of 
the former or else f| 10 2 . 0.

An environment has greater diffusion than 
another if its tipping points are lower, thus mak-
ing it easier to get diffusion started, and its stable 
equilibria are higher, and so the eventual resting 
points are higher.

Proposition 1: Consider f̄  and f corre- 
sponding through (1) to two regular environ-
ments. If f̄  (x) $ f(x) for each x, then f̄ gener-
ates greater diffusion than f.

Figure 1. The Effects of Shifting f(x) Pointwise
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Proposition 1 implies that a small upward 
shift in a (continuous) f leads to locally lower 
tipping points and higher stable equilibria, as 
illustrated in Figure 1.

III.  Comparative Statics

Given that f 1x 2 5 g dP
| 1d 2Hc 1v 1d, x 2 2 , and 

Proposition 1, we can deduce much about 
changes in the structure of equilibria by consid
ering changes in fundamentals, costs, returns, 
and network structure, that shift f 1x 2  in a par-
ticular direction for all x. We refer the reader to 
Jackson and Yariv (2006) for omitted proofs.

A. Changes in Cost Distribution

We consider increases in costs in terms of 
first-order stochastic dominance (FOSD) shifts 
of H 

c .

Proposition 2 (Increasing Costs): If H̄c 
FOSD Hc , then the corresponding f̄  (x), f(x) 
satisfy f̄  (x) # f(x) for each x. Thus, if H̄c, Hc, 
(given v) correspond to two regular environments, 
then Hc generates greater diffusion than H̄c.

As costs increase, agents are generally less 
prone to take action 1, and so tipping points are 
shifting up and stable equilibria are shifting 
down.

Note that if v 1d, x 2  is nondecreasing in x, 
then if x*  is a stable equilibrium under Hc  
and x* # x*  is a stable equilibrium under 
H̄c, expected utility of all agents goes up and 
expected welfare under Hc, when x*  is played, is 
higher than under H̄c, when x*  is played.

B. Changes in Network Structure

We consider two types of changes to the net-
work architecture. The first pertains to the num-
ber of expected neighbors each agent has. The 
second relates to the heterogeneity of connect-
edness within the population.

Proposition 3 (FOSD Shifts): If P
,

 FOSD P
,

9 
and H 1d, x 2  is nondecreasing (nonincreasing) in 
d for all x, then f 1x 2 $ f r 1x 2  [f 1x 2 # f9 1x 2] 
for each x. Thus, if the environments corre-
sponding to P and P r  are regular, then P gener-
ates greater (lesser) diffusion than P r.

To gain intuition, consider a case in which 
v 1d, x 2  is nondecreasing in d. Here, any sym-
metric equilibrium entails higher-degree agents 
choosing action 1 with higher probability. 
Start with any such equilibrium under P r  and 
consider a shift to P for which P

,
 FOSD P

,
9. 

 Without any change in strategies, each agent 
would perceive her neighbors to be more likely 
to have higher degrees. Thus, a best response 
would entail a greater propensity to choose the 
action 1. Iterating best responses converges to 
an equilibrium involving a (weakly) higher rate 
of agents of each type choosing the action 1. It 
is easier to get the action 1 adopted and tipping 
points are lower.�

As for welfare, suppose v 1d, x 2  is nonde-
creasing in x. A FOSD change in the degree 
distribution generates higher expected payoffs 
corresponding to stable equilibria for agents of 
any given type. If the underlying degree dis-
tribution itself is shifted in the sense of FOSD 
(i.e., P FOSD P r ), then more weight is shifted 
to higher expected payoff agents and overall 
welfare increases. This condition is naturally 
satisfied when, e.g., P is a simple translation of 
the distribution P9. Unfortunately, more gen-
eral forms of FOSD shifts in the distribution of 
neighbors’ degrees do not always correspond 
to FOSD shifts in the original degree distribu-
tion and so welfare implications are, in general, 
ambiguous.�

We now consider changes in the heterogene-
ity of connectedness through mean-preserving 
spreads of the degree distribution.

Proposition 4 (MPS in P): If H 1d, x 2  is non-
decreasing and convex (nonincreasing and con-
cave) in d, then P is a MPS of P r  implies that 
f 1x 2 $ f r 1x 2  [f 1x 2 # f9 1x 2]  for all x, and 
so P generates greater (lesser) diffusion than P9. 
Furthermore, if v 1d, x 2  is convex (concave) in 
d and nondecreasing in x, then if x*  is a stable 
equilibrium under P and x* # x*  (x* $ x* )

� A related result appears in GGJVY, but with several 
differences. That result does not distinguish between stable 
and unstable equilibria and applies only to a special class 
of payoff functions, but that result applies to more general 
action spaces (in the case where H �is nondecreasing).

� See GGJVY and Jackson and Yariv (2006) for discus-
sion on this point and examples.
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is a stable equilibrium under P r,  the expected 
welfare under P when x*  is played is higher 
(lower) than under P r  when x*  is played.

The greater diffusion result follows from the 
definition of MPS and f 1x 2 . Regarding welfare, 
let x*  ,  x*  be given as stable points satisfying the 
Proposition’s statement. The welfare level under 
P when x*  is played is g dv 1d, x*2P 1d 2 . Now, 
g dv 1d, x*2P 1d 2 $ g dv 1d, x–*2P 1d 2 since v is 
nondecreasing, and this in turn is greater than 
or equal to g dv 1d, x–*2P91d 2 , since P is a MPS of 
P9. The claim then follows.

Note that this result implies that if H 1d, x 2  is 
nondecreasing and convex, then power, Poisson, 
and regular degree distributions with identi-
cal means generate corresponding values of 
fpower, fPoisson, and fregular such that fpower 1x 2 $ 
fPoisson 1x 2 $ fregular 1x 2  for all x. This is con-
sistent with the simulation-based observations 
regarding tipping points in the epidemiology 
literature (see Pastor-Satorras and Vespignani 
2000).

Proposition 4 is useful in identifying the struc-
ture of optimal networks. Indeed, suppose we 
ask which P with a given average d̄  and support 
in 1, … , D– maximizes f(x) 5 g d  H(d, x) 1P(d)d/
d̄ 2 . If we have a P which maximizes this point-
wise, then we know that it leads to greater diffu-
sion than any other P. It follows directly that:

Corollary 5 (Optimal Networks): If H 1d, x 2  
is nondecreasing and convex in d, then the P 
that maximizes diffusion (under our greater dif-
fusion partial ordering), is one which has weight 
only on degree 1 and D– (in proportions to yield 
average degree d̄). If H 1d, x 2  is nonincreasing 
and concave in d, then the P that maximizes 
diffusion (under our greater diffusion partial 
ordering), is a regular network with full weight 
on degree d̄ .

C. Changes in Returns to Adoption

We now contemplate changes in the returns 
to the action 1 and their effects on the even-
tual adoption rate. This is interesting for a wide 
range of applications, e.g., directed advertising 
in marketing, optimal immunization processes 
in epidemiology, etc. We concentrate on the spe-
cial case in which v 1d, x 2 5 v| 1d 2x .

Consider starting with a given v| 1d 2  and then 
reordering it to become v| r 1d 2 .� Let us say that 
a reordering v| r  of v|  is weight increasing if the 
following condition holds. For any d and d r  
such that v| r 1d 2  2  v| 1d 2  and v| r 1d r 2  2  v| 1d r 2 , 
if v| r 1d r 2 . v| r 1d 2  then P 1d r 2d r $ P 1d 2d .

The condition states that any values of v|  that 
have been reordered should be reordered so that 
higher values are assigned to degrees that have 
higher conditional weight.

Proposition 6 (Weight Increasing Reorder
ings): If v| r  is a weight increasing reordering 
of v| , then the corresponding f r  and f satisfy 
f r 1x 2 $ f 1x 2  for all x, and so v| r  generates 
greater diffusion than v| .

The implications of the Proposition are that 
in order to lower the set of tipping points and 
increase the set of stable equilibria, the appro-
priate choice of v| 1d 2  requires matching the 
ordering of v| 1d 2  with that of P 1d 2d .� The 
simple intuition is that in order to maximize dif-
fusion, one wants the types that are most prone 
to adopt a behavior to be those who are most 
prevalent in the society in terms of being most 
likely to be neighbors.

Interestingly, this leads to conclusions that 
are counter to much of the common wisdom in 
the literature. Indeed, if one can target only a 
specific number of nodes, then one would like to 
target those with the highest degree, as they will 
have the greatest number of neighbors. This is 
the standard “hub” idea. Note, however, that the 
exercise here is different. We ask which types 
are most influential, when accounting for the 
population size and thus their likelihood to be 
neighbors.

Under a power distribution, P 1d 2d  is decreas-
ing in d. So, in order to maximize adoption rates 
we would want a decreasing, rather than increas-
ing, v| 1d 2 .  For a uniform degree distribution, the 
reverse holds. For a Poisson distribution, P 1d 2d  
is increasing up to the mean and then decreasing 

� Formally, v~ and v~9 are reorderings of one another if 
there is a permutation p of 1, 2, … such that v~[p(d)] 5 v~9(d) 
for each d.

� Jackson and Yariv (2006) contains the proof, and a 
result for uniform H c, where in order to increase f point-
wise, we do not need the reordering to be weight increasing, 
but rather just to increase weight on average.
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thereafter, and the ideal ordering of v| 1d 2  would 
match this shape, and be nonmonotonic.

IV.  Convergence Patterns and  
S-Shaped Rates of Adoption

We close with an analysis of convergence pat-
terns. We can get an idea of the speed of con-
vergence of the system at different points by 
examining the difference xt11 2 xt, or f(x) 2 x, 
summarized as follows:

Proposition 7: Let H 1d, x 2  be twice con-
tinuously differentiable and increasing in x for 
all d. If H 1d, x 2  is strictly concave (convex) in 
x for all d, then there exists x* [ 30,1 4  such 
that f 1x 2 2 x  is increasing (decreasing) up to 
x*  and then decreasing (increasing) past x*  
(whenever f 1x 2 o {0, 1}).

Proof:
Note that [f(x) 2 x]9 5 g dP~(d) 10H(d, x)/0x 2 2 

1 and [f(x) 2 x]0 5 g dP~(d) 102H(d, x)/0x22 . Let 
x* be such that 10H(d, x)/0x 2 Z x* 5 1, if it exists. 
When H is strictly concave in x, if 0H(d, x)/0x  
. 1 for all x then set x* 5 1, and if 0H(d, x)/0x 
, 1 for all x then set x* 5 0. When H is strictly 
convex in x, if 0H(d, x)/0x . 1 for all x then set  
x* 5 0, and if 0H(d, x)/0x , 1 for all x then  
set x* 5 1. Thus, if H is strictly concave in x, 
then [f(x) 2 x]0 , 0. Therefore, [f(x) 2 x]9 is 
positive up to x* and negative beyond it. The 
reverse holds for H strictly convex and the result 
follows.

Proposition 7 helps characterize the dif-
fusion paths. Consider a strictly concave H. 
There are three possible equilibria configura-
tions: 0 is a unique and stable equilibrium; 0 is 
an unstable equilibrium and there is a unique 
stable equilibrium above 0; or 0 is not an equi-
librium and there is a unique stable equilibrium 
above 0. In the first case, f r 10 2 # 1  necessar-
ily and the dynamic process would converge to 
0 regardless of the starting point. In the other 
cases, if f r 10 2 . 1 , then x* lies above 0 and 
Proposition 7 implies that the adoption over 
time will exhibit an S-shape. From small initial 
levels of x the change in x will gain speed up to 
the level of x* , and will then start to slow down 

until eventually coming to rest at the adjacent 
stable equilibrium.�

We can also say something about adoption 
patterns by degrees. The dynamic process cor-
responding to each degree d is given by x 

t
d  5 

H 1d, xt212 , where x 
t
d  is the fraction of agents 

of degree d who adopt at time t. In particular, 
whenever v 1d, x 2 5 v| 1d 2x,  then x 

t
d  exhibits the 

same curvature properties that are discussed 
above for x itself. Moreover, the curves corre-
sponding to the different x 

t
d  are ordered accord-

ing to v| 1d 2 .  In particular, for any stable point 
x*,  the corresponding distribution according to 
degrees is given by x*   d  5 v| 1d 2 x*, and the cur-
vature of x*   d  follows that of v| 1d 2 .

The distinction between different adoption 
paths corresponding to different degree play-
ers is important from an econometric point of 
view. Indeed, it provides additional restrictions 
on fundamentals arising from cross-sectioning 
data according to social degree.

As an illustration, consider the case in which 
v(d, x) 5 dx and H c is uniform on [c, C], so that 
H(d, x) 5 min [max (0, dx 2 c), C 2 c] / (C 2 c). 
Figure 2 depicts the adoption dynamics corre-
sponding to different degree agents in the case 
in which c 5 1, C 5 5, and the initial seed is 0.3. 
In this example, higher degrees start adopting 

� S-shaped adoption curves are prevalent in case studies 
of diffusion. Frank M. Bass (1969) and follow-ups provided 
(network-free) contagion models explaining this general 
shape, and Peyton Young (2006) provides a learning model 
generating S-shaped adoption curves.

Figure 2. Fraction Adopting over Time by Degree
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the action 1 earlier and have steeper slopes early 
in the process; consistent with, e.g., the empiri-
cal observations on drug adoption by doctors 
in James Coleman, Elihu Katz, and Herbert 
Menzel (1966).
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