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Abstract

The study of the Web as a graph is not only fascinating in its own right, but also yields valuable insight into Web
algorithms for crawling, searching and community discovery, and the sociological phenomena which characterize its
evolution. We report on experiments on local and global properties of the Web graph using two AltaVista crawls each with
over 200 million pages and 1.5 billion links. Our study indicates that the macroscopic structure of the Web is considerably
more intricate than suggested by earlier experiments on a smaller scale.  2000 Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

Consider the directed graph whose nodes corre-
spond to static pages on the Web, and whose arcs
correspond to links between these pages. We study
various properties of this graph including its diame-
ter, degree distributions, connected components, and
macroscopic structure. There are several reasons for
developing an understanding of this graph.
(1) Designing crawl strategies on the Web [15].
(2) Understanding of the sociology of content cre-

ation on the Web.
(3) Analyzing the behavior of Web algorithms that

make use of link information [9–11,20,26]. To
take just one example, what can be said of the
distribution and evolution of PageRank [9] val-
ues on graphs like the Web?
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(4) Predicting the evolution of Web structures such
as bipartite cores [21] and Webrings, and de-
veloping better algorithms for discovering and
organizing them.

(5) Predicting the emergence of important new phe-
nomena in the Web graph.

We detail a number of experiments on a Web
crawl of approximately 200 million pages and 1.5
billion links; the scale of this experiment is thus five
times larger than the previous biggest study [21] of
structural properties of the Web graph, which used
a pruned data set from 1997 containing about 40
million pages. Recent work ([21] on the 1997 crawl,
and [5] on the approximately 325 thousand node
nd.edu subset of the Web) has suggested that the
distribution of degrees (especially in-degrees, i.e.,
the number of links to a page) follows a power law.

The power law for in-degree: the probability
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that a node has in-degree i is proportional to 1=i x ,
for some x > 1.

We verify the power law phenomenon in current
(considerably larger) Web crawls, confirming it as a
basic Web property.

In other recent work, [4] report the intriguing
finding that most pairs of pages on the Web are
separated by a handful of links, almost always under
20, and suggest that this number will grow logarith-
mically with the size of the Web. This is viewed by
some as a ‘small world’ phenomenon. Our experi-
mental evidence reveals a rather more detailed and
subtle picture: most ordered pairs of pages cannot be
bridged at all and there are significant numbers of
pairs that can be bridged, but only using paths going
through hundreds of intermediate pages. Thus, the
Web is not the ball of highly connected spaghetti we
believed it to be; rather, the connectivity is strongly
limited by a high-level global structure.

1.1. Our main results

We performed three sets of experiments on Web
crawls from May 1999 and October 1999. Unless
otherwise stated, all results described below are for
the May 1999 crawl, but all conclusions have been
validated for the October 1999 crawl as well. First,
we generated the in- and out-degree distributions,
confirming previous reports on power laws; for in-
stance, the fraction of Web pages with i in-links
is proportional to 1=i2:1. The constant 2.1 is in re-
markable agreement with earlier studies at varying
scales [5,21]. In our second set of experiments we
studied the directed and undirected connected com-
ponents of the Web. We show that power laws also
arise in the distribution of sizes of these connected
components. Finally, in our third set of experiments,
we performed a number of breadth-first searches
from randomly chosen start nodes. We detail these
experiments in Section 2.

Our analysis reveals an interesting picture (Fig. 9)
of the Web’s macroscopic structure. Most (over 90%)
of the approximately 203 million nodes in our May
1999 crawl form a single connected component if
links are treated as undirected edges. This connected
Web breaks naturally into four pieces. The first piece
is a central core, all of whose pages can reach

one another along directed links; this ‘giant strongly
connected component’ (SCC) is at the heart of the
Web. The second and third pieces are called IN and
OUT. IN consists of pages that can reach the SCC,
but cannot be reached from it; possibly new sites
that people have not yet discovered and linked to.
OUT consists of pages that are accessible from the
SCC, but do not link back to it, such as corporate
Websites that contain only internal links. Finally, the
TENDRILS contain pages that cannot reach the SCC,
and cannot be reached from the SCC. Perhaps the
most surprising fact is that the size of the SCC is
relatively small; it comprises about 56 million pages.
Each of the other three sets contain about 44 million
pages, thus, all four sets have roughly the same
size.

We show that the diameter of the central core
(SCC) is at least 28, and that the diameter of the
graph as a whole is over 500 (see Section 1.3 for
definitions of diameter). We show that for randomly
chosen source and destination pages, the probability
that any path exists from the source to the destination
is only 24%. We also show that, if a directed path ex-
ists, its average length will be about 16. Likewise, if
an undirected path exists (i.e., links can be followed
forwards or backwards), its average length will be
about 6. These analyses appear in the Section 3.
These results are remarkably consistent across two
different, large AltaVista crawls. This suggests that
our results are relatively insensitive to the particular
crawl we use, provided it is large enough. We will
say more about crawl effects in Section 3.4.

In a sense the Web is much like a complicated or-
ganism, in which the local structure at a microscopic
scale looks very regular like a biological cell, but the
global structure exhibits interesting morphological
structure (body and limbs) that are not obviously ev-
ident in the local structure. Therefore, while it might
be tempting to draw conclusions about the structure
of the Web graph from a local picture of it, such
conclusions may be misleading.

1.2. Related prior work

Broadly speaking, related prior work can be clas-
sified into two groups: (1) observations of the power
law distributions on the Web; and (2) work on apply-
ing graph theoretic methods to the Web.
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1.2.1. Zipf–Pareto–Yule and power laws
Distributions with an inverse polynomial tail have

been observed in a number of contexts. The earliest
observations are due to Pareto [27] in the context
of economic models. Subsequently, these statistical
behaviors have been observed in the context of lit-
erary vocabulary [32], sociological models [33], and
even oligonucleotide sequences [24] among others.
Our focus is on the closely related power law dis-
tributions, defined on the positive integers, with the
probability of the value i being proportional to 1=i k

for a small positive number k. Perhaps the first rig-
orous effort to define and analyze a model for power
law distributions is due to Simon [30].

More recently, power law distributions have been
observed in various aspects of the Web. Two lines
of work are of particular interest to us. First, power
laws have been found to characterize user behavior
on the Web in two related but dual forms:
(1) access statistics for Web pages, which can be

easily obtained from server logs (but for caching
effects); see [1,2,17,19];

(2) numbers of times users at a single site access
particular pages, as verified by instrumenting
and inspecting logs from Web caches, proxies,
and clients (see [6] and references therein, as
well as [23]).

Second, and more relevant to our immediate con-
text, is the distribution of degrees on the Web graph.
In this context, recent work (see [5,21]) suggests that
both the in- and the out-degrees of vertices on the
Web graph have power laws. The difference in scope
in these two experiments is noteworthy. The first [21]
examines a Web crawl from 1997 due to Alexa, Inc.,
with a total of over 40 million nodes. The second [5],
examines Web pages from the University of Notre
Dame domain, *.nd.edu, as well as a portion of the
Web reachable from three other URLs. In this paper,
we verify these power laws on more recent (and
considerably larger) Web crawls. This collection of
findings reveals an almost fractal-like quality for the
power law in-degree and out-degree distributions, in
that it appears both as a macroscopic phenomenon
on the entire Web, as a microscopic phenomenon
at the level of a single university Website, and at
intermediate levels between these two.

There is no evidence that users’ browsing behav-
ior, access statistics and the linkage statistics on the

Web graph are related in any fundamental way, al-
though it is very tempting to conjecture that this is
indeed the case. It is usually the case, though not
always so, that pages with high in-degree will also
have high PageRank [9]. Indeed, one way of viewing
PageRank is that it puts a number on how easy (or
difficult) it is to find particular pages by a brows-
ing-like activity. Consequently, it is plausible that the
in-degree distributions induce a similar distribution
on browsing activity and consequently, on access
statistics.

Faloutsos et al. [16] observe Zipf–Pareto distribu-
tions (power law distributions on the ranks of values)
on the Internet network topology using a graph of
the network obtained from the routing tables of a
backbone BGP router.

1.2.2. Graph theoretic methods
Much recent work has addressed the Web as a

graph and applied algorithmic methods from graph
theory in addressing a slew of search, retrieval, and
mining problems on the Web. The efficacy of these
methods was already evident even in early local ex-
pansion techniques [10]. Since then, the increasing
sophistication of the techniques used, the incorpora-
tion of graph theoretical methods with both classical
and new methods which examine context and con-
tent, and richer browsing paradigms have enhanced
and validated the study and use of such methods. Fol-
lowing Butafogo and Schneiderman [10], the view
that connected and strongly connected components
represent meaningful entities has become accepted.
Pirolli et al. [28] augment graph theoretic analysis to
include document content, as well as usage statistics,
resulting in a rich understanding of domain structure
and a taxonomy of roles played by Web pages.

Graph theoretic methods have been used for
search [8,9,12,13,20], browsing and information for-
aging [10,11,14,28,29], and Web mining [21,22,25,
26]. We expect that a better structural characteriza-
tion of the Web will have much to say in each of
these contexts.

In this section we formalize our view of the Web as
a graph; in this view we ignore the text and other con-
tent in pages, focusing instead on the links between
pages. Adopting the terminology of graph theory [18],
we refer to pages as nodes, and to links as arcs. In this
framework, the Web becomes a large graph contain-



312 A. Broder et al. / Computer Networks 33 (2000) 309–320

ing several hundred million nodes, and a few billion
arcs. We will refer to this graph as the Web graph,
and our goal in this paper is to understand some of its
properties. Before presenting our model for Web-like
graphs, we begin with a brief primer on graph theory,
and a discussion of graph models in general.

1.3. A brief primer on graphs and terminology

The reader familiar with basic notions from graph
theory may skip this primer.

A directed graph consists of a set of nodes, de-
noted V and a set of arcs, denoted E . Each arc is an
ordered pair of nodes (u; v) representing a directed
connection from u to v. The out-degree of a node u
is the number of distinct arcs .u; v1/: : :.u; vk/ (i.e.,
the number of links from u), and the in-degree is
the number of distinct arcs .v1; u/: : :.vk; u/ (i.e., the
number of links to u). A path from node u to node
v is a sequence of arcs .u; u1/; .u1; u2/; : : :.uk; v/.
One can follow such a sequence of arcs to ‘walk’
through the graph from u to v. Note that a path
from u to v does not imply a path from v to u. The
distance from u to v is one more than the smallest
k for which such a path exists. If no path exists, the
distance from u to v is defined to be infinity. If (u; v)
is an arc, then the distance from u to v is 1.

Given a directed graph, a strongly connected com-
ponent (strong component for brevity) of this graph
is a set of nodes such that for any pair of nodes u and
v in the set there is a path from u to v. In general, a
directed graph may have one or many strong compo-
nents. The strong components of a graph consist of
disjoint sets of nodes. One focus of our studies will
be in understanding the distribution of the sizes of
strong components on the Web graph.

An undirected graph consists of a set of nodes
and a set of edges, each of which is an unordered
pair fu; vg of nodes. In our context, we say there is
an edge between u and v if there is a link between
u and v, without regard to whether the link points
from u to v or the other way around. The degree of a
node u is the number of edges incident to u. A path
is defined as for directed graphs, except that now the
existence of a path from u to v implies a path from
v to u. A component of an undirected graph is a set
of nodes such that for any pair of nodes u and v in
the set there is a path from u to v. We refer to the

components of the undirected graph obtained from a
directed graph by ignoring the directions of its arcs
as the weak components of the directed graph. Thus
two nodes on the Web may be in the same weak
component even though there is no directed path
between them (consider, for instance, a node u that
points to two other nodes v and w; then v and w are
in the same weak component even though there may
be no sequence of links leading from v to w or vice
versa). The interplay of strong and weak components
on the (directed) Web graph turns out to reveal some
unexpected properties of the Web’s connectivity.

A breadth-first search (BFS) on a directed graph
begins at a node u of the graph, and proceeds to
build up the set of nodes reachable from u in a
series of layers. Layer 1 consists of all nodes that are
pointed to by an arc from u. Layer k consists of all
nodes to which there is an arc from some vertex in
layer k � 1, but are not in any earlier layer. Notice
that by definition, layers are disjoint. The distance of
any node from u can be read out of the breadth-first
search. The shortest path from u to v is the index of
the layer v belongs in, i.e., if there is such a layer.
On the other hand, note that a node that cannot be
reached from u does not belong in any layer, and
thus we define the distance to be infinity. A BFS on
an undirected graph is defined analogously.

Finally, we must take a moment to describe the
exact notions of diameter we study, since several
have been discussed informally in the context of
the Web. Traditionally, the diameter of a graph,
directed or undirected, is the maximum over all or-
dered pairs (u; v) of the shortest path from u to v.
Some researchers have proposed studying the aver-
age distance of a graph, defined to be the length
of the shortest path from u to v, averaged over all
ordered pairs (u; v); this is referred to as diameter
in [4]. The difficulty with this notion is that even a
single pair (u; v) with no path from u to v results
in an infinite average distance. In fact, as we show
from our experiments below, the Web is rife with
such pairs (thus it is not merely a matter of discard-
ing a few outliers before taking this average). This
motivates the following revised definition: let P be
the set of all ordered pairs (u; v) such that there is
a path from u to v. The average connected distance
is the expected length of the shortest path, where the
expectation is over uniform choices from P .
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2. Experiments and results

2.1. Infrastructure

All experiments were run using the Connectivity
Server 2 (CS2) software built at Compaq Systems
Research Center using data provided by AltaVista.
CS2 provides fast access to linkage information on
the Web. A build of CS2 takes a Web crawl as input
and creates a representation of the entire Web graph
induced by the pages in the crawl, in the form of a
database that consists of all URLs that were crawled
together with all in-links and out-links among those
URLs. In addition, the graph is extended with those
URLs referenced at least five times by the crawled
pages. (Experimentally, we have determined that the
vast majority of URLs encountered fewer than five
times but not crawled turn out to be invalid URLs.)

CS2 improves on the original connectivity server
(CS1) described in [7] in two important ways. First,
it significantly increases the compression of the
URLs and the links to data structures. In CS1, each
compressed URL is, on average, 16 bytes. In CS2,
each URL is stored in 10 bytes. In CS1, each link
requires 8 bytes to store as both an in-link and out-
link; in CS2, an average of only 3.4 bytes are used.
Second, CS2 provides additional functionality in the
form of a host database. For example, in CS2, it is
easy to get all the in-links for a given node, or just
the in-links from remote hosts.

Like CS1, CS2 is designed to give high-perfor-
mance access to all this data on a high-end machine
with enough RAM to store the database in memory.
On a 465 MHz Compaq AlphaServer 4100 with 12
GB of RAM, it takes 70–80 µs to convert an URL
into an internal id or vice versa, and then only 0.15
µs=link to retrieve each in-link or out-link. On a
uniprocessor machine, a BFS that reaches 100 mil-
lion nodes takes about 4 minutes; on a 2-processor
machine we were able complete a BFS every 2
minutes.

In the experiments reported in this paper, CS2 was
built from a crawl performed at AltaVista in May,
1999. The CS2 database contains 203 million URLs
and 1466 million links (all of which fit in 9.5 GB of
storage). Some of our experiments were repeated on
a more recent crawl from October, 1999 containing
271 million URLs and 2130 million links.

In general, the AltaVista crawl is based on a
large set of starting points accumulated over time
from various sources, including voluntary submis-
sions. The crawl proceeds in roughly a BFS manner,
but is subject to various rules designed to avoid
overloading Web servers, avoid robot traps (artificial
infinite paths), avoid and=or detect spam (page flood-
ing), deal with connection time outs, etc. Each build
of the AltaVista index is based on the crawl data
after further filtering and processing designed to re-
move duplicates and near duplicates, eliminate spam
pages, etc. Then the index evolves continuously as
various processes delete dead links, add new pages,
update pages, etc. The secondary filtering and the
later deletions and additions are not reflected in the
connectivity server. But overall, CS2’s database can
be viewed as a superset of all pages stored in the
index at one point in time. Note that due to the mul-
tiple starting points, it is possible for the resulting
graph to have many connected components.

2.2. Experimental data

The following basic algorithms were implemented
using CS2: (1) a BFS algorithm that performs a
breadth-first traversal; (2) a WCC algorithm that
finds the weak components; and (3) an SCC algo-
rithm that finds the strongly connected components.
Recall that both WCC and SCC are simple gener-
alizations of the BFS algorithm. Using these three
basic algorithms, we ran several interesting experi-
ments on the Web graph.

2.2.1. Degree distributions
The first experiment we ran was to verify earlier

observations that the in- and out-degree distributions
on the Web are distributed according to power laws.
We ran the experiment on both the May and October
crawls of the Web. The results, shown in Figs. 1 and
3, show remarkable agreement with each other, and
with similar experiments from data that is over two
years old [21]. Indeed, in the case of in-degree, the
exponent of the power law is consistently around 2.1,
a number reported in [5,21]. The anomalous bump at
120 on the x-axis is due to a large clique formed by
a single spammer. In all our log–log plots, straight
lines are linear regressions for the best power law
fit.
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Fig. 1. In-degree distributions subscribe to the power law. The
law also holds if only off-site (or ‘remote-only’) edges are
considered.

Fig. 2. Out-degree distributions subscribe to the power law.
The law also holds if only off-site (or ‘remote-only’) edges are
considered.

Out-degree distributions also exhibit a power law,
although the exponent is 2.72, as can be seen in
Figs. 2 and 4. It is interesting to note that the ini-
tial segment of the out-degree distribution deviates
significantly from the power law, suggesting that
pages with low out-degree follow a different (possi-
bly Poisson or a combination of Poisson and power
law, as suggested by the concavity of the deviation)
distribution. Further research is needed to understand
this combination better.

Fig. 3. In-degree distributions show a remarkable similarity over
two crawls, run in May and October 1999. Each crawl counts
well over 1 billion distinct edges of the Web graph.

Fig. 4. Out-degree distributions show a remarkable similarity
over two crawls, run in May and October 1999. Each crawl
counts well over 1 billion distinct edges of the Web graph.

2.2.2. Undirected connected components
In the next set of experiments we treat the Web

graph as an undirected graph and find the sizes of the
undirected components. We find a giant component
of 186 million nodes in which fully 91% of the
nodes in our crawl are reachable from one another
by following either forward or backward links. This
is done by running the WCC algorithm which simply
finds all connected components in the undirected
Web graph. Thus, if one could browse along both



A. Broder et al. / Computer Networks 33 (2000) 309–320 315

Fig. 5. Distribution of weakly connected components on the
Web. The sizes of these components also follow a power law.

forward and backward directed links, the Web is a
very well connected graph. Surprisingly, even the
distribution of the sizes of WCCs exhibits a power
law with exponent roughly 2.5 (Fig. 5).

Does this widespread connectivity result from a
few nodes of large in-degree acting as ‘junctions’?
Surprisingly, this turns out not to be the case. In-
deed, even if all links to pages with in-degree 5
or higher are removed (certainly including links to
every well-known page on the Web), the graph still
contains a giant weak component of size 59 million
(see Table 1). This provides us with two interesting
and useful insights. First, the connectivity of the Web
graph as an undirected graph is extremely resilient
and does not depend on the existence of nodes of
high in-degree. Second, such nodes, which are very
useful and tend to include nodes with high PageRank
or nodes that are considered good hubs and authori-
ties, are embedded in a graph that is well connected
without them. This last fact may help understand
why algorithms such as HITS [20] converge quickly.

Table 1
Size of the largest surviving weak component when links to
pages with in-degree at least k are removed from the graph.

k 1000 100 10 5 4 3

Size (millions) 177 167 105 59 41 15

Fig. 6. Distribution of strongly connected components on the
Web. The sizes of these components also follow a power law.

2.2.3. Strongly connected components
Motivated in part by the intriguing prediction of

[4] that the average distance (referred to in their
paper as diameter) of the Web is 19 (and thus it
should be possible to get from any page to any
other in a small number of clicks), we turned to
the strongly connected components of the Web as a
directed graph. By running the strongly connected
component algorithm, we find that there is a single
large SCC consisting of about 56 million pages,
all other components are significantly smaller in
size. This amounts to barely 28% of all the pages
in our crawl. One may now ask: where have all
the other pages gone? The answer to this question
reveals some fascinating detailed structure in the
Web graph; to expose this and to further study the
issues of the diameter and average distance, we
conducted a further series of experiments. Note that
the distribution of the sizes of SCCs also obeys a
power law (Fig. 6).

2.2.4. Random-start BFS
We ran the BFS algorithm twice from each of

570 randomly chosen starting nodes: once in the
forward direction, following arcs of the Web graph
as a browser would, and once backward following
links in the reverse direction. Each of these BFS
traversals (whether forward or backward) exhibited
a sharp bimodal behavior: it would either ‘die out’
after reaching a small set of nodes (90% of the time
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this set has fewer than 90 nodes; in extreme cases it
has a few hundred thousand), or it would ‘explode’
to cover about 100 million nodes (but never the
entire 186 million). Further, for a fraction of the
starting nodes, both the forward and the backward
BFS runs would ‘explode’, each covering about 100
million nodes (though not the same 100 million in
the two runs). As we show below, these are the
starting points that lie in the SCC.

The cumulative distributions of the nodes covered
in these BFS runs are summarized in Fig. 7. They re-
veal that the true structure of the Web graph must be
somewhat subtler than a ‘small world’ phenomenon
in which a browser can pass from any Web page
to any other with a few clicks. We explicate this
structure in Section 3.

2.2.5. Zipf distributions vs power law distributions
The Zipf distribution is an inverse polynomial

function of ranks rather than magnitudes; for exam-
ple, if only in-degrees 1, 4, and 5 occurred then a
power law would be inversely polynomial in those
values, whereas a Zipf distribution would be in-
versely polynomial in the ranks of those values: i.e.,
inversely polynomial in 1, 2, and 3. The in-degree
distribution in our data shows a striking fit with a
Zipf (more so than the power law) distribution; Fig. 8
shows the in-degrees of pages from the May 1999
crawl plotted against both ranks and magnitudes
(corresponding to the Zipf and power law cases).
The plot against ranks is virtually a straight line in
the log–log plot, without the flare-out noticeable in
the plot against magnitudes.

3. Interpretation and further work

Let us now put together the results of the connected
component experiments with the results of the ran-
dom-start BFS experiments. Given that the set SCC

Fig. 7. Cumulative distribution on the number of nodes reached
when BFS is started from a random node: (a) follows in-links, (b)
follows out-links, and (c) follows both in- and out-links. Notice
that there are two distinct regions of growth, one at the beginning
and an ‘explosion’ in 50% of the start nodes in the case of in-
and out-links, and for 90% of the nodes in the undirected case.
These experiments form the basis of our structural analysis.

contains only 56 million of the 186 million nodes in
our giant weak component, we use the BFS runs to
estimate the positions of the remaining nodes. The
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Fig. 8. In-degree distributions plotted as a power law and as a
Zipf distribution.

starting points for which the forward BFS ‘explodes’
are either in SCC, or in a set we call IN, that has
the following property: there is a directed path from
each node of IN to (all the nodes of) SCC. Symmetri-
cally, there is a set we call OUT containing all starting
points for which the backward BFS ‘explodes’; there
is a directed path from any node in the SCC to every
node in OUT. Thus a forward BFS from any node in
either the SCC or IN will explode, as will a backward
BFS from any node in either the SCC or OUT. By an-
alyzing forward and backward BFS from 570 random
starting points, we can compute the number of nodes
that are in SCC, IN, OUT or none of these. Fig. 9
shows the situation as we can now infer it.

We now give a more detailed description of the
structure in Fig. 9. The sizes of the various compo-
nents are as follows:

Region SCC IN OUT

Size 56,463,993 43,343,168 43,166,185

Region TENDRILS DISC. Total

Size 43,797,944 16,777,756 203,549,046

These sizes were determined as follows. We know
the total number of nodes in our crawl, so by sub-
tracting the size of the giant weak component we
determine the size of DISCONNECTED. Then our
strong-component algorithm gives us the size of

SCC. We turn to our breadth-first search data. As
noted, searching from a particular start node follow-
ing a particular type of edges (in-edges or out-edges)
would either terminate quickly, or grow the search
to about 100 million nodes. We say that a node
explodes if it falls into the latter group. Thus, if a
node explodes following in-links, and also explodes
following out-links, it must be a member of a strong
component of size at least 100 C 100 � 186 D 14
million. Since the second largest strong component
is of size 150 thousand, we infer that SCC is the
unique strong component that contains all nodes ex-
ploding following in- as well as out-links. In fact,
this observation contains two corroborating pieces of
evidence for the structure in the table above: first, it
turns out that the fraction of our randomly chosen
BFS start nodes that explode under in- and out-links
is the same as the fraction of nodes in the SCC as
returned by our SCC algorithm. Second, every BFS
start node in the SCC reaches exactly the same num-
ber of nodes under in-link expansion; this number is
99,807,161. Likewise, under out-link expansion ev-
ery node of SCC reaches exactly 99,630,178 nodes.

Thus, we know that SCC C IN D 99,807,161,
and similarly SCC C OUT D 99,630,178. Having
already found the size of SCC, we can solve for IN
and OUT. Finally, since we know the size of the
giant weak component, we can subtract SCC, IN,
and OUT to get TENDRILS. We now discuss each
region in turn.

3.1. TENDRILS and DISCONNECTED

We had 172 samples from TENDRILS and DIS-
CONNECTED; our BFS measurements cannot be
used to differentiate between these two regions. By
following out-links from a start point in this region,
we encounter an average of 20 nodes before the ex-
ploration stops. Likewise, by following in-links we
encounter an average of 52 nodes.

3.2. IN and OUT

Our sample contains 128 nodes from IN and 134
from OUT. We ask: when following out-links from
nodes in OUT, or in-links from nodes in IN, how many
nodes do we encounter before the BFS terminates?
That is, how large a neighborhood do points in these
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Fig. 9. Connectivity of the Web: one can pass from any node of IN through SCC to any node of OUT. Hanging off IN and OUT are
TENDRILS containing nodes that are reachable from portions of IN, or that can reach portions of OUT, without passage through SCC. It
is possible for a TENDRIL hanging off from IN to be hooked into a TENDRIL leading into OUT, forming a TUBE: i.e., a passage from
a portion of IN to a portion of OUT without touching SCC.

regions have, if we explore in the direction ‘away’
from the center? The results are shown below in the
row labeled ‘exploring outward – all nodes’.

Similarly, we know that if we explore in-links
from a node in OUT, or out-links from a node in
IN, we will encounter about 100 million other nodes
in the BFS. Nonetheless, it is reasonable to ask:
how many other nodes will we encounter? That is,
starting from OUT (or IN), and following in-links
(or out-links), how many nodes of TENDRILS and
OUT (or IN) will we encounter? The results are
shown below in the row labeled ‘exploring inwards
– unexpected nodes’. Note that the numbers in the
table represent averages over our sample nodes.

Starting point OUT IN

Exploring outwards – all nodes 3093 171
Exploring inwards – unexpected nodes 3367 173

As the table shows, OUT tends to encounter larger

neighborhoods. For example, the second largest
strong component in the graph has size approxi-
mately 150 thousand, and two nodes of OUT en-
counter neighborhoods a few nodes larger than this,
suggesting that this component lies within OUT. In
fact, considering that (for instance) almost every cor-
porate Website not appearing in SCC will appear in
OUT, it is no surprise that the neighborhood sizes
are larger.

3.3. SCC

Our sample contains 136 nodes from the SCC.
To determine other properties of SCC, we require
a useful property of IN and OUT: each contains a
few long paths such that, once the BFS proceeds
beyond a certain depth, only a few paths are being
explored, and the last path is much longer than any
of the others. We can therefore explore the radius
at which the BFS completes, confident that the last
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long path will be the same no matter which node of
SCC we start from. The following table shows the
depth at which the BFS terminates in each direction
(following in-links or out-links) for nodes in the
SCC.

Measure Minimum depth Average depth Maximum depth

In-links 475 482 503
Out-links 430 434 444

As the table shows, from some nodes in the SCC
it is possible to complete the search at distance 475,
while from other nodes distance 503 is required. This
allows us to conclude that the directed diameter of
SCC is at least 28.

3.4. Other observations

As noted above, the (min, average, max) depths
at which the BFS from SCC terminates following in-
links are (475, 482, 503). For IN, we can perform the
same analysis, and the values are: (476, 482, 495).
These values, especially the average, are so similar
that nodes of IN appear to be quite close to SCC.

Likewise, for SCC the (min, average, max) depths
for termination under out-links are (430, 434, 444).
For OUT, the values are (430, 434, 444).

Now, consider the probability that an ordered
pair (u; v) has a path from u to v. By noting that
the average in-size of nodes in IN is very small
(171) and likewise the average out-size of nodes in
OUT is very small (3093), the pair has a path with
non-negligible probability if and only if u is in SCC
C IN, and v is in SCC C OUT. The probability of
this event for node pairs drawn uniformly from our
crawl is only 24%; for node pairs drawn from the
weak component it is only 28%. This leads to the
somewhat surprising conclusion that, given a random
start and finish page on the Web, one can get from
the start page to the finish page by traversing links
barely a quarter of the time.

The structure that is now unfolding tells us that it
is relatively insensitive to the particular large crawl
we use. For instance, if AltaVista’s crawler fails
to include some links whose inclusion would add
one of the tendrils to the SCC, we know that the
resulting change in the sizes of SCC and TENDRIL
will be small (since any individual tendril is small).

Likewise, our experiments in which we found that
large components survived the deletion of nodes of
large in-degree show that the connectivity of the Web
is resilient to the removal of significant portions.

3.5. Diameter and average connected distance

As we discussed above, the directed diameter of
the SCC is at least 28. Likewise, the maximum
finite shortest path length is at least 503, but is
probably substantially more than this: unless a short
tube connects the most distant page of IN to the
most distant page of OUT without passing through
the SCC, the maximum finite shortest path length is
likely to be close to 475 C 430 D 905.

We can estimate the average connected distance
using our 570 BFS start points, under both in-links
and out-links. The values are shown below; the col-
umn headed ‘Undirected’ corresponds to the average
undirected distance.

Edge type In-links Out-links Undirected
(directed) (directed)

Average connected 16.12 16.18 6.83
distance

These results are in interesting contrast to those
of [4], who predict an average distance of 19 for the
Web based on their crawl of the nd.edu site; it is
unclear whether their calculations consider directed
or undirected distances. Our results on the other
hand show that over 75% of time there is no directed
path from a random start node to a random finish
node; when there is a path, the figure is roughly 16.
However, if links can be traversed in either direction,
the distance between random pairs of nodes can be
much smaller, around 7, on average.

4. Further work

Further work can be divided into three broad
classes.
(1) More experiments aimed at exposing further de-

tails of the structures of SCC, IN, OUT, and
the TENDRILS. Would this basic structure, and
the relative fractions of the components, remain
stable over time?
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(2) Mathematical models for evolving graphs, moti-
vated in part by the structure of the Web; in addi-
tion, one may consider the applicability of such
models to other large directed graphs such as the
phone-call graph, purchase=transaction graphs,
etc. [3].

(3) What notions of connectivity (besides weak and
strong) might be appropriate for the Web graph?
For instance, what is the structure of the undi-
rected graph induced by the co-citation relation
or by bibliographic coupling [31].
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