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Networks created and maintained by social processes, such as the human friendship network and
the World Wide Web, appear to exhibit the property of navigability : namely, not only do short paths
exist between any pair of nodes, but such paths can easily be found using only local information. It
has been shown that for networks with an underlying metric, algorithms using only local information
perform extremely well if there is a power-law distribution of link lengths. However, it is not clear
why or how real networks might develop this distribution. In this paper we define a decentralized
“rewiring” process, inspired by surfers on the Web, in which each surfer attempts to travel from
their home page to a random destination, and updates the outgoing link from their home page if this
journey takes too long. We show that this process does indeed cause the link length distribution to
converge to a power law, achieving a routing time of O(log2 n) on networks of size n. We also study
finite-size effects on the optimal exponent, and show that it converges polylogarithmically slowly as
the lattice size goes to infinity.

I. INTRODUCTION

It is well-known that a wide variety of social networks
have the so-called small world property; networks of size
n have diameter O(log n), meaning that between any two
nodes there exists a path of size O(log n). This property
is also shared by sparse random graphs; however, ran-
dom graphs lack several other important properties of
real-world networks, such as clustering and heavy-tailed
degree distributions (see [1] for a review).

Another property of social networks which distin-
guishes them from random graphs, and which has re-
ceived somewhat less attention, is their navigability.
That is, not only do short paths exist, but it is easy to
find them using only local information. The pioneering
work of Milgram in the 1960s [2] showed that people can,
at least some of the time, find short paths to other distant
people by pursuing the greedy strategy where they pass
the message to whichever of their own acquaintances they
feel is “closest” to the target recipient. This experiment
has recently been repeated using e-mail networks [3]. In
a random graph, although a short path exists, a local al-
gorithm must be lucky to find it as it can do little better
than a random walk on the network.

Kleinberg [4, 5] addressed the issue of navigability
by considering a small-world model consisting of a d-
dimensional lattice with long-range links added to it.
Unlike the Watts-Strogatz model [6] in which the long-
range links are uniformly distributed, in the Kleinberg
model pairs of nodes a distance ℓ apart are connected
with some probability P (ℓ), where P (ℓ) ∼ ℓ−α and the
number of outgoing links per node is fixed. While a finite-
dimensional lattice is obviously a gross oversimplification
of the social spaces in which we live, or the conceptual
spaces in which one Web page seems “closer” to another,
this model captures the essential features of the navi-
gation problem: how can we minimize the routing time
given local information about some metric?

Kleinberg studied the performance of the greedy al-
gorithm, in which each node passes the message to
whichever of its neighbors, either local or long-range, that
is closest to the destination on the underlying lattice. He
showed that if α = d this algorithm achieves a routing
time of O(log2 n) on lattices of size n. However, if α 6= d,
the routing time grows as O(nβ) for some β > 0. Note
that if when α = d, we integrate over spheres of radius ℓ,
we find that the distribution of link lengths is f(ℓ) ∼ ℓ−1,
with a cutoff when ℓ reaches the system size; this distribu-
tion provides the right mix of long-, medium-, and short-
range links for the greedy algorithm to quickly “zero in”
on its destination. Similar results have been obtained for
the case where the underlying graph is a tree, represent-
ing a hierarchical structure, or an overlapping set of trees
representing multiple affiliations in society [7, 8].

While Kleinberg’s work largely characterizes the static

properties a network needs to have to be navigable, it
leaves open the question of how or why networks might
evolve these properties. Indeed, the topology of a social
network is constantly being modified by its members. If,
whenever these members find it difficult to search the
network, they modify their own connections in an effort
to make future searches easier, this dynamical process
should make the network more navigable over time.

In this paper, we consider a dynamic network model
inspired by surfers on the Web, each of whom controls
the outgoing links from their home page. We start at a
source node x, and choose a random destination node y.
Based on the (metric) distance between x and y, we set
a threshold Tthresh on the number of (topological) steps
we feel the journey should take. If after Tthresh steps we
have not reached our destination, we stop searching, and
rewire x’s long-range link to the place where we gave up.
In the human-friendship network, this might correspond
to gaining new acquaintances in the course of a search; on
the Web, it corresponds to creating a bookmark/linking
to the relevant pages, which other surfers can then use [9].
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Our main result is that this process does indeed cause
the distribution of link lengths to converge to a power
law f(ℓ) ∼ ℓ−αrewired . The precise value of αrewired varies
with lattice size, and differs somewhat from Kleinberg’s
prediction α = d. We believe this is due to finite-size
effects; to support this belief, we directly construct net-
works with power-law link length distributions (as op-
posed to rewiring them), measure the exponent αopt that
minimizes the routing time, and find that it converges
rather slowly to d as n → ∞, roughly as d−O(1/ log2 n).
However, even though the exponents differ somewhat,
our rewiring process produces networks whose routing
times match or improve those of Kleinberg’s optimum.

Other types of dynamical models have been studied
(e.g. [11, 12, 13, 14, 15]). However, the model discussed
here appears to be the first to optimize for navigability.

II. THE REWIRING PROCESS AND RESULTS

One restriction of Kleinberg’s model of a social space
consists of a d-dimensional lattice of size n, where each
node u is connected to its 2d nearest neighbors and has a
single long-range link to a node v, chosen with probability
P (ℓ) ∼ ℓ−α where ℓ = |u − v| is the Manhattan distance
(the L1 norm). Such networks are denoted G(n, d, 1, 1, α)
in [4]; here the two 1s indicate the radius of the local
connections and the number of long-range links per node.
Our goal is to show that our rewiring process causes net-
works with a range of initial link length distributions to
converge to this form, where α = αrewired and is close
to Kleinberg’s prediction α = d. We report here on
experiments where d = 1, for which we can feasibly study
networks of size up to n = 107; our results for d = 2 are
qualitatively similar.

In each round of the rewiring process, we choose the
source node x uniformly, and choose the destination y
according to a demand distribution Q(x, y). One method
of selection is to choose a distance ℓ according to a dis-
tribution Q(ℓ), and then choose y randomly from among
the nodes that satisfy |x − y| = ℓ. Here, we take Q(ℓ)
to be uniform, which for d = 1 means that y is simply a
uniformly random node; we comment in the Conclusions
on the effect of other demand distributions.

Starting at x, the greedy algorithm produces a path
x = x0, x1, x2, . . . , xT = y where T is the routing time,
and where for each 0 ≤ i < T , xi+1 is the outgoing
neighbor of xi that minimizes |xi+1−y| (with ties broken
randomly). The rewiring process works as follows: if
T ≥ Tthresh, i.e., if the greedy algorithm reaches some
xi with i = Tthresh, then we discontinue the search and
change x’s outgoing link to point to xi.

In our experiments, we choose the threshold Tthresh

uniformly at random from the interval [1, ℓ]. Such a
naive selection avoids making assumptions about the net-
work’s size, performance or topology. In particular, it
avoids assuming the O(log2 n) routing time which both
the rewired networks and Kleinberg’s networks achieve.
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FIG. 1: Link length distributions with power-law fits for
networks of size n = {103, 104, 105, 106} after running the
rewiring process until Trewired ≤ 1.01 ·Topt . The initial graphs
had α0 = ∞, i.e., only self-loops.
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FIG. 2: Convergence of αrewired for a range of initial link
length exponents α0, where n = 105. At τ increases, αrewired

converges to αrewired ≈ 0.85 regardless of the value of α0.

For our initial conditions, the link length distributions
have exponent α0 ranging from 0, a uniform distribu-
tion as in the Watts-Strogatz model, to ∞, where all the
“long-range links” are simply self-loops. We run τ rounds
per node of the rewiring process; that is, τn times we
choose nodes x, y, run the greedy algorithm from x to y
and rewire if T ≥ Tthresh. We then compare the final link
length distribution to Kleinberg’s optimum f(ℓ) ∼ ℓ−1.

Figure 1 illustrates the resulting distributions for net-
works of size n = {103, 104, 105, 106} and α0 = ∞. We
see that after τn rounds (we describe our choice of τ in
the next section) the rewiring process has built a power-
law distribution of link lengths, f(ℓ) ∼ ℓ−αrewired with
αrewired ≈ {0.78, 0.82, 0.85, 0.88} respectively. Figure 2
shows that a range of initial distributions converge to the
same final distribution. Starting with initial exponents
α0 ranging from 0 to 2, the exponent of the rewired link
length distributions all converge to αrewired ≈ 0.85 (here
n = 105) as the rewiring continues.
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FIG. 3: Mean routing time T (α) for several network sizes.
The dashed line shows the path αopt, defined as the minimum
of the best quadratic fit, follows as n increases.

III. FINITE-SIZE EFFECTS

While our rewiring process produces a power-law link
length distribution, the exponent is noticeably different
from the value α = 1 (more generally, α = d) which
Kleinberg proved in the limit n → ∞. Notably, Figure 2
shows that networks with an initial exponent α0 = 1
actually move away from this value as they are rewired.

This deflection appears to be due to finite-size effects,
and in fact the exponent αopt that minimizes the rout-
ing time on finite lattices turns out to be rather differ-
ent from Kleinberg’s value even at reasonably large n.
We examined system sizes over six orders of magnitude,
101 ≤ n ≤ 107. For each size, we constructed networks
with α ranging from 0 to 1, and measured the mean rout-
ing time T (α) over 50n trials for each α. We estimated
αopt as the minimum of the best quadratic fit of T (α).

Figure 3 illustrates T (α) for several values of n and
clearly shows that αopt < 1. The dashed line illustrates
αopt’s slow approach to 1 as n increases. Figure 4 shows
the dependence of αopt on n; it is fit rather closely by

the form αopt = 1 − A/ log2 n for A ≈ 2.85. The fact
that αopt converges polylogarithmically, as opposed to
polynomially, indicates that finite-size effects are quite
severe.

However, while αrewired differs from d (and from αopt)
our rewired networks achieve a mean routing time equiv-
alent to networks with exponent αopt, and better than
those with exponent d. Fig. 5 compares the mean rout-
ing times for the three types of networks. All three are
closely fit with a curve of the form T (n) ∼ log2 n, just as
Kleinberg’s analysis predicts [4, 5].

Of course, the routing time of the network depends on
the number of rewiring rounds. In Figure 6, we show the
number of rounds per node τ required to achieve a mean
routing time Trewired which is only 1% greater than Topt,
i.e., the routing time of a network with exponent αopt.
This rewiring time grows as τ ∼ n0.77 rounds per node,
or n1.77 rounds total.
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FIG. 4: Finite-size dependence of αopt for n up to 107. The
solid line shows a fit to 1−αopt ∼ 1/ log2 n, showing that αopt

converges polylogarithmically slowly to d as n → ∞.
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FIG. 5: Mean routing time T for networks with α =
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FIG. 6: The rewiring time τ (n), i.e., the number of rounds
per node the rewiring process needs to achieve a routing time
Trewired ≤ 1.01 · Topt, within 1% of that of a network with
exponent αopt. The solid line is a fit of the form τ ∼ n0.77+C.
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IV. DISCUSSION AND CONCLUSIONS

Kleinberg [4, 5] explored the navigability of small-
world networks built on an underlying d-dimensional
space. In the limit of infinite size, he found the mean
routing time in minimized by a power-law distribution of
link lengths with exponent α = d [10]. Here, we have
explained how social networks might develop such a dis-
tribution over time, by introducing a simple, decentral-
ized rewiring process that relies only on local information
(and is even ignorant of the size of the network).

This process has a natural interpretation: the topology
of a social network is constantly being modified by its
members, who update their personal connections as they
explore and navigate the network. If a member becomes
frustrated because the journey to a destination takes too
long, they can be expected to change their connections
to make similar journeys more quickly in the future.

Our results show that rewiring causes a wide range of
initial topologies to converge to a power-law distribution
of link lengths, very similar to Kleinberg’s. The exponent
αrewired we obtain differs significantly from d, its optimal
value on infinite lattices. We attribute this deflection to
finite size effects which cause the optimal exponent αopt

to converge polylogarithmically as n → ∞. However, the
rewired network achieves the same mean routing time as
power-law networks with exponent αopt, and better rout-
ing times than those with α = d. Specifically, the mean
routing time as a function of system size is O(log2 n) as
predicted by Kleinberg’s analysis. The number of rounds
of the rewiring process needed to achieve this routing
time grows as a low-degree polynomial of n.

In addition to creating and maintaining a power-law
distribution of link lengths, we believe this rewiring pro-
cess to be adaptive. For instance, we conjecture that if
new nodes are added to the network, or if certain nodes
or links are removed, it will dynamically optimize for
these new situations. We also believe, based on prelim-
inary results, that if the demand distribution Q(x, y) is
not uniform, e.g. if certain destinations are more popular
than others, or if the source and the destination are cor-
related (both of which are true in any real network), that
it will optimize routing times for the source-destination
pairs that appear more frequently. These adaptive prop-
erties would be particular useful in networks where nodes
are constantly coming on- and off-line and where the de-
mand of each destination rises and falls over time, such
as live peer-to-peer networks, distributed sensor networks
or massively parallel computers.

Our discussion contemplates a “social space” consist-
ing of a finite-dimensional lattice, an obviously poor
model for the complex social spaces we routinely nav-
igate. An interesting study would be an analogous
rewiring process for networks whose underlying structure
is hierarchical [7], involves multiple group affiliations [8]
or is otherwise structured, as in the peer-to-peer network
Freenet [16] with the modifications described in [17]. We
leave these as directions for future work.
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