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Introduction

Our aim is now to show that for any d > 3, almost all d-regular graphs on
{1,2,...,n} have edge-expansion ratio at least cqd (if nd is even), where ¢4 > 0
depends only upon d. (In fact, we will see that we can take ¢4 > 0.18 for
all d > 3, and ¢4 — 1/2 as d — o0.) More precisely, if G(n,d) denotes a
(uniform) random d-regular graph on [n], meaning a (labelled) d-regular graph
on [n] chosen uniformly at random from the set of all d-regular graphs on [n],
then
P{h(Gpnd) > cad} — 1 asn— oo.

We will work only with labelled n-vertex graphs; from now on, ‘a graph on [n]’
will always mean a labelled graph on [n].

Recall that if A7, Ao, ... is a sequence of events in probability spaces 21, Qs, ...
we say that ‘A,, occurs with high probability’ if P(A,) — 1 as n — oo. In this
language, we wish to prove that with high probability, h(G(n,d)) > cqd, for any
fixed d > 3. First, however, we need an ‘efficient’ way of sampling uniformly
from the set of all d-regular graphs on [n], and of analysing the properties of a
uniform random d-regular graph on [n].

It is easy to see that for any d € N and any n > d such that nd is even,
there exist d-regular n-vertex graphs. The concept of a uniform random d-
regular graph on [n] is a simple one, but uniform random d-regular graphs
are slightly harder to work with than Erdds-Renyi random graphs G, ,. In
Ghnp, each edge of K|, is present independently with probability p, whereas
in G(n,d), no two edges are independent. (By which we mean, of course, the
events {e is present}, {f is present} are never independent.)

One way of generating a uniform random d-regular graph on [n] is to take
an Erdds-Renyi random graph G, 4/(,,—1), and then condition on the event that
it is d-regular. However, the probability that G, 4/(n—1) is d-regular tends to
zero as m — 00, so this is not a useful generation method, and cannot be
used to prove statements about almost all d-regular graphs. (Events that occur
almost surely in G, q/(n—1) Will not necessarily occur almost surely in G(n, d).)
What we want is a random process that generates a d-regular graph on [n] with
probability bounded above by some positive constant depending only upon d.
This is provided by Bollobas’ configuration model.



The configuration model

Let d € N, and let n > d such that nd is even. Bollobas’ configuration model
produces a uniform random d-regular graph on [n] as follows. Start with n
vertices, labelled 1,2,...,n, and draw d lines (called ‘half-edges’) emanating
from each, so that the ends of the half-edges are all distinct. This produces n
stars, or ‘bunches’, each consisting of d half-edges. For example, when d = 3
and n = 4, we have:
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Let W be the set of ‘ends’ of the half-edges; index these ends by [n] x [d],
where (i,1),(¢,2),...,(i,d) are the ends emanating from the vertex i. NOW
choose a random matching M of the set W of ‘ends’ (uniformly at random from
the set of all matchings of W), and use the edges of the random matching to
join pairs of half-edges to produce edges. This produces a d-regular multigraph
on [n]: it may have loops, if the matching M joins two ends that emanate
from the same vertex, or multiple edges, if the matching has two or more edges
between the same two ‘bunches’. (Note that a loop contributes 2 to the degree
of a vertex.) Here is a matching (consisting of the dotted edges), and the
corresponding labelled 3-regular multigraph on {1,2,3,4}:
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Let G*(n,d) denote the (random) d-regular labelled multigraph on [n] pro-
duced by this process. It is not a wuniform random multigraph on [n]: the
probability that a particular multigraph arises depends on the number of loops
and on the mulitiplicities of the edges. However, it turns out that

P{G"(n,d) is simple} — e~ @D/4 a5 0.



So for any fixed d € N, with probability bounded away from 0 independently
of n, this process yields a simple, labelled d-regular graph on [n]. Moreover,
each simple! labelled d-regular graph on [n] has the same probability of arising:
indeed, it is easy to see that a simple d-regular graph on [n] arises from pre-
cisely (d!)™ of the matchings. Hence, if we condition on G*(n,d) being simple,
the resulting distribution is the uniform distribution on the set of all d-regular
graphs on [n], i.e. we produce G(n,d)!

Observe that if G*(n, d) has a certain property A with high probability, then
so does G(n,d). Indeed, if P{G*(n,d) ¢ A} — 0 as n — oo, then

P{G*(n,d) ¢ A, G*(n,d) is simple} 0

P{G(n,d) ¢ A} = P{G*(n,d) is simple}

as n — Q.

The above argument yields the simplest known proof of an asymptotic for-
mula for the number of labelled d-regular graphs on [n]. Note that if m € N is
even, the number M (m) of matchings of an m-element set is

M(m) = (m—1)(m —3)...(3)(1) == (m — 1)L

Clearly,
m!

M = ey

Recall Stirling’s Formula,
(m—1!=1Q+o0(1)vV2rm m™e ™.

It follows that

M(m) = (1+ o(1))V2 m™/2e™/2, (1)
Therefore, the number N, 4 of labelled d-regular graphs on [n] satisfies
M(nd
Nod = <1+o<1)>e‘<d2‘”/4w

(nd)nd/Qefnd/Z
(dh)r
_ (1—I—0(1))6_(d2_1)/4(dd/26_d/2/d!)nnnd/2.

V2(1 + o(1))e” (@ -1/

We will now show that
P{G*(n,d) is simple} — e~ @D/ 450 5 0,

Let the random variable Z; ,, be the number of I-cycles in G*(n, d); so Z ,, is the
number of loops, and Z,,, is the number of pairs of multiple edges. Formally,
an I-cycle in G*(n,d) is a set of [ distinct edges of the form

{vive, vous, ..., vi_1v, vV },

where v1,v9,...,v; € [n] are distinct vertices.
If k is fixed and n is large, then although no two cycles of length at most k are
independent (more precisely, their indicator functions are not independent), two

1Recall that a multigraph is said to be simple if it is a genuine graph, i.e. it has no loops
or multiple edges.



vertex-disjoint cycles of length at most k are ‘almost’ independent, so most pairs
of cycles of length at most k are ‘almost’ independent. In such circumstances,
we can often use Poisson approximation.

Let Y, X1, X5, ... be random variables, all taking integer values. We say that
X, converges in distribution to' Y as n — oo if for any ¢ € Z, P{X,, = i} —
P{Y =i} as n — oo; we write ‘X,, =Y as n — o0’

Recall that if X,, ~ Bin(n,p,), and np, — A as n — oo, then X,, = Po(\)
as n — 00. In other words, if we have n independent coin flips with probability
p = p, of heads, where np, — A as n — oo, then the total number of heads
converges in distribution to the Poisson distribution with mean A. We can obtain
the same conclusion under weaker assumptions, by looking at the expectation
of (X,), the rth factorial moment of X,,. Recall that if r € N and x > 0, we
define the rth factorial moment of x to be

(@)r=z(x—1)...(x —r+1).
We have the following

Theorem 1 (Poisson approximation theorem). Suppose X, Xo,... is a se-
quence of bounded random variables taking values in N U {0}. Suppose there
exists A € R>g such that for any fized r € N,

E[(Xn)r] — A" asn — .

Then
Xp, = Po(A) asn— oo.

Note that if X,, counts the number of objects of a certain kind in a random
structure, then (X,,), is simply the number of ordered r-tuples of distinct such
objects in the random structure.

To enable us to analyse the joint distribution of Z; ,, and Z5 ,,, we will need
the following ‘joint’ version of Theorem 1:

Theorem 2 (Poisson approximation theorem, joint version). Suppose that for
each i € {1,2,...,m}, X;1,X;2,... 15 a sequence of bounded random variables
taking values in NU{0}. Suppose there exist A1, Az, ..., Am € R>q such that for
any fixed r1,79,...,mm € NU{0},

m

E[(X1n)r (Xom)rs - (Xmm)ra] = [[ A7 asn — 0.

i=1

Then as n — 00, (X150, Xon,..., Xmn) = (Y1,Y2...,Y,,), where the Y;’s are
independent Poisson random variables with E[Y;] = \; for each i.

First, we will prove the following
Lemma 3. For anyl € N, the expected number of l-cycles in G*(n,d) satisfies
E[Z,] — A\ asn — oo,

where A\, = (d — 1)!/(21).



Proof. Note that I-cycles in G*(n,d) are in 1-1 correspondence with sets of [
edges {e1, ..., e} of the random matching M, such that there exists a sequence
of [ distinct vertices (vy,...,v;) € [n]' with e; connecting an end emanating
from v; to an end emanating from w41, for each i (addition modulo ). Let
a; denote the total number of all such sets of | pairwise disjoint (non-incident)
edges in W®) | ie., the number of sets of I disjoint edges {ej,..., e/} of W
such that there exists a sequence of distinct vertices (vy,...,v;) € [n]" with e;
connecting an end emanating from v; to an end emanating from v, 1, for each .
Let b; denote the number of sequences of disjoint edges (e1, es, .. .,e;) € (W)
such that there exists a sequence of [ distinct vertices (vy,...,v;) € [n]! with e;
connecting an end emanating from v; to an end emanating from v;41, for each
i. Clearly, each set corresponds to exactly 21 sequnces (choose a vertex to start
at, and then choose a direction to go in), so

2[0,[ = bl.
Clearly,
bi = (n)i(d(d 1)),

SO
(n)i(d(d — 1))’

21 '
Note that for any set of I pairwise disjoint (non-incident) edges of W), the
probability that they all appear in the random matching M is precisely

B 1
P td — D) (nd —3)...(nd— 2+ 1)°

a; =

Hence, the expected number of I-cycles in G*(n, d) satisfies

ElZ,] = am
(n)id(d — 1))
2l(nd —1)(nd —3)...(nd — 20+ 1)
(d—1)
21

— @+0/n)

(d—1)
21

proving the lemma. O

—

as n — 00,

We will now prove the following

Lemma 4. The expected number of ordered pairs of distinct [-cycles in G*(n, d)
satisfies
E[(Zin)2] — A asn — .

Proof. Let Y = (Z;,)2, the number of ordered pairs of distinct l-cycles in
G*(n,d). Write Y = Y’ +Y"”, where Y’ is the number of ordered pairs of
vertez-disjoint l-cycles in G*(n,d), and Y"” is the number of ordered pairs of
distinct I-cycles in G*(n,d) that are not vertex-disjoint. First, we claim that
E[Y"] = O(1/n). To see this, observe that each unordered pair of non-vertex-
disjoint I-cycles corresponds to a copy (in G*(n,d)) of a graph (or multigraph)
H that has more edges than vertices. The number of such H’s depends only
upon [, not on n, so it suffices to prove the following



Claim 1. If H is a fized multigraph more edges than (non-isolated) vertices,
then the expected number of copies of H in G*(n,d) is O(1/n).

Proof of Claim: Let s = e(H), and let ¢ = |H| denote the number of non-
isolated vertices of H. Let ay denote the number of sets of s edges in W)

which produce copies of H in G*(n,d). Then ag = O(n'), since there are ()

choices for the vertex-set of the copy of H, given this choice, the number of
corresponding copies of H depends only upon H and d. The expected number
of copies of H in G*(n,d) is agps = O(n'~*) = O(1/n), as required. O

It follows that E[Y”] = O(1/n). It remains to show that the expected
number of pairs of vertex-disjoint I-cycles in G*(n, d) satisfies

E[Y'] = X! asn — oo.

To see this, observe that the ordered pairs of vertex-disjoint I-cycles in G*(n, d)
are in one-to-one correspondence with ordered pairs

({617€2a"'361}7{f1,"'afl})

of sets of k disjoint edges of the random matching M, such that there exists a
sequence of distinct vertices,

(v1, ..o, w1, ... ,w) € ],

with e; connecting an end emanating from v; to an end emanating from v; 41,
for each 4, and f; connecting an end emanating from w; to an end emanating
from w41, for each 7. Let a;; denote the total number such ordered pairs of
sets of [ distinct edges in W ), i.e. the total number of ordered pairs

(e, e, yety, {f1, -0 fi})

of sets of [ disjoint edges of W), say {e1,...,e;} of W) such that there exists
a sequence of distinct vertices

(vl,...,vl,wl,...,w[) S [n]zl

with e; connecting an end emanating from v; to an end emanating from v;1,
for each i, and f; connecting an end emanating from w; to an end emanating
from w;41, for each i. Then, arguing as before, we see that

 a(d(d— 1)
1,0 FIE .
The probability that all 21 edges in such a pair appear in the random matching
M is poy, SO
EY'] = apxu
20(d(d — 1))*
nd—3)...(nd — 4 +1)

— (1+0(1/n) <<d 211)Z)2

— 1)\ 2
(45 e

(n

_ )
(202 (nd — 1)(

proving the lemma. O



In exactly the same way, it can be shown that for any fixed r1,7r9,... 7 €
NuU {0},

m

E((Z1.n)r (Zon)rs - - (Zm)r,) = [[ M7 as n — o0,

=1

where \; = (d — 1)*/(2i).
By the Poisson approximation theorem (joint version), it follows that for any
fixed m,
(Zins oy Zmn) = Y1,...,Y,) asn — oo,

where the Y;’s are independent Poisson random variables with E[Y;] = A; for
each i. In particular, (Z; ,, Z2.n) = (Y1,Y2), so

P{G"(n,d) is simple} = P{(Z1n,Z2,)=(0,0)}
= P{Y; = 0}P{Y; =0}
e MemN

— e (d-1)/2,—(d-1)*/4

o (2=1)/4

The edge-expansion of random regular graphs

From now on, we will be interested in random d-regular graphs on [n], where
d > 3 is fixed, and n is large. It turns out that if d > 3, then almost all d-regular
graphs on [n] have vertex-connectivity d, and are Hamiltonian (see Appendix).
Both statements are false for d = 1,2, which are in a sense ‘degenerate’ cases.
Ifd =1, and n > 2 is even, a random 1-regular graph on [n] is simply a uniform
random matching of {1,2,...,n}, which is always disconnected. If d = 2, and
n > 3, then a random 2-regular graph on [n] is simply a uniform random 2-
factor of Kp,) (a vertex-disjoint union of cycles covering all the vertices), which
is almost surely disconnected. To see this, observe that G*(n,2) is connected if
and only if it is an n-cycle. The number Z,, ,, of n-cycles in G*(n, 2) satisfies

n!2m n!2m s
E[Znn] = anpn = m@n—1)(2n—3)...(1) 2n(n— DI (Ho(l/”))\/;‘

Hence, E[Z,,,] — 0 as n — 00, s0
P{Z,, > 1} <E[Z,,] — 0.

So G*(n,2) is almost surely disconnected, and therefore so is G(n, 2).
We are now ready to prove the following

Theorem 5 (Bollobds, [1]). Let d > 3, and let n € (0,1) such that

(1 =n)loga(1 —n) + (1 +n)logy(1 +n) > 4/d.

Then
P{h(G(n,d)) > (1 —n)d/2} -1 asn — oo.



Proof. Since
P{G*(n,d) is simple} — e~ (@=D/4 g o0,

it suffices to prove that almost surely, h(G*(n,d)) > (1 — n)d/2. Hence, from
now on, we work in G*(n,d). Call a set S C [n] with |S] < n/2 ‘bad’ if
e(S,8¢) < (1 —n)d|S|/2. Observe that e(.S, S¢) is precisely the number of edges
of the random matching of W = [n] x [d] going between S X [d] and S€ x d. Let
P(s, k) denote the probability that there exists a set S C [n] with |S| = s, and
with exactly k edges of the random matching going between S X [d] and S° x [d].
Let k4 be the largest integer less than (1 —n)ds/2 such that ds — ks is even. By
the union bound, we have

[n/2]
B{h(G(n,d) < (L-md/2y = 3 S Plsk),

s=1 2<k<ks,
ds—k even

and

Pls.k) < (D (f) (dn - ds) Ly Mds — k)MM((diT; —ds—K) _pp)

Hence, it suffices to show that

ln/2]

Yo D Rlsk) <o)

s=1 2<k<ks,
ds—k even

Note first that if 1 < s < |[n/2] and 2 < k < k' < kg, then Py(s, k) < Py(s, k'),
SO

In/2] /2]
SN Ps k)<Y sPols k).
s=1 2<k<ks, s=1

ds—k even

Hence, it suffices to show that

[n/2]
Z sPy(s, ks) = o(1).

s=1
To do this, it suffices to show that
1. Po(s,ks) < o(1) whenever 1 < s < 100;
2. Py(s, ks) < €,/n? whenever 100 < s < |n/2], where €, — 0 as n — oo.

The first statement is easily checked. To prove the second statement, observe
that there exists a constant Ky > 0 such that

Po(s,ks) < KqPo([n/2], k|nj2;) whenever 100 < s < [n/2],

so it suffices to prove the second statement for s = |n/2]. Assume from now
on that n is even. (The odd case is completely analogous, but slightly messier.)

We have ) 2
A2y = (1) (1) o QLG



Straightforward calculations using the formula (1) give:

n/4d
Po(n/2,kyy2) < Cy (24/d(1 _ )0 n)*(”’”)

for some absolute constant Cy > 0. Provided (1 —n)logy(1—n)+(1+n)logy(1+
1) > 4/d, the right-hand side is o(1), completing the proof. O

Note that we can take cq — 1/2 as d — oo. In some ways, though, the most
interesting case of Bollobas’ theorem is the d = 3 case. It implies that almost
surely, h(G(n, 3)) > 0.18. This was historically of great interest. In 1978, Buser
had conjectured that for any ¢ > 0, for n sufficiently large depending on e,
all 3-regular graphs on n-vertices have edge-expansion ratio < e. He disproved
this conjecture by constructing, for every even n > 4, a 3-regular graph on n
vertices with edge-expansion ratio at least 1/128. His construction uses heavy
machinery from algebra and geometry. Bollobas’ theorem above suppiled the
first elementary disproof of Buser’s original conjecture (as well as showing it to
be massively false, i.e. false for almost all 3-regular graphs).

It would be interesting to determine

g = sup{y > 0: Farbitrarily large d-regular graphs G with h(G) > d}.

As observed by Bollobds, we always have ¥y < 1/2. Indeed, if G is any
d-regular graph on [n], and S is a subset of [n] of size [n/2] chosen uniformly
at random, then

Ele(S, 5°)] = dn/2 [n/2][n/2] = — i N

(3)

[n/2][n/2].

Hence,
hG) < ) < 5

N

as n — oo,

and therefore 1y < 1/2 for all d > 3.

The reader may be tempted to conjecture that this is roughly the worst
possible edge-expansion, but as observed by Bollobés, when d = 3, ‘balls’ have
smaller edge-boundary, giving 3 < 1/3. To see this, let G be a 3-regular graph
on [n], and let k¥ € N be maximal such that 3 - 2*! — 4 < n. Pick any v € [n],
D; ={x € [n]: dg(x,v) =i} be the set of all vertices of distance (in G) exactly
i from v, and let

B={ze[n]: dg(z,v) <k}
be the ball of radius k and centre v. Then
k—1

Bl <1+43) 2 <1+3(2"—1)<n/2.
=0

Since every vertex in Dy meets an edge from Dj_1, it sends at most 2 edges
out of B, so we have e(B, B®) < 2|Dg|. We now bound |B| from below in terms
of |Dg|. For 1 < i <k — 1, every vertex of D; meets at most two edges from
D;11, and every vertex of D; 1 meets at least one edge from D;. It follows that

|Diy1| < e(Dy, Diy1) < 2|Dy,



SO
|Di| > £|Ditq].

Therefore,

k k
Bl=1+> |Di| > 1+ (Z 2—<’H‘>> |Dy| > 2(1 — 27%)|Dy|.

i=1 i=1

Hence,
e(B, B) 1
<
|IB] —1-2-

and therefore 13 < 1/3, as claimed.

- =1+0(1/n),

Appendix 1: The vertex-connectivity of random regular
graphs

We will now give a short proof of the following

Theorem 6 (Bollobds / Wormald). Let d > 3; then G(n,d) almost surely has
vertex-connectivity d.

Proof. Since every vertex of G(n,d) has degree d, the vertex-connectivity is
clearly at most d. It suffices to prove that for any ag € N, almost surely, G(n, d)
is such that, for every partition [n] = AU .S U B such that the removal of S
disconnects A from B, and |A| < |B|, the following conditions hold:

1. If |A| = 2, then |S| > 2d — 3;
2. If 3 < |A| < ag, then |S| > (d — 2)|AJ;
3. If |A| > ag, then |S| > (d — 2)ao.

First, we observe that for any fixed k, almost surely, G(n,d) is such that every
set T C [n] with |T| < k spans at most |T'| edges. Indeed, if there exists a set
T C [n] with |T| < k spanning more than |T| edges, then G(n,d) contains a
copy of a graph H of order at most k, and with more edges than vertices. The
expected number of copies of such a graph H in G(n,d) is O(1/n), by Claim
1, so almost surely, G(n,d) contains no copy of H.The number of possibilities
for H is bounded from above by a function of k alone, so almost surely, G(n, d)
contains no copy of any such H.

Now let sg = (d — 2)ag, and let a; = 4s9. We know that almost surely,
G(n,d) is such that every set T' C [n] with |T'| < da; spans at most |T'| edges.
Suppose from now on that this condition holds. If |A| =2, [n] = AUSU B, and
the removal of S disconnects A and B, then

2d—1<e(A)+e(AS) <e(AUS) <|S|+2,

so |S| > 2d — 3. Hence, condition 1 holds.
If |A] < ay, |S] < (d—2)aq, [n] = AUSUB, and the removal of S disconnects
A from B, then

d|A] = 2e(A) + e(A, S) < e(A) + e(AUS) < |A| + |[AU S| = 24| + 8],

10



so |S| > (d — 2)|A|. Therefore, conditions 2 holds for all A, and condition 3
holds for all |A] < ay. Let ag = |[(n — a1)/2]; it remains to show that condition
3 holds almost surely for all a; < |A| < as.

Let S(a) be the probability that condition 3 fails for some A C [n] with
|A| = a. In other words, S(a) is the probability that there exists a ‘bad’ pair of
disjoint sets A, S C [n], with |A| = a and |S| = s, such that there are no edges
from A to [n]\ (AUS). If (A, S) is ‘bad’, then the random matching M matches
all the ends emanating from A to ends emanating from A US. The probability
that this occurs is at most

ad/2
a+ 8o
()

The total number of possibilites for (A,.S) is (S"U) ("), so, using the union
bound,

Sa) = P| [J{(4,8) isbad}
(4,5)
< Y P{(A,S) is bad}
A,S
n\/n—s a+ 5o\ Y2
< ()

< pso n — So a—+ So ad/2
- a n

=: S'(a)

Observe that S'(a;) = O(n®0t®1=301/2) = O(p%~1/2) = O(n=%) = o(1), and
for a; < a < ay — 1, we have S'(a+1)/5"(a) < O(n='/?). Tt follows that

S S < Y §a) = o(1),

a=ajy a=aj

so by the union bound, condition 3 holds almost surely for all a; < |A| < aq, as
required. O

Bollobas conjectured in 1981 that for d > 3, almost all d-regular graphs
on [n] are Hamiltonian. This turned out to be much harder; it was eventually
proved by Robinson and Wormald [5] in 1994. As one might expect, if A is
a monotone-increasing property of graphs (meaning that it is closed under the
addition of edges), then for any integers d < d', G(n,d) € A almost surely
implies that G(n,d’) € A almost surely, and similarly, G*(n,d) € A almost
surely implies that G*(n, d’) almost surely. Hence, Bollobds’ conjecture reduces
to the statement that almost all 3-regular graphs on [n] are Hamiltonian. The
reader is encouraged to consult [4] for a proof.

Appendix 2: Other models of random regular graphs

For some applications, other models of random regular graphs are more useful.
One such is the permutation model of random 2d-regular graphs. This produces a

11



random (labelled) 2d-regular graph on [n] as follows. Start with our n vertices,
{1,2,...,n}. Pick d permutations oq,...,04 uniformly at random from the
symmetric group S,, with replacement. For each [ € [d], and each i € [n],
join ¢ to oy(i) (forming a loop if o;(i) = ¢). This produces a random (2d)-
regular multigraph, which we denote R*(n,2d): in general, it may have loops
and multiple edges. (As before, a loop contributes 2 to the degree of a vertex.)
The multigraph is simple if and only if

1. None of the permutations have any fixed points;

2. None of the permutations have any 2-cycles (when written in disjoint cycle
notation);

3. No two permutations agree anywhere.

As before, we produce a random (2d)-regular graph R(n,2d) by conditioning on
the event that R*(n,2d) is simple. It is relatively easy to prove that

P{R*(n,2d) is simple} — e~de=42e=(3) — o= d*/2-d  ng .y 00,

i.e. the probability of this event is bounded from below by a positive constant
depending only upon d.

To generate a random (2d + 1)-regular graph, when n is even, we can add to
R*(n,2d) the edges of a uniform random matching of [n]. We let R*(n,2d + 1)
denote the resulting (2d + 1)-regular multigraph, and we produce a random
(2d+ 1)-regular graph by conditioning on the event that R*(n,2d+ 1) is simple.
Again, the probability that R*(n,2d + 1) is a simple graph is bounded from
below by a positive constant depending only upon d.

The distribution of R(n,d) is different to that of G(n,d), even for n large:
there are properties A with lim,_,. P{R(n,d) € A} # lim, . P{G(n,d) € A}.
However, it was recently proved by Greenhill, Janson, Kim and Wormald [3]
that the two models are contiguous, meaning that any event that occurs almost
surely in one model occurs almost surely in the other.

For some properties A, it is easier to show that A holds almost surely in
the permutation model, and then deduce the same statement in the uniform
model by contiguity, than to work directly with G(n,2d) or G*(n,2d) via the
configuration model. This is often true of spectral properties (properties of the
eigenvalues of the adjacency matrix). As will be discussed later in the course,
Friedman was able to use the permutation model to show that almost surely,
the eigenvalues d = Ay > Ay > ... > A, of the adjacency matrix of G(n,d)
satisfy

max{|Az], | An]} < 2v2d — 1+ o(1).

For d-regular graphs G, the ‘second spectral modulus’ ¥(G) = max{|Az|, |An|}
controls several important properties of the graph G. As we will see, it de-
termines how evenly the edges of G are distributed, and it also determines
the convergence rate of the simple symmetric random walk on G. A d-regular
graph with v(G) < 2v/d—1 is called a Ramanujan graph. As mentioned in
Lecture 1, the construction of arbitrarily large d-regular Ramanujan graphs (for
d fixed) was one of the most important problems in theoretical computer sci-
ence. Friedman’s result says that almost all d-regular graphs on [n] are ‘almost
Ramanujan’.
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