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The strength of weak ties is that they tend to be long—they connect
socially distant locations, allowing information to diffuse rapidly.
The authors test whether this “strength of weak ties” generalizes
from simple to complex contagions. Complex contagions require
social affirmation from multiple sources. Examples include the
spread of high-risk social movements, avant garde fashions, and
unproven technologies. Results show that as adoption thresholds
increase, long ties can impede diffusion. Complex contagions depend
primarily on the width of the bridges across a network, not just
their length. Wide bridges are a characteristic feature of many spatial
networks, which may account in part for the widely observed ten-
dency for social movements to diffuse spatially.

Most collective behaviors spread through social contact. From the emer-
gence of social norms (Centola, Willer, and Macy 2005), to the adoption
of technological innovations (Coleman, Katz, and Menzel 1966), to the
growth of social movements (Marwell and Oliver 1993; Gould 1991, 1993;
Zhao 1998; Chwe 1999), social networks are the pathways along which
these “social contagions” propagate. Studies of diffusion dynamics have
demonstrated that the structure (or topology) of a social network can have
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important consequences for the patterns of collective behavior that will
emerge (Granovetter 1973; Newman, Barabasi, and Watts 2006). In par-
ticular, “weak ties” connecting actors who are otherwise socially distant
can dramatically accelerate the spread of disease, the diffusion of job
information (Granovetter 1973), the adoption of new technologies (Rogers
1995), and the coordination of collective action (Macy 1990). As Granov-
etter puts it (1973, p. 1366), “whatever is to be diffused can reach a larger
number of people, and traverse a greater social distance, when passed
through weak ties rather than strong.” This insight has become one of
the most widely cited and influential contributions of sociology to the
advancement of knowledge across many disciplines, from epidemiology
to computer science.

Nevertheless, the central claim of this study is the need to circumscribe
carefully the scope of Granovetter’s claim. Specifically, while weak ties
facilitate diffusion of contagions like job information or diseases that
spread through simple contact, this is not true for “whatever is to be
diffused.” Many collective behaviors also spread through social contact,
but when these behaviors are costly, risky, or controversial, the willingness
to participate may require independent affirmation or reinforcement from
multiple sources. We call these “complex contagions” because successful
transmission depends upon interaction with multiple carriers. Using for-
mal models, we demonstrate fundamental differences in the diffusion
dynamics of simple and complex contagions that highlight the danger of
generalizing the theory of weak ties to “whatever is to be diffused.” Net-
work topologies that facilitate diffusion through simple contact can have
a surprisingly detrimental effect on the spread of collective behaviors that
require social reinforcement from multiple contacts. This is not to suggest
that complex contagions never benefit from weak ties, but to demonstrate
the need to identify carefully the conditions under which they can.

FROM WEAK TIES TO SMALL WORLDS

“Strong” and “weak” have a double meaning in Granovetter’s usage. One
meaning is relational (at the dyadic level), the other is structural (at the
population level). The relational meaning refers to the strength of the tie
as a conduit of information. Weak ties connect acquaintances who interact
less frequently, are less invested in the relationship, and are less readily
influenced by one another. Strong ties connect close friends or kin whose
interactions are frequent, affectively charged, and highly salient to each
other. Strong ties increase the trust we place in close informants, the
exposure we incur from contagious intimates, and the influence of close
friends. As Rogers (1995, p. 340) notes, “Certainly, the influence potential
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of network ties with an individual’s intimate friends is stronger than the
opportunity for influence with an individual’s ‘weak ties.’”

Granovetter introduces a second, structural, meaning. The structural
strength of a tie refers to the ability of a tie to facilitate diffusion, cohesion,
and integration of a social network by linking otherwise distant nodes.
Granovetter’s insight is that ties that are weak in the relational sense—
that the relations are less salient or frequent—are often strong in the
structural sense—that they provide shortcuts across the social topology.
Although casual friendships are relationally weak, they are more likely
to be formed between socially distant actors with few network “neighbors”
in common.2 These “long ties” between otherwise distant nodes provide
access to new information and greatly increase the rate at which infor-
mation propagates, despite the relational weakness of the tie as a conduit.3

Conversely, strong social relations also have a structural weakness—
transitivity. If Adam and Betty are close friends, and Betty and Charlie
are close friends, then it is also likely that Adam and Charlie are close
friends. Information in closed triads tends to be redundant, which inhibits
diffusion. Adam, Betty, and Charlie may strongly influence one another,
but if they all know the same things, their close friends will not help them
learn about opportunities, developments, or new ideas in socially distant
settings. That is the weakness of their strong ties.

It has become a truism that diffusion over social and information net-
works displays the regularity that Granovetter (1973) characterized as
“the strength of weak ties.” This insight has changed the way sociologists
think about social networks and has informed hundreds of empirical
studies in the four decades since its publication, including studies of ad-
olescent peer group formation (Shrum and Cheek 1987), sex segregation
(McPherson and Smith-Lovin 1986), residential segregation (Feld and
Carter 1998), banking regulation (Mizruchi and Stearns 2001), collective
action (Macy 1990), and immigration (Hagan 1998), to name a few.

However, the full impact was not realized until recently, when Watts
and Strogatz (1998) made an equally startling discovery. Not only do weak
ties facilitate diffusion when they provide “shortcuts” between remote

2 A “neighbor” refers to any type of social or physical contact—a friend, co-worker,
cousin, etc.—and is not limited to a residential neighbor. A “neighborhood” is a focal
node plus the set of these contacts, and the size of the set of neighbors is the “degree”
of that node.
3 We use the term “long” rather than “weak” to avoid confusion between length and
strength. The length of a tie is its range, which in graph theory is the geodesic that it
spans, ranging from two to the diameter of the network (the maximum geodesic). The
length of a geodesic is the minimum number of edges between any two nodes. The
mean geodesic is the standard measure of the connectivity of a network. The expression
“long tie” is shorthand for “long range tie.”



Complex Contagions

705

clusters, but it takes only a small fraction of these long ties to give even
highly clustered networks the “degrees of separation” characteristic of a
random network. This means that information and disease can spread
very rapidly even in a “small world” composed mostly of tightly clustered
provincial communities with strong in-group ties, so long as a few of the
ties are long. It takes only a few contagious people traveling between
remote villages to make the entire population highly vulnerable to cat-
astrophic epidemics. It takes only one villager with a cousin in the city
to bring news of job openings at a factory. Simply put, an added strength
of weak but long ties is that it takes remarkably few of them to give even
highly clustered networks a very low mean geodesic (the shortest path
between two nodes averaged over all pairs).

Granovetter proposed the strength of weak ties as an explanation for
the spread of job information through friends and acquaintances. Exten-
sions of the idea to the “small world problem” by physicists and mathe-
maticians (Newman 2000; Watts and Strogatz 1998) have focused on the
spread of disease. More recently, the small worlds model has been gen-
eralized to the diffusion of collective behavior in a variety of contexts,
including political organizing (Hedstrom, Sandell, and Stern 2000), fi-
nancial markets and banking (Davis, Yoo, and Baker 2003; Stark and
Verdes 2006), cultural interaction (Klemm et al. 2003), professional col-
laboration (Uzzi and Spiro 2005; Burt 2004), and organizational forms
(Ruef 2004).

It is understandable that the small world principle would be generalized
from information and disease to “whatever is to be diffused.” Most diseases
are communicable, which means that individuals do not spontaneously
generate the infection; they acquire it from a carrier. Similarly, much of
what we know is not independently discovered; rather, we obtain the
information from others. It is the same with collective behavior. Strikes,
fads, social norms, and urban legends do not usually become widespread
because individuals independently and spontaneously come up with the
same idea or belief. We adopt the idea from someone else who is acting
on it and then pass it on to others. Behaviors, like diseases, can be
contagious.

Granovetter (1978) and Schelling (1978) modeled this contagion process
as a threshold effect in which a small number of “seeds” can trigger a
chain reaction of adoption, leading to a population-wide cascade of par-
ticipation in collective behavior. By “threshold,” they mean the number
of activated contacts required to activate the target. Except for the seeds,
the rest of the population is assumed to have a nonzero threshold of
activation. In order to get sick, learn about something, or join in a col-
lective behavior, we need direct or indirect contact with at least one person
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who is currently infected, knows about this thing, or is already
participating.

FROM SIMPLE TO COMPLEX CONTAGIONS

This similarity among different kinds of contagions invites generalization
of the small world principle from the spread of information and disease
to the spread of collective behavior. The spread of new technologies among
farmers (Ryan and Gross 1943) and medical innovations among doctors
(Coleman et al. 1966), the growth of strikes (Klandermans 1988) and social
movements (Marwell and Oliver 1993; Opp and Gern 1993; McAdam
1988), and the seemingly irrational behavior of a maddening crowd
(McPhail 1991) all depend upon social contact between participants and
the co-workers, friends, or acquaintances whom they recruit. Observed
from a distance, these cascades resemble an epidemic and may have iso-
morphic functional forms (e.g., an S-shaped adoption curve). It is not
surprising, then, that conclusions drawn from research on epidemics and
information networks would be generalized to the spread of collective
behaviors.

The problem is that while all contagions have a minimum threshold
of one, the range of nonzero thresholds can be quite large. For commu-
nicable diseases and information, the threshold is almost always exactly
one. If you are infected with a rhinovirus from your child, there is no
need also to be infected by your spouse. You are likely to catch a cold
and to pass it on to others. Similarly, if you are told the score of the
afternoon’s soccer match, there is no need to keep asking if anyone knows
who won before spreading the news further. These are examples of simple
contagions, in that contact with a single source is sufficient for the target
to become informed or infected. While information and disease are ar-
chetypes of simple contagions,4 some collective behaviors can also spread
through simple contact. A familiar example is a highly contagious rumor
that spreads on first hearing, from one person to another. Or consider the
tendency for cars to travel in clusters on a two-lane highway. The clusters
form because the first car in each cluster is traveling slower than the car
in front of it, and this normative speed then spreads to the cars behind
who slow down to match the speed of the car in front. More generally,

4 Some viruses may require infection by two different persons before one can contract
the disease, and information that involves “putting two and two together” could require
exposure to two different persons, each providing one piece of the puzzle. More im-
portantly, while hearing about a job the first time is usually sufficient, gossip may not
be believed until confirmed by independent sources. In such cases, information and
disease are complex contagions.
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the familiar concept of a “domino effect” refers to a tipping process in
which each actor responds to a single neighbor through simple contact.

However, many collective behaviors involve complex contagions that
require social affirmation or reinforcement from multiple sources. As
McAdam and Paulsen (1993, p. 646) observe, “the fact that we are em-
bedded in many relationships means than any major decision we are
contemplating will likely be mediated by a significant subset of those
relationships.” The distinction between simple and complex refers to the
number of sources of exposure required for activation, not the number
of exposures. A contagion is complex if its transmission requires an in-
dividual to have contact with two or more sources of activation. De-
pending on how contagious the disease, infection may require multiple
exposures to carriers, but it does not require exposure to multiple carriers.
The distinction between multiple exposures and exposure to multiple
sources is subtle and easily overlooked, but it turns out to be decisively
important for understanding the weakness of long ties. It may take mul-
tiple exposures to pass on a contagion whose probability of transmission
in a given contact is less than one. If the probability of transmission is
P, the probability of contracting the disease after E exposures is 1�(1�P)E.
Even for very small probabilities, for any P 1 0, it remains possible to
contract the contagion from a single encounter. Each contact with the
same carrier counts as an additional exposure.

By contrast, for complex contagions to spread, multiple sources of ac-
tivation are required since contact with a single active neighbor is not
enough to trigger adoption. There are abundant examples of behaviors
for which individuals have thresholds greater than one. The credibility
of a bizarre urban legend (Heath, Bell, and Sternberg 2001), the adoption
of unproven new technologies (Coleman et al. 1966), the lure of educa-
tional attainment (Berg 1970), the willingness to participate in risky mi-
grations (MacDonald and MacDonald 1974) or social movements (Mar-
well and Oliver 1993; Opp and Gern 1993; McAdam and Paulsen 1993),
incentives to exit formal gatherings (Granovetter 1978; Schelling 1978),
or the appeal of avant garde fashion (Crane 1999; Grindereng 1967) all
may depend on having contacts with multiple prior adopters.

Mechanisms of Complex Contagion

There are at least four social mechanisms that might explain why complex
contagions require exposure to multiple sources of activation.

1. Strategic complementarity. Simply knowing about an innovation is
rarely sufficient for adoption (Gladwell 2000). Many innovations are
costly, especially for early adopters but less so for those who wait.
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The same holds for participation in collective action. Studies of
strikes (Klandermans 1988), revolutions (Gould 1996), and protests
(Marwell and Oliver 1993) emphasize the positive externalities of
each participant’s contribution. The costs and benefits for investing
in public goods often depend on the number of prior contributors—
the “critical mass” that makes additional efforts worthwhile.

2. Credibility. Innovations often lack credibility until adopted by
neighbors. For example, Coleman et al. (1966) found that doctors
were reluctant to adopt medical innovations until they saw their
colleagues using it. Markus (1987) found the same pattern for adop-
tion of media technology. Similarly, the spread of urban legends
(Heath et al. 2001) and folk knowledge (Granovetter 1978) generally
depends upon multiple confirmations of the story before there is
sufficient credibility to report it to others. Hearing the same story
from different people makes it seem less likely that surprising in-
formation is nothing more than the fanciful invention of the infor-
mant. The need for confirmation becomes even more pronounced
when the story is learned from a socially distant contact, with whom
a tie is likely to be relationally weak.

3. Legitimacy. Having several close friends participate in a collective
action often increases a bystander’s acceptance of the legitimacy of
the movement (Finkel, Muller, and Opp 1989; Opp and Gern 1993;
McAdam and Paulsen 1993). Decisions about what clothing to wear,
what hairstyle to adopt, or what body part to pierce are also highly
dependent on legitimation (Grindereng 1967). Nonadopters are
likely to challenge the legitimacy of the innovation, and innovators
risk being shunned as deviants until there is a critical mass of early
adopters (Crane 1999; Watts 2002).

4. Emotional contagion. Most theoretical models of collective behav-
ior—from action theory (Smelser 1963) to threshold models (Gra-
novetter 1973) to cybernetics (McPhail 1991)—share the basic as-
sumption that there are expressive and symbolic impulses in human
behavior that can be communicated and amplified in spatially and
socially concentrated gatherings (Collins 1993). The dynamics of
cumulative interaction in emotional contagions has been demon-
strated in events ranging from acts of cruelty (Collins 1974) to the
formation of philosophical circles (Collins 1998).5

5 For a series of empirical studies, see Aminzade and McAdam (2002).
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The Structural Weakness of Long Ties

The “strength of weak ties” and “six degrees of separation” have become
familiar principles across the social sciences and beyond, with practical
implications for unprecedented access to online information, as well as
sobering implications for the spread of disease. Generalizations of the
small world principle to the spread of collective behaviors implicitly as-
sume that network properties conducive to the spread of disease and
information are also conducive to the spread of complex contagions. This
assumption is appealing for two reasons. First, as noted above, simple
and complex contagions depend on social contact to spread and often
display similar S-shaped adoption curves. The second reason is meth-
odological. Simple contagions can be studied on random networks, which
are highly amenable to analytic treatment (Erdos and Renyi 1959). More-
over, mathematical approximations can be made for simple contagions
(Watts 2002), which cannot be used for those that require multiple sources
of activation. In short, the assumption that the global properties of com-
plex contagions can be extrapolated from the properties of simple con-
tagions is not only highly intuitive, it is also analytically convenient. If
this assumption is correct, then research on a broad range of sociological
problems can benefit from epidemiological research and from studies of
information flows (such as Granovetter’s study of job search). However,
if the assumption is wrong, then generalizing the “strength of weak ties”
to the spread of collective behaviors could lead to fundamental errors in
our understanding of the effects of network topology on diffusion
processes.

The present study provides a theoretical test of this assumption, using
available empirical research to evaluate our analytical and computational
findings.6 We show that for complex contagions, long ties can be weak in
both of Granovetter’s meanings, structural as well as relational. The im-
plication of the relational meaning is immediately apparent. A low level
of trust and familiarity between socially distant persons means the rela-
tionship is weak, and this inhibits the ability of one person to influence
the other. What is not at all obvious is that long ties can also have a
structural weakness—they are nontransitive. For the spread of infor-
mation, transitive ties between friends tend to be redundant, such that
we hear the same thing from multiple friends. However, when activation
requires confirmation or reinforcement from two or more sources, the
transitive structure that was redundant for the spread of information now
becomes an essential pathway for diffusion. Thus, while weak ties are

6 For a technical introduction to the propagation dynamics of high-threshold conta-
gions, see Morris (2000), Watts (2002), and Centola, Eguiluz, and Macy (2007).
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beneficial for the spread of new information precisely because they are
nonredundant, for complex contagions uniqueness becomes a weakness
rather than a strength.

This structural weakness of long ties reflects a qualitative difference
between simple and complex contagions. For simple contagions, what
matters is the length of the bridge between otherwise distant nodes. For
complex contagions, the effect of bridges depends not only on their length
(the range that is spanned) but also on their width.

In network terminology, a “bridge” links two components of an oth-
erwise disconnected network, and a “local bridge” links otherwise disjoint
neighborhoods within a component, where disjoint means that the two
neighborhoods have no members in common. Simply put, a bridge makes
a connection possible, while a local bridge makes a connection shorter
(by reducing the geodesic distance). Because our analysis is limited to
networks with a single component, we only consider local bridges, and
for brevity, we will refer to these simply as “bridges.” A bridge is generally
assumed to consist of a single tie, which is sufficient for simple contact
between neighborhoods. However, if a connection requires multiple con-
tacts, then a bridge must consist of multiple ties. Hence, we can measure
a bridge not only by its length (the range that is spanned by the bridge)
but also its width (the number of ties it contains). The range of a bridge
is the geodesic between the focal nodes of the neighborhoods connected
by the bridge if all of the bridge ties were to be removed.7

The importance of bridge width has been overlooked in previous re-
search because it is not relevant for simple contagions. However, prop-
agation of many collective behaviors depends on bridges that are wide
as well as long. The structural weakness of long ties is that they form
bridges that are too narrow for complex contagions to pass.

EFFECTS OF LONG TIES ON A RING LATTICE

The classic formalization of the small world principle comes from Watts
and Strogatz (1998). They demonstrate that the rate of propagation on a
clustered network can be dramatically increased by randomly rewiring a
few local ties (within a cluster), making them into bridges between clusters
that reduce the mean distance between arbitrarily chosen nodes in the
network.

Our central purpose is to test whether this principle generalizes from
the spread of information and disease to the spread of collective behavior.

7 By definition, wide bridges are always composed of short ties. Conversely, long ties
always form the narrowest possible bridge.
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In order to replicate earlier studies as closely as possible, we begin with
the original Watts and Strogatz (1998) small world model. They used a
ring lattice to demonstrate the small world effect for a simple contagion.
A ring lattice is a one-dimensional spatial network that allows the simplest
analytical model of the effects of introducing long ties to an ordered graph.

Watts and Strogatz demonstrated the small world effect by holding the
density of the ring constant as local ties were replaced with a tie to a
randomly selected node. Long ties can also be introduced by adding ran-
dom ties to the network (Newman and Watts 1999), but this increases
both density and the fraction of long ties, which confounds the effects of
randomization with the effects of densification. The effects of network
density on the rate and frequency of complex contagions is an interesting
and important question, but it is not the question that frames the present
study. We therefore focus on randomization while holding density con-
stant, using a rewiring method similar to that used by Watts and Strogatz.8

Our only departure from Watts and Strogatz is that we raised activation
thresholds above the lower limit for propagation through social contact
assumed in previous studies. Thresholds can be expressed in two ways—
as the number (Granovetter 1978) or the fraction (Watts 2002) of neighbors
that need to be activated. The conceptual distinction reflects an underlying
(and often hidden) assumption about the influence of nonadopters. Frac-
tional thresholds model contagions in which both adopters and nona-
dopters exert influence, but in opposite directions. For example, the will-
ingness to refrain from littering in one’s neighborhood may depend not
only on the number of others willing to refrain but also on their numbers
relative to those who add to the litter. If nonadopters exert countervailing
influence, as neighborhood size increases, a greater number of activated
neighbors are required to trigger adoption. In contrast, numeric thresholds
model contagions in which nonadopters are irrelevant. Hence, an increase
in neighborhood size has no effect on the required number of activated
neighbors. For example, disease has a threshold of one. No matter how
large the neighborhood, infection requires contact with only a single car-
rier. Uninfected neighbors do not increase resistance to the contagion.
Similarly, the credibility of an urban legend may depend only on the

8 Newman and Watts (1999) show that adding ties to a regular lattice is more robust
than the rewiring method (Watts and Strogatz 1998; Watts 1999) because it eliminates
the possibility of multiple components forming at high levels of randomization. For
this study, we use the rewiring technique proposed by Maslov and Sneppen (2002),
which also keeps the network connected, while allowing each node to keep a constant
degree at all levels of randomization. Thus, we assume throughout that networks are
connected in a single component and focus on the effects of randomization within a
component of constant size and density.
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number of others from whom it has been heard, regardless of the number
who have never mentioned it.

If ties are randomly rewired, holding degree constant, the effect on
propagation is the same whether thresholds are expressed as the number
or the fraction of activated neighbors.9 However, we also manipulate
degree exogenously, holding it constant at different levels as ties are ran-
domized. We therefore represent the threshold t as a fraction t p a/z,
where a is the number of activated nodes and z is the number of neighbors.
This notation allows us to distinguish, for example, between t p 1/8 and
t p 6/48. Both thresholds require an identical proportion of activated
neighbors, but the former is a simple contagion, and the latter is complex.
One of the main findings of our study is that there is a qualitative dif-
ference between a p 1 and a 1 1, even when the proportions are identical.

We also followed previous studies (Watts and Strogatz 1998; Watts 1999;
Newman 2000) in assuming that

1. The network is sparse.
2. Thresholds are deterministic (the probability of activation goes from

zero to one as the threshold is crossed).
3. Every tie has equal weight.
4. Every node has equal influence.
5. Every node has an identical threshold t.
6. Every node has about equal degree.
These simplifying assumptions are standard in much of the diffusion

literature, including the research on small worlds, because they are nec-
essary to identify the structural effects of long ties without the confounding
effects of heterogeneity and stochasticity. Nevertheless, homogeneity (of
thresholds, influence, and degree) violates our empirical intuition. We
therefore began with the simplest possible extension to the basic model—
in which everyone has identical influence, thresholds, and neighborhood
size—and analyzed the effects of random rewiring as we increased thresh-
olds above 1/z. Following our analysis of the simple ring structure, we
use a two-dimensional lattice to introduce a sequence of complications,
including much larger neighborhoods and heterogeneity of degree, thresh-
olds, and influence. We also relaxed the assumption that thresholds are

9 If random ties are added to a network, the effect on propagation depends decisively
on whether thresholds are expressed as the number or the fraction of activated neigh-
bors. Adding random ties increases exposure to both activated and unactivated neigh-
bors. If unactivated neighbors have no countervailing influence, then adding ties can
only promote propagation, whether contagions are simple or complex. However, if
unactivated neighbors increase resistance to contagion, then adding ties promotes the
propagation of simple contagions, but there will be a much stronger inhibiting effect
on complex contagions compared to the effect of random rewiring (holding degree
constant).
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strictly deterministic. These complications require the use of computa-
tional methods. However, the highly simplified case we consider first al-
lows an analytical investigation of the effects of network topology on the
propagation of simple and complex contagions.

Figure 1 illustrates the width of the bridge between two neighborhoods
(I and L) on a ring lattice with zp4. Neighborhood I is the ego network
containing focal node i and all of i’s neighbors [g,k] (black and gray/black
nodes). Neighborhood L contains [j,n] (gray and gray/black nodes), where
[l,n] � I. These two neighborhoods have two common members (gray/
black nodes). CIL is the set of all common members of both I and L, hence
CIL p [j,k]. The disjoint set DIL contains the remaining members of L
that are not in I, or DIL p [l,n]. A bridge from I to L is then the set of
ties between CIL and DIL, where the width of the bridge, WIL, is the size
of this set. In figure 1, the bridge consists of the three ties jl, kl, and km
(shown as bold lines), making WIL p 3.

The overlap between the neighborhoods is the number of nodes in CIL

(denoted FCILF). In figure 1, the neighborhoods I and L have the maximum
possible overlap. Neighborhood M containing [k,o] is one step farther
from I, so only node k is shared between them (FCIMF p 1), and there is
only a single tie (km) between I and M, making the width of the bridge
WIMp 1.

More generally, on a ring lattice of degree z, 0 ≤ F C F ≤ z/2. The widest
bridge on the ring is limited by the maximum overlap FCmaxF p z/2. There
will be z/2 ties from I to the member of L closest to I, z/2 � 1 ties to the
next closest member of L, and so on, giving:

W p z/2 � (z/2 � 1) � (z/2 � 2) � . . . � 1, (1)max

W p z(z � 2)/8. (2)max

The bridge from I to L is therefore the maximum possible width for zp4,
giving Wmax p 3.

The width of the bridge between neighborhoods determines the upper
bound on the threshold at which a contagion can pass. In figure 1, WIL

p 3, which imposes an upper bound of a p 2. So long as a ≤ 2, the two
ties from j and k will be sufficient to activate l, and l and k can then
activate m, and so on.

Conversely, thresholds determine the critical width (Wc) of bridges,
defined as the minimum number of nonredundant ties required for a
contagion to propagate to an unactivated neighborhood.10 For simple

10 Ties are nonredundant so long as there are no more than a bridge ties to a single
member of DIL. Suppose ap2. If there were three bridge ties to any node in DIL, then
one of these ties would be redundant.
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Fig. 1.—A ring lattice with zp4 and one long tie. The figure illustrates the width of the
bridge between the neighborhoods of i (black and gray/black nodes) and l (gray and gray/
black nodes), showing the two common members (gray/black nodes). The bridge between
these two neighborhoods consists of the three ties jl, kl, and km (shown as bold lines). The
long tie from i to q provides a shortcut for a simple contagion but not for one that is complex.

contagions, Wcp 1, regardless of network topology. On a ring lattice, for
minimally complex contagions (a p 2), Wcp 3. For example, in figure 1,
the three ties between CIL and DIL (two to activate l and one to activate
m once l is active) allow the contagion to spread from I to L.

More generally,

Wc p a � (a � 1) � (a � 2) � . . . 1, (3)

W p a(a � 1) / 2, (4)c

giving Wc p 3 as the critical width for a minimally complex contagion
(a p 2). A contagion can propagate around the ring so long as Wc ≤ Wmax.

The critical width also determines the minimum number of ties that
need to be rewired to create a shortcut across the ring. Figure 1 shows
how a single random tie is sufficient to increase the rate of propagation
of a simple contagion. Suppose we were to randomly select tie ih to be
randomly replaced with tie iq. For a simple contagion (t p 1/z), the
rewiring of the ih tie creates a shortcut across the ring that reduces the
time required for a cascade to reach all the nodes. The deleted tie from
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h to i (indicated by the broken line) does not hinder the spread of a simple
contagion around the ring since the critical width for a p 1 is Wcp 1,
and Wmax p 3 provides sufficient redundancy to support local propagation
even with the ih tie removed.

However, the need for bridges that are wider than a single tie implies
a qualitative change in propagation dynamics as a increases above one.
Figure 2 shows how an increment in the threshold from t p 1/z to t p
2/z triples the critical width of the bridge required to create a shortcut,
from one tie to three. Node j is the focal node of the seed neighborhood
J in which j and all four of j’s neighbors are activated (indicated by solid
black and gray/black nodes). Node s is the focal node of an unactivated
neighborhood S (shown in gray and gray/black). For a minimally complex
contagion (t p 2/z), Wc p 3, which means that three local ties must be
rewired to create a bridge across the ring (indicated by the three bold
lines). The two ties from i and k are sufficient to activate s, and the third
tie from i to q is sufficient to activate q, given the tie from s to q.

Even for this minimally complex contagion on this very small ring
(with only 16 nodes), the probability that three random ties will form a
bridge is close to zero. We can expect to need many more random ties
before the first bridge is formed across the ring, and that number increases
exponentially as N increases. That is because the number of configurations
in which all three random ties are between the same two neighborhoods
is a very small fraction of the total number of possible configurations.11

Further, as a increases, there is an exponential increase in the number of
ties required to form a bridge, further reducing the likelihood of bridge
formation.

An obvious solution to the need for wider bridges is simply to rewire
more ties, thereby ensuring that shortcuts across the network will even-
tually form. However, the problem with extensive rewiring is the potential
to erode the existing bridges that allow the contagion to spread locally.
Figure 2 shows how this happens. The deleted tie from h to i (indicated
by the broken line) would not hinder the spread of a simple contagion.
However, even for a minimally complex contagion, the three deleted ties
(broken lines) reduce the width of the bridges on either side of i to less
than Wcp 3, preventing the contagion from spreading locally. The con-
tagion can still spread out in both directions from s, but the JS bridge
will not increase the rate of propagation. Moreover, the probability that
three random ties will form a bridge (like the one illustrated in fig. 2) is

11 As the number of adopters increases, random ties can create wide bridges to an
unactivated neighborhood from multiple activated neighborhoods, thereby increasing
the probability of success. Hence, the farther the contagion spreads, the greater the
benefit from random rewiring.
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Fig. 2.—A ring lattice with zp4 and three ties. The figure shows the width of the bridge
between neighborhood J (black and gray/black nodes, with focal node j) and neighborhood
S (gray and gray/black nodes, with focal node s), showing the two common members (gray/
black nodes). An increment in the threshold from tp1/z to tp2/z triples the width of the
bridge required to create a shortcut (bold lines) between J and S, from one tie to three. The
two ties is and ks are sufficient to activate s, and the third tie from i to q is sufficient to
activate q, given the tie from s to q.

close to zero, while the probability that three deleted ties will break the
ring and block the contagion is close to one.

Simply put, the effect of rewiring depends on whether random ties are
more likely to form bridges across the ring than to break bridges along
the ring. This in turn depends on the magnitude of Wmax relative to Wc.
If Wc p Wmax, there are no redundant ties in the bridge, and every tie
that is removed creates a break along the ring. If Wc ! Wmax, some bridge
ties may be redundant, and if they were to be rewired to form a new
bridge, the rate of propagation would increase.

Wmax increases exponentially with z while Wc increases exponentially
with a. Holding a constant, an increase in z means a smaller fraction of
neighbors need to be activated in order for a node to become active. It
also means Wc K Wmax, hence greater redundancy of bridge ties. As re-
dundancy increases, the network becomes more efficient if some of the
redundant ties are randomly rewired to create new bridges.

More generally, the redundancy R refers to the proportion of ties in a
bridge that can be rewired without breaking the ring, or

R p (W � W ) / W , (5)max c max
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R p 1 � (4a[a � 1] / z[z � 2]). (6)

We can see from equation [6] that if a 1 z/2, then R ! 0, which means
that bridges will be too narrow for propagation. Thus, contagions cannot
propagate on a ring lattice of any degree if t 1 .5 (Morris 2000). If t p
.5, R p 0. This means that contagions can now pass, but there is no
redundancy (as in fig. 2). The first tie that is randomized will break the
ring.12

As R increases, more ties can be rewired without creating breaks along
the ring, allowing complex contagions to benefit from randomization, just
as do simple contagions. However, there is an important difference. For
simple contagions, a connected network can never be too randomized.
That is not true for complex contagions. Eventually, randomization will
reach a critical upper limit (given by R) above which even minimally
complex contagions can no longer propagate. For example, on a ring lattice
with z p 10, Wmax p 15 and R p .75. For a minimally complex contagion
(a p 2 and Wc p 3), the high level of redundancy indicates that limited
randomization could allow faster propagation than on the unperturbed
ring. The unperturbed lattice consists of a chain of bridges that are linked
to one another around the ring. As long as randomization does not create
a break along this chain, rewiring redundant ties to create a shortcut will
allow the contagion to jump across the network and fan out from multiple
locations.

However, if randomization rewires more than R of the ties in an existing
bridge, the chain will be cut. Although this rewiring may also create new
bridges, the advantage of these shortcuts depends on the existence of other
bridges to which the shortcut is linked. Bridges that are randomly created
as the ring is perturbed are only useful to the extent that they are linked
to other bridges. Otherwise the random rewiring creates a bridge to no-
where. As the links of the chain become increasingly disconnected, the
probability increases that a random bridge will lead into a cul de sac.

To review, the analysis of the ring lattice reveals two qualitative dif-
ferences between simple and complex contagions:

1. While a single random tie is sufficient to promote the spread of
simple contagions, complex contagions require more rewiring in
order to benefit from randomization. The number of ties that need

12 Note that it is also the case that R p 0 if a p 1 and z p 2, giving Wc p Wmax p
1. The rewired tie now creates a break along the ring but also creates a bridge across
the ring, allowing the contagion to fan out from three locations instead of just two
(prior to rewiring). However, if a ≥ 1 and R p 0, the first tie that is randomly rewired
will break the ring but cannot create a shortcut.
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to be randomly rewired increases exponentially with the number
required to form a bridge (Wc), and the number of ties needed to
form a bridge in turn increases exponentially with the required
number of activated neighbors (a).

2. As the ring becomes increasingly randomized, the width of the
bridges that make up the lattice structure may be eroded below the
critical width required for the contagion to spread. Simple conta-
gions can propagate on a connected network even if every tie is
random, and the rate of propagation increases monotonically with
the proportion of random ties. In contrast, there is a critical upper
limit of randomization above which complex contagions cannot
propagate. As thresholds increase, this critical value decreases.

LONG TIES ON HIGHER DIMENSIONAL NETWORKS

These conclusions for a one-dimensional lattice do not necessarily gen-
eralize to higher dimensional structures, which provide detours around
local ties that have been deleted. However, higher dimensional structures
lack the analytical simplicity of the ring lattice. For networks with more
complicated geometries, we used computational models to confirm and
extend the analysis of the ring lattice.13

We began by replicating the small worlds experiments on the spread
of simple contagions, using a two-dimensional lattice with Moore neigh-
borhoods instead of the ring lattice used in earlier studies (Watts and
Strogatz 1998; Watts 1999; Newman and Watts 1999).14 We then repeated
the experiment with only one change—we increased activation thresholds
above the theoretical minimum (1/z) for propagation through social
contact.

We used two values of degree (z p 8 and z p 48) so that we could
independently manipulate a and z. Network density was held constant
as degree increased by increasing N from 40,000 with z p 8 to 240,000
with z p 48. Thresholds ranged from a p 1 to the critical upper limit
for propagation on a Moore lattice,15 which is ac p 3 for z p 8 and ac p

13 All of the reported results for the Moore lattice were replicated on the ring lattice
as well, and any differences are noted.
14 Moore neighborhoods include nine nodes: a focal node and its eight neighbors on a
two-dimensional grid, four on the rows and columns, and four on the diagonals. Degree
z can then be increased from 8 to 24 to 48 (and so on) by increasing the neighborhood
radius r, where z p 4r(r�1). Qualitatively similar results are found for r p 1 and

.r ≥ 1
15 The upper limit for propagation on a Moore lattice is ac p 2r2�1, where r is the
radius of the neighborhood.
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19 for z p 48. In each condition, the model was seeded with a sufficient
number of activated nodes to allow a contagion to spread on a lattice
network. With simple contagions, a single node was randomly chosen as
the seed. With higher thresholds, a focal node was randomly selected and
then that node plus its neighbors were activated. At each time step, an
unactivated node was randomly selected (without replacement) and its
state updated based on its threshold relative to the proportion of its ac-
tivated neighbors.16

Figures 3 and 4 report results for Moore lattices with z p 8 (fig. 3) and
z p 48 (fig. 4), a range that is sufficient to illustrate the effects of neigh-
borhood size. The ordinate shows the rate of propagation as the time steps
t required for the contagion to saturate the network (99% of nodes). Time
steps were recorded exclusively for successful cascades. The abscissa in
figures 3 and 4 represents the proportion p of ties that are rewired, where
p p 0 corresponds to a regular lattice (all network ties are spatially
constrained) and p p 1 corresponds to a random network (individuals
are tied with equal probability to everyone in the network). Between 0
and 1, there is a region of p in which there is high local clustering with
low mean geodesic, corresponding to a small world network.

The results for t p 1/z (at the bottom of figs. 3 and 4) confirm the
results from previous studies of propagation on small world networks. As
ties are rewired, propagation rates approach those of random networks
while the network still has abundant local structure (p ! .1)—the network
remains highly clustered and yet is now also highly connected (Watts and
Strogatz 1998). Watts and Strogatz (1998) showed that only a modest
fraction of random ties are needed to allow propagation rates to approach
those observed on a random graph. This is confirmed by the results for
t p 1/z.

However, this small world effect does not generalize to complex con-
tagions, even when contagions are minimally complex ( in fig. 3),t p 2/8
and two activated neighbors are a very small fraction of the neighborhood
( in fig. 4). Instead, the results in figures 3 and 4 mirror thet p 2/48
analytical results for the ring lattice by showing qualitative differences
between simple and complex contagions. The analysis of the ring revealed
a critical upper limit of randomization, corresponding to R, above which
propagation will be precluded, and also a lower limit of randomization,
below which there are too few long ties to create a shortcut. Similarly,
the results for Moore neighborhoods show that random ties do not help
complex contagions at very low and very high levels of randomization,

16 Asynchronous updating with random order and without replacement eliminates po-
tential order effects and guarantees that every node is updated within a round of
decision making, which we define as N time steps.
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Fig. 3.—Propagation times for simple and complex contagions (zp8; Np40,000, aver-
aged over 100 realizations). Lines show the number of time steps required for cascades to
saturate the network (reach 99% of nodes) as p increases from 10�6 (p≈0 on a log scale) to
1 along the abscissa. For simple contagions (bottom line, tp1/8), small increases in p facilitate
propagation, and further increases monotonically reduce propagation time. For minimally
complex contagions (middle line, tp2/8), small increases in p do not have any effect on
propagation, while greater increases have a nonmonotonic effect, first decreasing propa-
gation time, then increasing it. For complex contagions with higher thresholds (top line,
tp3/8), the “small world window” narrows. The lines end at the critical point above which
randomization precludes propagation entirely.

between which there is a “small world window.” Inside this window,
propagation can benefit from randomization if thresholds are relatively
low. As thresholds increase, bridges need to be wider, which means more
ties must be rewired to form shortcuts randomly, and existing bridges
become more vulnerable to perturbation. In combination, these effects
reduce—and ultimately eliminate—the small world window.

These differences between simple and complex contagions are evident
in figures 3 and 4, which display three principal results:
1. Complex contagions fail to benefit from low levels of randomization,

as shown by the initial failure of propagation rates to improve as p
increases above zero.

2. Increasing p has a nonmonotonic effect on complex contagions, exhib-
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Fig. 4.—Propagation times for simple and complex contagions (zp48; Np240,000, av-
eraged over 100 realizations). Lines show the number of time steps required for cascades
to saturate the network (reach 99% of nodes) as p increases from 10�6 (p≈0 on a log scale)
to 1 along the abscissa. For complex contagions, increasing thresholds narrows the “small
world window” of p values for which random ties facilitate propagation. For thresholds
above tp16/48, the window closes, leaving only the inhibiting effect of random ties.

iting a U-shaped effect, in which randomization starts to help—but
ultimately impedes—propagation.

3. As p exceeds a critical upper limit, complex contagions entirely fail to
propagate.
Figure 5 provides a more detailed view of cascade failure for the results

shown in figure 3.17 In figure 5, the abscissa represents p, and the ordinate
indicates the frequency of successful cascades over 100 realizations.18 As
shown in figure 5, there is a highly nonlinear effect of network pertur-

17 The qualitative behavior shown in fig. 5 also holds for all results shown in fig. 4.
18 Across all realizations at all values of p, cascades either reached 99% or more of the
population or less than 1%—there were no partial successes. Given this extreme bi-
modal distribution in the proportion of nodes that are reached, the proportion of
realizations in which cascades succeeded conveys more information than the average
proportion of nodes that were reached.



American Journal of Sociology

722

Fig. 5.—Critical transition in cascade frequency (zp8; Np40,000, averaged over 100
realizations). Lines show the average frequency of cascades as the fraction of random ties
increases from p≈0 to pp1 (corresponding to the propagation times shown in fig. 3). The
sharp drop in frequency as p reaches a critical value indicates a first-order phase transition.
Below this value, cascades spread to the entire population, while above it, cascades reach
less than 1% of the nodes. For minimally complex contagions (tp2/z), this critical value
occurs at p≈.1. For slightly higher thresholds (tp3/z), the transition occurs at p≈.03.

bation on the frequency of successful cascades as p increases from 0 to
1. We observe not a steady decline in cascade frequency, but a dramatic
shift from near-complete success on each trial, to near-zero success.

This abrupt change in global dynamics is indicative of a first-order
phase transition in cascade behavior. A first-order phase transition, such
as the transition of water to steam, indicates a radical change in the
macrolevel properties of a system. In the case of boiling water, the shift
in density at the phase transition is sudden and large, requiring complex
analytic techniques to model the process (Landau and Lifshitz 1994). For
complex contagions, the change is just as striking. This result identifies
a critical point for ordered social networks, below which an increase in
the number of random ties has almost no effect on the network’s ability
to propagate complex contagions successfully. However, once the fraction
of random ties exceeds this critical point, the network can no longer
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support the spread of complex contagions. In short, small changes to the
network structure, which are imperceptible to individual actors (Watts
and Strogatz 1998), can precipitate a radical shift in the collective dy-
namics of social diffusion.

To sum up, these experiments with Moore neighborhoods of varying
degree confirm the analysis based on the ring lattice. A few long ties
facilitate simple contagions, which is why small world networks are a
highly effective topology for the spread of information and disease. How-
ever, as thresholds increase, complex contagions depend increasingly on
network topologies with wide bridges—such as might be observed in
residential networks and social networks with overlapping clusters. The
higher the thresholds, the lower the likelihood that random ties will form
the wide bridges that provide social reinforcement. Ultimately, as more
random ties are added, a phase transition transforms the network abruptly
from one that can sustain complex contagions to one that cannot.

We also found that randomization can promote the spread of complex
contagions so long as the randomization is not too great and the thresholds
are not too large. This U-shaped effect of randomization is an important
extension of the small world principle. Watts and Strogatz (1998) discov-
ered that simple contagions could spread as fast on a highly clustered
small world network as on a more randomized topology. This was im-
portant because social networks tend to be highly clustered and rarely (if
ever) random. Figures 3 and 4 reveal that this “small world effect” becomes
more pronounced as thresholds increase slightly above the level of simple
contagions. That is, complex contagions with relatively low thresholds
can actually spread faster on a highly clustered small world network than
on either a network that is more random or one that is more clustered.
However, as thresholds get higher still, the small world effect disappears
entirely. In short, the essential difference between simple and complex
contagions can be distilled as follows. For simple contagions, too much
clustering means too few long ties, which slows down cascades. For com-
plex contagions, too little clustering means too few wide bridges, which
not only slows down cascades but can prevent them entirely.

TESTS FOR ROBUSTNESS OF THE SIMPLIFYING ASSUMPTIONS

So far we have been careful to change only a single assumption of the
theoretical model of small worlds while holding all else constant. We
merely raised activation thresholds to levels that empirical research sug-
gests are likely to characterize many collective behaviors. The results
clearly demonstrate the danger of generalizing from the spread of disease
and information to the spread of collective behaviors.
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Threshold Heterogeneity

We now take the analysis a step further, to test the robustness of these
results as we relax some of the simplifying assumptions in previous re-
search, namely the homogeneity of degree, social influence, and activation
thresholds. We first consider the effects of threshold heterogeneity in a
model that is otherwise identical to that in figures 3, 4, and 5 but with a
Gaussian distribution of thresholds. The primary finding is that cascade
times and frequencies behave much as they do for fixed thresholds. Initial
perturbations to the network have no effect on cascade dynamics. As p
increases, propagation times exhibit the characteristic U-shaped pattern
evident in figures 3 and 4, and cascade frequency exhibits the same first-
order phase transition that was observed for fixed thresholds. The phase
transition occurs for increasingly lower values of p as increases, equiv-t

alent to what we observe with fixed thresholds. Finally, as with fixed
thresholds, as thresholds increase, the small world window disappears,
and there is a monotonic increase in propagation time as p increases.19

As an additional test, we investigated the effects of heterogeneity within
nodes as well as between nodes. Within-node heterogeneity relaxes the
assumption that thresholds are stationary by allowing thresholds to
change over time, which we implemented by randomly reassigning thresh-
olds after each round of decision making (i.e., after all nodes had been
given a chance to become activated). We assigned thresholds using the
same Gaussian distribution as with stationary threshold heterogeneity.
The results are similar to what we observed with stationary thresholds,
confirming the robustness of the distinction between simple and complex
contagions.

We also tested stochastic thresholds in which nodes are activated with
a probability that increases with the number of activated nodes in the
neighborhood. Using the cumulative logistic function (Macy 1990), nodes
have a 50% chance of activation when the proportion t of the neighbor-
hood is activated. Below t, the probability approaches zero as a convex
function of the number of active neighbors, and above t the probability
approaches one as a concave function.20 The results for stochastic thresh-
olds were similar to those for deterministic thresholds—random rewiring

19 These results are consistent with analytic predictions derived from the generating
function method developed in Watts (2002), in which the effects of threshold hetero-
geneity are reduced to the fraction of nodes susceptible to activation by a single neigh-
bor. With z p 48, surprisingly few susceptible nodes are needed to allow minimally
complex contagions to spread as if they were simple. However, as mean thresholds
increase, contagions no longer benefit from randomization.
20 In infinite time, stochastic thresholds have a nonzero probability of activating the
entire population. However, these results are for finite time scales comparable to those
used for deterministic thresholds.
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slowed complex contagions and ultimately prevented them from spread-
ing. This surprising result is due to the fact that as thresholds increase,
the probability that an activated node will stochastically “turn off” also
increases, making the diffusion of complex contagions more difficult as
random rewiring reduces pathways of local reinforcement.

Heterogeneity of Influence

We also tested the effects of heterogeneity of influence. Influence is the
complement of a threshold, in that it determines the ability of activated
nodes to propagate the contagion instead of the susceptibility of their
neighbors to becoming activated. We implemented heterogeneity of influ-
ence in two ways, as ties to low- and high-status neighbors and as ties
to friends and acquaintances.

Status differences were created by assigning a few random nodes the
ability to activate their neighbors without the need for social affirmation
or reinforcement from additional sources. This enhanced influence might
reflect higher social prestige, power, wealth, persuasiveness, and so on.
For convenience, we will refer to these as “high-status nodes.”

Of course, if there are enough high-status nodes to activate the re-
mainder of the population in one step, the problem reduces to that of a
simple contagion. The interesting case is one in which a few high-status
nodes must trigger a cascade in order to activate the population. As a
conservative test, we randomly assigned N/z of the nodes to be high status
(e.g., 5,000 high-status nodes in a population of 40,000). On average, this
means that every neighborhood in the network can now be expected to
have one high-status member. High-status nodes were given sufficient
influence, , to activate all of their neighbors (i.e., for ). Ini i ≥ a t p a/z
order not to conflate the effects of influence heterogeneity with an increase
in mean influence (equivalent to a reduction in the average threshold),
we held mean influence constant by reducing the status of all other nodes
sufficiently to compensate for doubling the influence of a few “opinion
leaders” (Katz and Lazarsfeld 1954).

Results show that introducing a small fraction of high-status nodes does
not mitigate the need for wide bridges. Under the assumption that the
distribution of status is highly unequal, there is no improvement in the
propagation of complex contagions as p increases.

To see why, suppose the high-status nodes are sufficiently influential to
activate all their Moore neighbors on a network with z p 48. The problem
is what happens next. Assuming t p 2/z and influence homogeneity, an
activated node would need only one other activated node to activate a
common neighbor. However, with influence heterogeneity (and holding
mean influence constant), two activated low-status nodes no longer have
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combined influence sufficient to activate a common neighbor with thresh-
old 2/z. Now three low-status nodes must be activated in order to extend
the contagion beyond the reach of their high-status activated neighbor.
This increases the width of the bridge needed to propagate the contagion.
Thus, status inequality can make the propagation of complex contagions
even more vulnerable to network perturbations that remove ties from
existing bridges. However, as the number of high-status nodes increases,
the propagation of complex contagions can begin to resemble that for
simple contagions.

Strong and Weak Ties

Up to this point we have assumed that all ties have equal strength, re-
gardless of range. That is a reasonable assumption for the acquisition of
information and disease, which does not depend on the relationship with
the source. However, many social contagions not only have higher thresh-
olds than disease and information, but also, the threshold may depend
on whether the source is a close friend or an acquaintance. Thus, Gra-
novetter (1983, p. 202) distinguishes between relationally weak ties con-
necting “acquaintances” located in “distant parts of the social system” and
“close friends most of whom are in touch with one another.” Following
Granovetter (1983, p. 201), we used a binary coding in which closed triads
are assumed to connect “close friends,” and open triads are “acquain-
tances” who “are less likely to be socially involved with one another than
are our close friends (strong ties).” We assigned regular unperturbed ties
a weight of 1 and random ties a weight of .5. This 2:1 ratio is convenient
in that it parallels the distinction between simple and minimally complex
contagions. It means that a single close friend is now sufficient to activate
a neighbor with a threshold of 1/z, but it will take two acquaintances.

As expected, the effects of randomization for simple contagions now
resemble what we previously observed for minimally complex contagions.
In addition, when we repeated the experiment with heterogeneous thresh-
olds and z p 48 (see fig. 4), we observed inhibitory effects of long ties
even for populations in which . More generally, the weaker thet p 2/z
ties to acquaintances compared to friends, the wider must be the bridges
connecting otherwise distant neighborhoods.

Heterogeneity of Degree

Barabasi (2002) has shown that high degree nodes (or “hubs”) dramatically
improve the diffusion of simple contagions (see also Barabasi, Albert, and
Jeong 2000). This suggests the need to test the robustness of the results
in figures 3, 4, and 5 by replacing the regular lattice with a highly clustered
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scale-free network (Klemm and Eguiluz 2002), which more closely resem-
bles empirically observed small world networks (Barabasi 2002; Barabasi
et al. 2000; Newman et al. 2006). We tested our findings using a scale-
free degree distribution with N p 40,000 and , in which manyg p 2.3
nodes have relatively low degree (z ! 5), and only a few have very high
degree (z 1100).21 As noted above, the rewiring procedure that we used
reduces clustering through randomization without altering the degree of
any node. Thus, we are able to isolate the effects of randomization while
preserving the scale-free degree distribution.

All nodes required the same number of activated neighbors (a), but
since degree varied, so too did the necessary proportion of activated neigh-
bors. The very low degree in most nodes precluded the spread of con-
tagions with a 1 2, even with p p 0. However, for thresholds of 2/z, the
results were similar to those for the regular lattice in figure 5, except that
the drop-off in cascade frequency is noticeably more gradual. This is
because the activation of large neighborhoods (z 1 100) occasionally allows
cascades to spread through part of the network. However, even when an
activated neighborhood is very large, the bridges between peripheral
neighborhoods must remain intact in order for complex contagions to
spread. The low degree in most neighborhoods means that there are very
few if any redundant ties between neighborhoods, making bridges es-
pecially vulnerable to randomization. Thus, a scale-free network can be
even more sensitive to perturbation than the regular lattices used in figures
3, 4, and 5. For example, with t p 2/z, minimally complex contagions
were almost entirely inhibited above pp.001 (compared to for thep ≈ .1
regular lattice in fig. 5).

More generally, degree heterogeneity can exacerbate the effects of ran-
domization by increasing the exposure of hubs to large numbers of un-
activated nodes. As degree becomes more skewed, the odds become much
higher that a peripheral node will be randomly chosen as the seed. This
might seem to make it more likely that a hub will become activated
because of its greater access to the network. However, it is very difficult
for a single peripheral node to activate a hub when all the other peripherals
are exerting countervailing influence. For example, a manager with larger
numbers of peer contacts may be more likely to hear about an innovation
than a manager with less social capital, but the well-connected manager
will also be exposed to the inertial effects of countervailing pressures by
nonadopters. Hence, the well-connected manager may be faster to hear
about the innovation but slower to adopt it, compared to a socially isolated

21 Scale-free distributions are specified with the slope parameter g, where P(k) p k�g.
g p 2.3 is commonly used for social networks (see Klemm and Eguiluz 2002).
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manager who hears about the innovation from one of a very small number
of peers.

Moreover, even if a hub is already activated, the hub still cannot ac-
tivate peripherals who require social affirmation or reinforcement from
others. Complex contagions can spread on hub-and-spoke structures only
in the special case that hubs can compel activation of the peripheral nodes
without reinforcement. Otherwise, the diffusion of complex contagions
requires wide bridges, even on networks with skewed degree distributions
(Centola et al. 2007). These limited explorations of heterogeneity suggest
that the differences between simple and complex contagions can be even
more pronounced than the differences observed in figures 3, 4, and 5.

DISCUSSION

Granovetter (1973, p. 1366) provided a succinct statement of the strength
of weak ties: “Whatever is to be diffused can reach a larger number of
people, and traverse a greater social distance, when passed through weak
ties rather than strong.” Our results show that it can be very dangerous
to generalize from the spread of information and disease to whatever is
to be diffused. Network topologies that make it easy for everyone to know
about something do not necessarily make it likely that people will change
their behavior. In this section, we point to empirical studies that provide
support for this conclusion. We also consider the implications of our results
for future empirical research and for public policy.

We know of no empirical studies that have directly tested the need for
wide bridges in the spread of complex contagions. The closest is a recent
study (Backstrom et al. 2006) on the influence of friends on the probability
of joining a LiveJournal blogging community. By comparing the influence
of friends scattered across the network with friends concentrated in a
single network neighborhood, the Backstrom et al. study provides an
indirect test of the need for wide bridges in the propagation of complex
contagions. Having friends in a community who are also friends with one
another increases the probability of joining, compared to friends in a
community who do not know one another. This suggests that the growth
of a community depends less on weak ties that span longer social distances
and more on wide bridges, such that “the individual will be supported
by a richer local social structure” (Backstrom et al. 2006, p. 5).

Our theoretical results also provide new insight into the widely observed
tendency for social movements to spread over spatial networks. Beginning
with McAdam’s (1988) seminal study of Freedom Summer, a consistent
finding in social movement research is that participation spreads most
effectively in populations that are spatially clustered, such as ethnic en-
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claves. Hedstrom’s (1994) study of the early labor movement in Sweden
has similar findings, which show that participation spreads locally, from
one residential neighborhood to another. In China, the dormitory housing
arrangements structured social ties in a way that allowed for easy diffusion
of student dissent (Zhao 1998). Similarly, the close quarters of inner-city
settlements in the Paris Commune promoted the emergence of violent
revolts (Gould 1996). Spatial patterns of adoption have also been shown
to describe the diffusion of birth-control technology in Korean villages
(Rogers and Kincaid 1981), and Whyte (1954) argues that the diffusion
of product adoption in Philadelphia followed spatial residential patterns.

Empirical studies have pointed to the relational property of spatial
networks that makes them conducive to social, political, and cultural
diffusion. The relational property is physical proximity, which is needed
for the spread of communicable diseases that require physical or respi-
ratory contact, fashions that require visual contact, and sensitive infor-
mation that requires face-to-face communication. As Hedstrom suggests,
“The closer that two actors are to one another, the more likely they are
to be aware of and to influence each other’s behavior” (Hedstrom 1994,
p. 1163).

Our study reveals a structural property of spatial networks—wide
bridges—that has received far less attention. Complex contagions may
favor spatial networks not only because the ties between nodes are phys-
ically short but also because the bridges between neighborhoods are struc-
turally wide. While spatial proximity can make the connection relationally
strong, it is the width of the bridge that makes the connection structurally
strong for the propagation of complex contagions.22

These results have implications for the effects of different network
topologies on the recruitment to what McAdam (1986) calls high risk/high
cost activism. Macy (1990) has shown that long ties can be useful for
solving coordination dilemmas in collective action when all that is needed
is the transfer of information between group members. However, the
optimal topology for the spread of collective action may depend on the
costs and risks of participation and thus on the relative importance of
information versus social reinforcement in mobilizing action. For students
trying to organize a protest under a totalitarian regime (Zhao 1998), or
for a movement facing state oppression (Opp and Gern 1993; Tilly 1978),
simply having information about a collective action will be insufficient

22 This structural property does not apply to all spatial networks. If neighborhood
boundaries are dictated by the contours of physical space (such as streets, train tracks,
rivers, or mountains), every member of a neighborhood will have the same set of
neighbors; hence neighborhoods will not overlap. By comparing diffusion on spatial
networks with bounded vs. overlapping neighborhoods, future studies can tease apart
the relational effects of physical proximity from the structural effects of wide bridges.
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to convince people to join. Resolving the coordination dilemma then re-
quires multiple contacts who reinforce both the credibility of the infor-
mation and the normative importance of taking action. Thus, consistent
with McAdam (1986), our results show that the optimal networks for
coordinating action will depend upon the costs and risks of participation.

Finally, these results have related implications for public health strat-
egies for preventing the spread of infectious diseases. The long ties that
accelerate the spread of disease are also the channels along which pre-
ventative information can quickly propagate. However, where public
health innovations contravene existing social norms, health reform is likely
to require social reinforcement, not simply access to information (Fried-
man et al. 1993; Latkin 1995; Pulerwitz, Barker, and Segundo 2004). While
word-of-mouth transmission of new ideas may travel as quickly as the
spread of a disease, the information may have little effect in changing
entrenched yet risky behaviors without the social reinforcement provided
by additional contacts (CDC 1997, pp. 3-2). Thus, while public health
organizations may rely on peer networks to relay information about dis-
ease prevention (Friedman et al. 1993), these may not be the best pathways
for effecting behavioral change that requires strong social reinforcement.
Our results suggest that efforts to change behavioral norms through peer
influence may reach greater numbers with greater speed by targeting
tightly knit residential networks rather than the complex networks
through which disease is more rapidly transmitted (like acquaintance or
employment networks).

In sum, these theoretical results are consistent with recent findings on
recruitment to Internet communities and with numerous case studies that
document the importance of spatial diffusion and local recruitment to
social movements. Although our study suggests novel insights into why
diffusion often proceeds through spatial networks, other explanations are
also possible, and new empirical studies are needed to test these alternative
causal mechanisms directly.

In addition, much more work remains to be done to understand fully
the effects of heterogeneity of thresholds, influence, and degree on the
diffusion dynamics of complex contagions. In particular, we emphasize
the need for research that carefully examines what happens as degree
becomes correlated with influence and when there is homophily of degree
and influence. Studies of nonspatial networks are also needed before we
can generalize from the effects observed on lattices. In particular, ran-
domization may promote propagation of complex contagions in sparse
networks with few ties connecting large numbers of small but dense clus-
ters. The present research clearly demonstrates the need for caution in
generalizing the “strength of weak ties” from simple to complex conta-
gions, but also suggests the need for further research on the social and



Complex Contagions

731

structural conditions that allow contagions to spread most effectively as
thresholds increase.

CONCLUSION

The strength of weak ties is that they tend to be long—they connect
socially distant locations. Moreover, only a few long ties are needed to
give large and highly clustered populations the “degrees of separation” of
a random network, in which simple contagions, like disease or infor-
mation, can rapidly diffuse. It is tempting to regard this principle as a
lawful regularity, in part because it justifies generalization from mathe-
matically tractable random graphs to the structured networks that char-
acterize patterns of social interaction. Nevertheless, our research cautions
against uncritical generalization. Using Watts and Strogatz’s original
model of a small world network, we found that long ties do not always
facilitate the spread of complex contagions and can even preclude dif-
fusion entirely if nodes have too few common neighbors to provide mul-
tiple sources of confirmation or reinforcement. While networks with long,
narrow bridges are useful for spreading information about an innovation
or social movement, too much randomness can be inefficient for spreading
the social reinforcement necessary to act on that information, especially
as thresholds increase or connectedness declines.
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