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Abstract—This paper focuses on a generalization of
stochastic Kronecker graphs, introducing a Kronecker-like
operator and defining a family of generator matrices H

dependent on distances between nodes in a specified graph
embedding. We prove that any lattice-based network model
with sufficiently small distance-dependent connection prob-
ability will have a Poisson degree distribution and provide
a general framework to prove searchability for such a net-
work. Using this framework, we focus on a specific example
of an expanding hypercube and discuss the similarities and
differences of such a model with recently proposed network
models based on a hidden metric space. We also prove that
a greedy forwarding algorithm can find very short paths
of length O((log log n)2) on the hypercube with n nodes,
demonstrating that distance-dependent Kronecker graphs
can generate searchable network models. EDICS: OTH-
EMRG, SEN-APPL, SPC-APPL

I. I NTRODUCTION

Beginning with the simple Erd̈os-Ŕenyi model of
random networks [1], network science has attempted
to capture the key characteristics of complex networks
such as power networks, the Internet, protein interaction
networks, and social networks with a simple, mathe-
matically tractable model.1 Social networks in particular
have generated much interest due to the consistency of
their characteristics. These networks tend to exhibit small
diameter, high clustering, scale-free degree distributions,
and perhaps most importantly, they are searchable by a
local greedy algorithm; see [3], [4], and [5] for thorough
surveys of this area.

The Erd̈os-Ŕenyi random graph maintains a small
diameter but fails to capture many of the other key
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1A preliminary version of many of the results of this paper first
appeared in [2]

properties [6], [1]. The combination of small diam-
eter and high clustering is often called the “small-
world effect,” and Watts and Strogatz (see section III)
generated much interest when they proposed a model
that maintains these two characteristics simultaneously
[7]. Several models were then proposed to explain the
heavy-tailed degree distributions and densification of
complex networks; these include the preferential at-
tachment model [8], the forest-fire model [9], [10],
Kronecker graphs [11], [12], and many others [3]. As
demonstrated by Milgram’s 1967 experiment using real
people, individuals can discover and use short paths
using only local information [13]. Kleinberg focuses on
this searchability characteristic in his lattice model and
proves searchability for a precise set of input parameters,
but his model lacks any heavy-tailed distributions [14],
[5], [15]. The Kronecker graphs described in [11], [12],
and [16] are simple to generate, mathematically tractable,
and have been shown to exhibit several important social
network characteristics such as heavy-tailed degree and
eigen-distributions, high clustering, small diameter, and
network densification. However, Kronecker graphs are
not searchable by a distributed greedy algorithm [16].

In this paper, we extend the model proposed in [2],
a generalization of stochastic Kronecker graphs that
can generate searchable networks. Instead of using the
traditional Kronecker operation, we introduce a new
“Kronecker-like” operation and a family of generator
matrices, H, both dependent upon the distance be-
tween two nodes. This new generation method yields
networks that have both a local (lattice-based) and global
(distance-dependent) structure. This dual structure is
what allows a greedy algorithm to search the network
using only local information. Additionally, the networks
generated have a high clustering (due to the lattice
structure) and a small diameter (due to the addition of
long-range links).

As part of the analysis of this new model, we provide a
general framework for analyzing degree distributions and
the performance of greedy search algorithms on a general
lattice-based network. We use this framework to study
one example in detail: an expanding hypercube with
distance-dependent long-range connections. We give an
explicit description of its degree distribution, the circum-
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stances under which it will be searchable by a local
greedy algorithm, and a lower bound on its diameter.
We support our findings with simulations. This example
is chosen because it mimics the defining feature of tree
metrics and hyperbolic space – exponentially expanding
neighborhoods – which are thought to be representative
of both the Internet and social networks [17], [18],
[19], [20]. Exponentially expanding neighborhoods lead
to very small diameters (O(log logn) as opposed to
O(log n)) and we can show that, as in [21], a local
greedy algorithm on the hypercube will find ultra-short
paths,O((log logn)2).

This paper is organized as follows. Section II briefly
defines some key concepts frequently used in social
network literature. Section III describes in detail our
model and its relation to the original Kronecker graph
model and other traditional models. Section IV explores
the connection between a Kleinberg-like expanding hy-
percube example and the hidden metric space models
proposed in [17]. Section V describes a general analysis
of degree distributions for lattice-based networks and
gives a theorem showing that all such networks will have
a Poisson degree distribution provided thatP (d) is suf-
ficiently small, and gives the relevant degree distribution
for the expanding hypercube example. Section VI gives a
general framework for proving searchability of a lattice-
based distance-dependent network model and recovers
the searchability result of [14] and finally proves that the
expanding hypercube is in fact searchable. Section VII
explores the diameter of the expanding hypercube ex-
ample and Section VIII concludes with proposed future
work. The appendices support the proof of searchability
for the expanding hypercube example in Section VI.

II. PRELIMINARIES

Before continuing further, it will be useful to de-
fine several terms commonly used in social network
literature. A social network is represented by a graph
G = (V,E), whereV andE are the sets of vertices and
edges, respectively. There is one vertex for each agent,
or person, in the network, and the edges represent the
relationships between individuals. These relationships
can be summarized in an adjacency matrixA where

Aij =

{

1 if nodesi andj are connected

0 otherwise.

We note that while we will be working with undirected
and unweighted graphs, in general, the edges in an
adjacency matrix representing a social network can be
both directed and weighted, showing the direction and
the values of different relationships. Theneighborhood
Ni of a nodei is defined as the set of its immediately
connected neighbors. Thedegreeki of a node is de-
fined as the size of its neighborhood. We define the

geodesicbetween two nodesu and v as the shortest
path connecting them. Thediameterof a network, for
our purposes, is the length of the maximum geodesic
for that network. Note that in some cases, what is meant
by diameter is the average of all geodesics; however, for
this paper we focus on the maximum. In social and most
complex networks, the diameter of the network grows
logarithmically with the number of nodes int the network
[7], [22]. Another useful and commonly used term is
clustering, which measures the amount of community
structure present in a network. For an individual node,
we define aclustering coefficientCi where

Ci =
2 | {ejk} |
ki(ki − 1)

: vj , vk ∈ Ni, ejk ∈ E

The clustering coefficient for the entire graph is then the
average of the clustering coefficients over alln nodes
[7].

C̄ =
1

n

n∑

i=1

Ci

Finally, we call a networksearchableif a distributed
search algorithm can find paths through the network
of length on the order of the diameter. For example,
in Kleinberg’s lattice model, a network has diameter
O(log n), and is called searchable if a distributed algo-
rithm can find paths of lengthO((log n)2) [14]. For more
details on the distributed search algorithm, see section
VI.

III. D ISTANCE-DEPENDENTKRONECKER GRAPHS

In this section we describe the original formulation
of stochastic Kronecker graphs as well as our new
“distance”-dependent extension of the model. We then
present a few examples illustrating how to generate
existing network models using the “distance”-dependent
Kronecker graph.

A. Stochastic Kronecker Graphs

Stochastic Kronecker graphs2 are generated by recur-
sively using a standard matrix operation, the Kronecker
product [11]. Beginning with an initiator probability
matrix P1, with N1 nodes, where the entriespij denote
the probability that edge(i, j) is present, successively
larger graphsP2, . . . , Pn are generated such that thekth

graphPk hasNk = Nk
1 nodes. The Kronecker product

is used to generate each successive graph.
Definition 3.1: The kth power ofP1 is defined as the

matrix P⊗k
1 , such that:

P⊗k
1 = Pk = P1 ⊗ P1 ⊗ . . . P1

︸ ︷︷ ︸

k times

= Pk−1 ⊗ P1

2For a description of deterministic Kronecker graphs, see Leskovec
et al, [11].
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For each entrypuv in Pk, include an edge in the graph
G between nodesu and v with probability puv. The
resulting binary random matrix is the adjacency matrix
of the generated graph.

Kronecker graphs have many of the static proper-
ties of social networks, such as small diameter and a
heavy-tailed degree distribution, a heavy-tailed eigen-
value distribution, and a heavy-tailed eigenvector dis-
tribution [11]. In addition, they exhibit several temporal
properties such as densification and shrinking diameter.
Using a simple 2x2P1, Leskovec demonstrated that
he could generate graphs matching the patterns of the
various properties mentioned above for several real-
world datasets [11]. However, as shown by Mahdian
and Xu, stochastic Kronecker graphs are not searchable
by a distributed greedy algorithm [16] – they lack the
necessary spatial structure that allows a local greedy
agent to find a short path through the network. This is
the motivation for the current paper.

B. Distance-Dependent Kronecker Graphs

In this section, we propose an extension to Kronecker
graphs incorporating the spatial structure necessary to
have searchability. We add to the framework of Kro-
necker graphs a notion of “distance”, which comes from
the embedding of the graph, and extend the generator
from a single matrix to a family of matrices, one for
each distance, defining the likelihood of a connection
occurring between nodes at a particular “distance.” We
accomplish this with a new “Kronecker-like” opera-
tion. Specifically, whereas in the original formulation
of Kronecker graphs one initiator matrix is iteratively
Kronecker-multiplied with itself to produce a new ad-
jacency or probability matrix, we define a “distance”-
dependent Kronecker operator. Depending on the dis-
tance between two nodesu and v, d(u, v) ∈ Z, a
different matrix from a defined family will be selected
to be multiplied by that entry, as shown below.

C =A ⊗d H

=









a11Hd(1,1) a12Hd(1,2) . . . a1nHd(1,n)

a21Hd(2,1) a22Hd(2,2) . . . a2nHd(2,n)

...
...

. . .
...

an1Hd(n,1) an2Hd(n,2) . . . annHd(n,n)









where
H = {Hi}i∈Z

So, thekth Kronecker power is now

Gk = G1 ⊗d H· · · ⊗d H
︸ ︷︷ ︸

k times

In the Kronecker-like multiplication, the choice ofHi

from the familyH, multiplying entry(u, v), is dependent

upon the distanced(u, v). Note that ourd(u, v) is not a
true distance measure — we can have negative distances.
Further,d(u, v) is not symmetric(d(u, v) 6= d(v, u))
since we need to maintain symmetry in the resulting ma-
trix. Instead,d(u, v) = −d(v, u) andHd(u,v) = H ′

d(v,u).
This change to the Kronecker operation makes the

model more complicated, and we do give up some of
the beneficial properties of Kronecker multiplication.
Potentially, we could have to define a large number of
matrices forH. However, for the models we want to
generate, there are actually only a few parameters to
define, asd(i, j) and a simple function definesHi for
i > 1. The underlying reason for this simplicity is that
the local lattice structure is usually specified byH0 and
H1, while the global, distance-dependent probability of
connection can usually be specified by anHi with a
simple form. So, while we lose the benefits of true Kro-
necker multiplication, we gain generality and the ability
to create many different lattices and probability of long-
range contacts. We note in passing that the generation of
these lattice structures is not possible with the original
formulation of the Kronecker graph model. For example,
it is impossible to generate the Watts-Strogatz model
with conventional Kronecker graphs. However, it can be
done with the current generalization. This is illustrated
in our examples below.

Example 1: Original Kronecker Graph. The
simplest example is that of the original Kronecker
graph formulation. For this case, the “distance” can be
arbitrary, and the family of matrices,H, is simply G1,
the sameG1 used in the original definition. Thus, we
define

Gk = G1 ⊗d H · · · ⊗d H
︸ ︷︷ ︸

k times

= G1 ⊗G1 ⊗ . . .G1
︸ ︷︷ ︸

k times

Example 2: Watts-Strogatz Small-World Model.
The next example we consider, the Watts-Strogatz
model, consists of a ring ofn nodes, each connected
to their neighbors within distancek on the ring. The
probability of a connection to any other node on the
ring is thenP (u, v) = p [7]. To generate the underlying
ring structure withk = 1, start with an initiator matrix
K1, representing the graph in figure 1(a).

Fig. 1. Generating the Watts-Strogatz Model

In order to obtain the sequence of matrices repre-



4

senting the graphs in Figure 1, we define a “distance”
measure as the number of hops from one node to another
along the ring, where clockwise hops are positive, and
counter-clockwise hops are negative. Recall that the
definition of “negative distance” is required only to keep
the matrix symmetric. The “negative” matrix is just
the transpose of the matrix defined for the “positive”
direction. After each operation, the distance between
nodes is still the number of hops along the ring, though
the number of nodes doubles each time. We then define
the following family of matrices,H:

H0 =

(

1 1

1 1

)

, H1 =

(

p p

1 p

)

, Hi =

(

1 1

1 1

)

∀i > 1

Note thatH−i = H ′
i. So, starting from the initiator

matrix in Figure 1(a), we have the following progression
of matrices:

G1 =








1 1 p 1

1 1 1 p

p 1 1 1

1 p 1 1








,

G2 =G1 ⊗d H

=








1×H0 1×H1 p×H2 1×H−1

1×H−1 1×H0 1×H1 p×H2

p×H2 1×H−1 1×H0 1×H1

1×H1 p×H2 1×H−1 1×H0








=


















1 1 p p p p p 1

1 1 1 p p p p p

p 1 1 1 p p p p

p p 1 1 1 p p p

p p p 1 1 1 p p

p p p p 1 1 1 p

p p p p p 1 1 1

1 p p p p p 1 1


















Note that the W-S model is not searchable by a
greedy agent; however, ifP (u, v) = 1

d(u,v) , it becomes
searchable [14], [5]. It is possible to model thisP (u, v)
by simply adjustingHi, i ≥ 1 as follows:

H0 =

(

1 1

1 1

)

, Hi = i

(
1
2i

1
2i+1

1
2i−1

1
2i

)

, ∀i ≥ 1, i 6= n

2
,

Hi = i

(
1
2i

1
2i−1

1
2i−1

1
2i

)

, ∀i ≥ 1, i =
n

2

As in the previous examples,H−i = H ′
i. The different

definition for the middle node in the ring is due to the
fact that we need the probability of a connection to reach
a minimum at this point, and then start to rise again. With

this new definition ofHi, i ≥ 1, we have the following
progression of matrices:

G1 =








1 1 1/2 1

1 1 1 1/2

1/2 1 1 1

1 1/2 1 1








,

G2 =G1 ⊗d H

=








1×H0 1×H1 1/2×H2 1×H−1

1×H−1 1×H0 1×H1 1/2×H2

1/2×H2 1×H−1 1×H0 1×H1

1×H1 1/2×H2 1×H−1 1×H0








=


















1 1 1/2 1/3 1/4 1/3 1/2 1

1 1 1 1/2 1/3 1/4 1/3 1/2

1/2 1 1 1 1/2 1/3 1/4 1/3

1/3 1/2 1 1 1 1/2 1/3 1/4

1/4 1/3 1/2 1 1 1 1/2 1/3

1/3 1/4 1/3 1/2 1 1 1 1/2

1/2 1/3 1/4 1/3 1/2 1 1 1

1 1/2 1/3 1/4 1/3 1/2 1 1


















This example already illustrates that the generalized
operator we have defined allows the generation of search-
able networks, but we will provide another more realistic
example in the next example.

Example 3: Kleinberg-like Model. The final example
we consider, Kleinberg’s lattice model, is particularly
pertinent as it was shown to be searchable [14]. In
the original formulation, local connections of nodes are
defined on ak-dimensional lattice, and long-range links
occur between two nodes at distanced with probability
proportional tod−α. We focus on a “Kleinberg-like”
model here, where instead of ak-dimensional lattice,
we have an “expanding hypercube” as our underlying
lattice. In this example, at any point, the graph is a

Fig. 2. Example: the growth of an expanding hypercube

hypercube with some extra long-range connections, and
when it grows, it grows by doubling the number of
nodes and adding a dimension to the hypercube. Note
that we will haven nodes arranged on ak = log n-
dimensional hypercube. This example is of particular in-
terest due to recent work suggesting that many networks
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have an underlying hyperbolic or tree-metric structure
[19], [18]. The expanding hypercube captures the key
feature of these topologies, as the number of nodes at
distanced grows exponentially ind. This example is
also very naturally represented using our “distance”-
dependent Kronecker operation and a Hamming distance
as our “distance” measure.

To define the expanding hypercube, we define a graph
G with n nodes, numbered1...n, where each node is
labeled with its correspondinglogn-length bit vector. We
define the “distance” between two nodes as the Hamming
distance between their labels. The family of matricesH
is as follows:

H0 =

(

1 1

1 1

)

, Hi =

(

1 βi

βi 1

)

, for all i ≥ 1

whereβ1 = a normalizing constant, βi = P (i+1)
P (i) . The

graph may or may not be searchable depending onP (i).
To mimic Kleinberg’s model, we letP (i) = i−α, so that
βi =

(
i+1
i

)−α
. Thus, for the sequence of graphs shown

in the figure above, we have the following sequence of
matrices:

G1 =

(

1 1

1 1

)

,

G2 =









1 1 1 β1

1 1 β1 1

1 β1 1 1

β1 1 1 1









,

G3 =









1 1 1 β1 1 β1 β1 β1β2

1 1 β1 1 β1 1 β1β2 β1

1 β1 1 1 β1 β1β2 1 β1

β1 1 1 1 β1β2 β1 β1 1
1 β1 β1 β1β2 1 1 1 β1

β1 1 β1β2 β1 1 1 β1 1
β1 β1β2 1 β1 1 β1 1 1

β1β2 β1 β1 1 β1 1 1 1









From the matrix, we can tell that in each step,

P (u, v) =

{

1 if d(u, v) = 0, 1

d(u, v)−α otherwise

In the original k-dimensional lattice, a distributed al-
gorithm (as defined in Section V), can find paths of
length O(log n) only if α = k [14]; in the modified
case presented above, we will see in section V that we
need a different probability of connection to find short
paths.

IV. CONNECTION TO HIDDEN HYPERBOLIC SPACE

MODEL

As mentioned previously, the expanding hypercube
model in Example 3 resembles models proposed in [17]
and extended in [18], [21], and [23]. In [17], every node
in the network has a hidden variable - their location in

a hidden metric space. The probability of a connection
between two nodes is based upon the distance between
them in this hidden space. The resulting degree distri-
bution depends on the curvature of this hidden space; if
the space has negative curvature, the degree distribution
will be scale-free withP (k) = k−γ [24].

In the distance-dependent Kronecker graph described
in this paper and [2], the probability of a connection is
based on the distance between two nodes in the given
lattice, defined usually byH0 andH1 in the family of
matricesH. As a result, the lattice, or metric space, is not
really hidden since neighbors are explicitly connected in
the lattice. It is important to note that both models incor-
porate a distance-dependent probability of connection.
As will be defined formally in Section V, a local greedy
search algorithm can take advantage of this embedding
into a hidden or physical space to forward a message
to a destination. If a given nodeu has a message to
forward to a destinationt, it can use its knowledge of the
embedding to forward the message to its neighbor closest
to the destination in the embedding. It is not necessary
that the embedding be physical, as shown in [18] and
[21]; rather, what is necessary is that the the probability
of a connection between two nodes is dependent on
the distance between them. In most social networks the
abstract distance is a measure of “social distance” - the
likelihood of two individuals being connected depends
on their memberships in various groups, among other
factors.

In addition, in the models of [17], a hyperbolic space
results in exponentially expanding neighborhoods around
each node. In the distance-dependent hypercube exam-
ple, there are

(
k
d

)
nodes at each distanced, also resulting

in exponentially expanding neighborhoods. However,
the hidden metric space model necessarily includes the
notion of a core and periphery of the network, where
high-degree nodes form the core connecting many low-
degree nodes at the periphery [21]. In the hypercube
example, all nodes are homogeneous in expected degree
- there is no notion of a core.

In [18], as nodes are located further from the origin
in the hidden hyperbolic space their expected degree
decreases exponentially (∝ e−βr). When this is com-
bined with the exponentially expanding neighborhoods
(∝ eαr), the result is a scale-free distribution with
γ = 1 + α

β . It is important to note that an exponential
decrease in expected degree is not strictly necessary; to
see this, let the number of nodes at distancer from a
reference origin in the hyperbolic space be

n(r) = eαr

Let the average degree of nodes at distancer be

k(r) = r−δ
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so that
r(k) = k−

1
δ

Using
n(k) ∝ n[r(k)] |r′(k)|

we have
n(k) ∝ eαk

−1/δ

k−1/δ−1

which asymptotically behaves like a power law with
γ = 1 + 1/δ. In the hypercube example, despite the
exponential expansion of neighborhoods, the resulting
degree distribution will always be Poisson as long as the
probability of connection is sufficiently small, as shown
in the next section.

Nevertheless, the connection between this model and
those based on tree-metrics and hidden metric spaces is
important to note, as one key factor emerges: a distance-
dependent relation is necessary for a greedy algorithm
to succeed in finding shortest paths.

V. DEGREE DISTRIBUTION

In this section we describe a general characteris-
tic function-based analysis of degree distributions for
lattice-based networks, and apply it to the expanding
hypercube example in Section III. In general, any lattice-
based network with a distance-dependent probability of
connection will have a Poisson degree distribution, as
long as the probability of a connection at a distanced is
sufficiently small. Formally,

Theorem 5.1:The degree distribution of a general
lattice-based network with a distance-dependent prob-
ability of connectionP (d) and maximum distancedmax

will have the following degree distribution:

P (ν = i) =
e−ααi

i!

(
1 + dmaxO(P 2(d))

)

where

α =

dmax∑

d=1

P (d)σ(d) (1)

and σ(d) = number of nodes at distanced from
a reference node in the lattice. We note that if
limn→∞ dmaxP

2(d) = 0, then the degree distribution
is Poisson.

Proof: Let ν denote the degree of an arbitrary node
u in a general lattice-based network withn nodes. Thus,
ν = v1 + v2 + · · ·+ vn where

vi =

{

1 if link to node i,

0 otherwise.

We define the characteristic function of the degree
distribution as

E[eitν ] =E[eit(v1+v2+···+vn)]

=E[eitv1 ]E[eitv2 ] . . . E[eitvn ]

We can then group the expectations

E[eitν ] =

dmax∏

d=1

(1− P (d) + P (d)eit)σ(d)

=

dmax∏

d=1

(1− P (d)(1 − eit))σ(d)

=

dmax∏

d=1

(

e−P (d)(1−eit) +O(P 2(d))(1 − eit)2
)σ(d)

(2)

ase−x = 1− x+O(x2)

Thus, we can pull out the first term and using binomial
approximation of(1 + x)c = 1 + cx+O(x2), we have

E[eitν ] =

dmax∏

d=1

e−P (d)(1−eit)σ(d)

(

1 +
O(P 2(d))(1 − eit)2σ(d)

e−P (d)(1−eit)

)

= e−(1−eit)
∑dmax

d=1
P (d)σ(d)×

dmax∏

d=1

(

1 +O(P 2(d))(1 − eit)2σ(d)eP (d)(1−eit)
)

≈ eα(e
it−1)(1 + dmaxO(P 2(d)))

Expanding, we see that the characteristic function is

E[eitν ] =
(
1 + dmaxO(P 2(d))

)
e−α

(

1 + αeit +
(αeit)2

2!
+ . . .

)

From such a representation of the characteristic function,
we can clearly see the degree distribution as

P (ν = i) =
e−ααi

i!

(
1 + dmaxO(P 2(d))

)

We now turn to a specific lattice-based network,
the hypercube distance-dependent Kronecker graph de-
scribed in Example 3 in Section III. In this exam-
ple, σ(d) =

(
k
d

)
, and the maximum distance in the

network is k = logn. We use a particularP (d) =
[(k− 2d

3
d
3

)
d log k ln 3

]−1

optimized for searchability, as
determined in Section VI.

Theorem 5.2:The degree distribution of the expand-
ing hypercube is given by the following Poisson distri-
bution,

P (ν = i) =
e−ααi

i!
whereα ≈ 3.6919 n.4703

log logn
√
log n

(3)

Proof: We use the same framework as in the proof
of Theorem 5.1, and leteit = x for simplicity. In this
case, the characteristic function becomes

E[xν ] = e−(1−x)
∑k

d=1 P (d)σ(d)
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so that

α =

k∑

d=1

P (d)σ(d)

=

k∑

d=1

[(
k − 2d

3
d
3

)

d log k ln 3

]−1(
k

d

)

To calculateα, we use the entropy approximation
(
k
d

)
≈

2kH( d
k ), which holds as

(
n
k

)
= 2n(H(p)+o(1)) whenk ∝

pn, so that

α ≈ 1

log k ln 3

k∑

d=1

d−12
kH( d

k )−(k−
2d
3 )H

(

d
3

k− 2d
3

)

We can approximate the sum by using saddle point
integration.

∫

g(y)ekf(y) dy

=

√

2π

k |f ′′(y0)|
g(y0)e

kf(y0)

(

1 +O

(
1√
k

))

(4)

wherey0 is the saddle point of the functionf(y), i.e.,
the point at whichf ′(y) = 0.

We rewrite the sumS(k) in nats, leaving out the
constants in front,

S(k) =
1

k

k∑

d=1

k

d
e
k

[

H( d
k )−(1−

2d
3k )H

(

d
3k

1− 2d
3k

)]

and then we lety = d
k ,

S(y) =

∫ 1

1
k

1

y
e
k

[

H(y)−(1− 2
3y )H

( y
3

1− 2
3y

)]

dy

so that, with the saddle point approximation of line (4),
g(y) = 1

y andf(y) = H(y)− (1− 2
3y )H(

y
3

1− 2
3y

). Using
Mathematica, we find

y0 = 0.417

f(y0) = 0.326

g(y0) = 2.4

|f ′′(y0)| = 2.2

yielding,

S(k) ≈
√

2π

2.2k
(2.4)e0.326k (5)

So, ourα is now

α ≈ 1

log k ln 3

√

2π

2.2k
(2.4)e0.326k

≈ 3.6919 n0.4703

log log n
√
logn

With the results of Theorem 5.1, we have a Poisson
degree distribution with parameterα.

A. Expected Degree

From the characteristic function, we can also deter-
mine the expected degree.

E[ν] =
∂

∂x
E[xν ]

∣
∣
∣
∣
x=1

=
∂

∂x
[e−(1−x)α]

∣
∣
∣
∣
x=1

= α

Thus, the expected degree of the expanding hypercube
example is a growing function ofn.

Fig. 3. Expected degree of expanding hypercube

Fig. 4. Example histogram withn = 4096

B. Simulation of expanding hypercube example

Simulating the expanding hypercube with theP (d)
determined in Section VI yields results that match well,
within a constant, the analysis above. Figure 3 shows
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the comparison of the theoretical and simulated expected
degrees, while figure 4 shows an example histogram of
the degree distribution, both theoretical and simulated,
with n = 4096. The Poisson nature of the distribution is
clearly visible, as is the growth of the expected degree
as a function ofn.

VI. PROVING SEARCHABILITY

While the distance-dependent Kronecker graph model
is more complicated than the original Kronecker graph
model, it can capture several existing network models,
and it incorporates “distance” into the probability of
connection, allowing for several cases in which search-
ability can be proven. In this section, we first give a
general framework within which a lattice-based network
can be proven searchable and then proceed to the specific
cases of the Kleinberg model [14] and the expanding
hypercube model of Example 3 in Section III.

A. General Searchability Theorem

We define a decentralized algorithmA similar to [14].
In each step, the current message-holderu passes the
message to a neighbor that is closest to the destination,
t. Each node only has knowledge of its address on the
lattice (given by its bit vector label in the case of the
expanding hypercube), the address of the destination, and
the nodes that have previously come into contact with
the message. For the graph to be searchable, we need
to have that the distributed algorithmA is able to find
short paths through the network, which are usuallyO(D)
whereD is the diameter of the network.

Let the current message holder be nodeu and the
destination nodet. We will say that the execution of
a decentralized search algorithmA is in phasej when
2j < d(u, t) ≤ 2j+1, whered(u, t) is the distance be-
tween nodeu and nodet. Thus, the largest value ofj in a
general lattice-based network isjmax = log dmax where
dmax denotes the maximum geodesic in the network.
For example, in a hypercube, the maximum geodesic is
dmax = logn = k, so jmax = log logn = log k. We
defineNu,t(d) = {v : d(v, t) ≤ 2j, d(u, v) = d} and
min |N(d)| = minu,t,d(u,t)=d |Nu,t(d)|.

Theorem 6.1:A decentralized algorithmA will find
short paths of lengthO(log2(dmax)), when the proba-
bility of a connection is

P (u, v) = [c dmin |N(d)|]−1 (6)

wherec ∝ log dmax.
Proof: Suppose we are in phasej with current mes-

sage holder nodeu; we want to determine the probability
that the phase ends at this step. This is equivalent to the

probability that the message enters a set of nodesBj

whereBj = {v : d(v, t) ≤ 2j}.

Pr({message entersBj}) =1−
∏

v∈Bj

(1 − P (u, v : v ∈ Bj))

=1−
d(u,t)+2j
∏

d=d(u,t)−2j

(1− P (d))|Nu,t(d)|

≥1−
d(u,t)+2j
∏

d=d(u,t)−2j

(1− P (d))min|N(d)|

Fig. 5. Relative positions of nodesu,v, andt in phasej

In any network model, enforcing searchability boils
down to determining thismin |N(d)|, the minimum
number of nodes at a distanced from a given nodeu
within a ball of nodes centered around the destination,
t, as illustrated in Figure 5. Once thismin |N(d)| is
found, if we set the probability of a connection between
two nodes distanced apart as in Theorem 6.1, with
an appropriate constant, we will find that each phase
described above will end in approximatelyjmax steps,
and, as there are onlyjmax such phases, our greedy
forwarding algorithm will be able to find very short paths
of lengthO(j2max).

Thus, we have

Pr({message entersBj}) ≥ 1−
d(u,t)+2j
∏

d=d(u,t)−2j

(1−P (d))min|N(d)|

≈1− e
−

∑d(u,t)+2j

d=d(u,t)−2j
min|N(d)|P (d)

(7)

=1− e
− 1

c

∑d(u,t)+2j

d=d(u,t)−2j
d−1

≥1− e
− 1

c ln d(u,t)+2j

d(u,t)−2j

≥1− e−
1
c ln 3 2j

2j

=1− e−
1
c′

≥ 1

c′
(8)
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where the approximation in line (7) requires that
limn→∞ dmaxP

2(d) = 0, which holds with theP (d)
as specified in line (6) (see proof of Theorem 5.1 for
extra order terms), and line (8) comes from the power
series expansion ofe−x. Let Xj denote the total number
of steps spent in phasej. Then,

EXj =

∞∑

i=1

Pr[Xj ≥ i]

≤
∞∑

i=1

(

1− 1

c′

)i−1

=c′

Let X denote the total number of steps taken by the
algorithmA.

X =

jmax∑

j=0

Xj

and

EX =

jmax∑

j=0

EXj

≤(1 + jmax)(c
′)

=(1 + log dmax) log dmax

≤δ(log dmax)
2 (9)

where line (9) holds∀ δ ≥ 2, log dmax ≥ 2.
With this framework, we can explore the searchabil-

ity of any lattice-based network model with distance-
dependent connection probability.

B. Searchability in original Kleinberg model

In the original Kleinberg two-dimensional lattice [14],
the number of nodes at a distanced from a reference
node is approximately4d, ignoring edge effects. The
maximum distance between any two nodes isO(n), so
jmax ≈ logn. Additionally, the diameter of the graph
is on the order oflogn. In general,min |N(d)| ∝ d
for a fixed j, resulting in the probability of connection
optimized for searchability,P (d) = [α log(n)d2]−1.
Using thisP (d),

Pr({message entersBj}) ≥ 1−
d(u,t)+2j
∏

d=d(u,t)−2j

(1− P (d))min|N(d)|

≈1− e
− 1

α log n

∑d(u,t)+2j

d=d(u,t)−2j
d−1

(10)

≥1− e
− 1

α′ log n

≥ 1

α′ logn
(11)

where line (10) holds for theP (d) specified, and line
(11) comes from the power series expansion ofe−x.
Therefore,

EXj ≤ α′ logn

and

EX =

log n
∑

j=0

EXj

≤δ(log n)2. (12)

where line (12) holds∀ δ ≥ 2, logn ≥ 2.

C. Searchability in expanding hypercube example

In the expanding hypercube example of Section III,
each node haslogn neighbors from the lattice itself.
With the addition of long-range links, we expect the
diameter to beO(log logn), similar to [18]. Note that
with this example,jmax = log logn = log k and
the number of nodes at distanced equals

(
n
d

)
. Using

Theorem 6.1, we can prove the following result:
Theorem 6.2:A decentralized algorithmA will find

paths of lengthO((log logn)2) in the expanding hyper-
cube example when

β0 =1, β1 = [2 log k ln 3]−1 ,

βi =

[(
k − 2i

3
i
3

)

i

][(
k − 2(i+1)

3
i+1
3

)

(i + 1)

]−1

∀i ≥ 2

(13)

such that the probability of a connection is

P (u, v) =







1 if d(u, v) = 0, 1
[(k− 2d

3
d
3

)
d log k ln 3

]−1

if d(u, v) = d

(14)
Proof: Using Theorem 6.1, all that remains is to find

min |N(d)| and to determine the appropriate constants
to use. Without loss of generality, we assume that the
destination nodet is the all-zero node (i.e., its label is
the zero vector) so that we can writed(u, t) = ‖u‖.
To determinemin |N(d)| in our case, since the distance
measure is a Hamming distance, we must count the num-
ber of possible bit vectors that are at a specific distanced
from a nodeu while still being within a certain distance
of the destination. We prove thatmin |N(d)| =

(k− 2d
3

d
3

)

in Appendix A. We then letc = log k ln 3 for reasons
that will be clear below. Using the same framework as
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in Theorem 6.1 we have that

Pr({msg entersBj}) ≥1−
‖u‖+2j
∏

d=‖u‖−2j

(1 − P (d))min|N(d)|

≈1− e
− 1

log k ln 3

∑‖u‖+2j

d=‖u‖−2j
d−1

(15)

≥1− e−
1

log k

≥ 1

log k
(16)

where line (15) holds for theP (d) specified, and line
(16) comes from the power series expansion ofe−x.
Therefore, we have

EXj ≤ log k

and

EX =

log k
∑

j=0

EXj

≤δ(log k)2, ∀ δ ≥ 2, log k ≥ 2

Since the expected number of steps in phasej is log k,
and there are at mostlog k phases, the expected amount
of steps taken by the algorithmA is at mostδ log2 k. So,
with this definition of P (d), the distributed algorithm
provides searchabilty.

D. Simulation of distributed search algorithm

We simulated the local greedy algorithm described
above in MATLAB for 16 ≤ n ≤ 4096 with the prob-
ability distribution as in Theorem 5.2 and appropriate
floor functions. We found that the greedy algorithm finds
a path between two nodes with an average length of a
constant factor away from the diameter of the simulated
network, where diameter is defined as the maximum
geodesic in the network. Note that the two nodes selected
for the simulation are actually the “worst-case” nodes -
the distance between them in the network is exactly the
diameter. Figure 6 illustrates the results of the greedy
algorithm simulations.

E. Path length with sub-optimal P(d)

In this section we analyze the performance of the local
greedy search algorithm on the expanding hypercube
whenP (d) is not optimal, as in Theorem 6.2. For this
example, letP (d) = [log k

(
k
d

)
]−1, which is clearly not

min |N(d)| from Lemma 9.1. We will show that this
suboptimalP (d) also allows for searchability.
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Fig. 6. Average path length found by greedy algorithm using local
information

Using the same framework as in Theorem 6.1,

Pr({msg entersBj}) ≥1−
d(u,t)+2j
∏

d=d(u,t)−2j

(1 − P (d))min|N(d)|

≈1− e
∑d(u,t)+2j

d=d(u,t)−2j
P (d)min|N(d)|

(17)

=1− e
−

∑d(u,t)+2j

d=d(u,t)−2j
P (d)(

k− 2d
3

d
3

)

=1− e−
1

log kS(k,d)

≥1− e−
1

log k minS(k,d)

where line (17) holds for the specifiedP (d) and where

S(k, d) =

3∗2j∑

d=2j

(
k

d

)−1(k − 2d
3

d
3

)

≈
3∗2j∑

d=2j

2
(k− 2d

3 )H(
d
3

k− 2d
3

)−kH( d
k )

(18)

≥min
d

3∗2j∑

d=2j

2
(k− 2d

3 )H(
d
3

k− 2d
3

)−kH( d
k )

≥2
maxd (k− 2d

3 )H(
d
3

k− 2d
3

)−kH( d
k )

where we have used the approximation
(
k
d

)
≈ 2kH( d

k ),
which holds as

(
n
k

)
= 2n(H(p)+o(1)) whenk ∝ pn,

in line (18). Since the exponent is convex ind, the
maximum will be at either the upper or lower bound
of the sum. For0 ≤ j ≤ log k the lower bound (d = 2j)
yields the maximal exponent. So, we have

Pr({msg entersBj}) ≥1− e−
1

log k 2f(k,j)

≥2f(k,j)

log k
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where we have used the power series expansion ofe−x

and where

f(k, j) = (k − 2j+1

3
)H(

2j

3

k − 2j+1

3

)− kH(
2j

k
). (19)

Continuing with the proof of searchability, we have

EXj =

∞∑

i=1

Pr[Xj ≥ i]

≤ log k 2−f(k,j)

and

EX =

log k
∑

j=0

EXj

≤(1 + log k) log k 2−minj f(k,j)

≤δ(log k)2, ∀ δ ≥ 2, log k ≥ 2

sincef(k, j) is convex but its minimum occurs close to
log k. As a result, even for suboptimalP (d), a local
greedy algorithm can find short paths. However, the
bounds used in the analysis above are looser than those in
previous sections, so the final expected number of steps
taken byA is not as tight. This analysis is supported by
simulation results as shown in the figure below.
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Fig. 7. Performance of greedy algorithm whenP (d) = [log k
(

k

d

)

]−1

Finally, if P (d) = [d log k
(
k
d

)
]−1, using the same

sort of techniques as above we can show thatEX ≤
δk(log k)2 for a large enoughδ. Note that in this case,
the paths found will beO(log n log logn), which are
longer than before. Simulation results with thisP (d) are
shown in figure 8.

VII. B RIEF DIAMETER ANALYSIS OF HYPERCUBE

In this section, we briefly discuss the diameter of
a general random graph. Finding the actual diameter,
defined as either the maximum or the average geodesic
in the network, can be very complicated. We discuss
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[d log k
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a simple lower bound of the hypercube example here,
which can be applied to any random graph.

If we assume that the expected degree of the hyper-
cube example in Section III is polynomial inn, say
nβ, similar to what was found in Section IV for the
expanding hypercube, we can lower bound the diameter
as follows. We assume that at each step, every node has
d neighbors and that it takesα steps to reach alln nodes.
Therefore, to reach alln nodes in the network, we have

dα = n

⇒ (nβ)α = n

⇒ α =
1

β

⇒ Constant diameter

Thus, a simple lower bound for the diameter of a graph
with polynomial expected degree is some constant,1

β .
We can also work backwards, assuming alog logn
diameter. In this case, we have

dα = n

⇒ dlog log n = n

⇒ d = n
1

log log n = e
log n

log log n

which is less than a polynomial inn, but still grows
with n. Figure 9 compares the simulated diameter of
the expanding hypercube example with the two lower
bounds discussed above. For16 ≤ n ≤ 4096, both lower
bounds appear to be a good match.
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VIII. C ONCLUSION

We have presented a generalization of Kronecker
graphs by defining a family of “distance”-dependent
matrices and a new Kronecker-like operation. As a result,
the network model defines both local regular structures
and global distance-dependent connections. Though the
model is more complicated than the original Kronecker
graph model, it is more general, as it can generate
existing social network models, and more importantly,
networks that are searchable. These properties emerge
naturally from the definition of the embedding of the
nodes and the probability of connection within the family
of matricesH. Any lattice-based network model with
distance-dependent connection probabilities can be ana-
lyzed using the framework described in Sections V, VI,
and VII for exploring degree distribution, diameter, and
searchability. Most importantly, the searchability analy-
sis shows how to make any network model searchable
by defining the appropriate probability of connection
based upon|N(d)|. The particular expanding hypercube
example explicitly described here shares characteristics
with those based upon hidden hyperbolic spaces [17],
[18], though it has one major difference - degree ho-
mogeneity across nodes. Nevertheless, its exponentially
expanding neighborhoods and distance-dependent prob-
ability of connection make it a good model for social
networks as people tend to exhibit strong homophily, i.e.,
associating with other people most like themselves. In
addition, in contrast to Kleinberg’s lattice-based model
[14], the searchability of the expanding hypercube is not
too sensitive to the choice ofP (d).

Though this paper gives a near complete description
of the characteristics of “distance”-dependent Kronecker
graphs, there are many interesting questions that remain.
These include how to parameterize the model from
real-world data sets, and how to incorporate network
dynamics. Ideally, given any data set, we would like to be
able to find an appropriate family of distance-dependent
matrices to match any desired characteristic of the data

set. Additionally, while the current model incorporates
some measure of growth, growing from a small initiator
matrix to a finalnxn adjacency matrix, we would like
to better incorporate mobility into the model so that it is
not just a static description of the network at one point
in time.

IX. A PPENDIX A - CALCULATING THE SIZE OF

Nu,t(d)

In this appendix, we show a lower bound for|Nu,t(d)|,
the number of nodes at distanced from a given nodeu,
still within distance2j of the destination,t.

Lemma 9.1:min |Nu,t(d)| =
(k− 2d

3
d
3

)

Proof: We first count exactly the number of nodes
in Nu,t(d), the number of nodes at a distanced from
a given nodeu within a ball of nodes centered around
the destination,t, as illustrated in Figure 5. Without loss
of generality, definet as the all zero node,t = (00...0).
Arrange the label ofu such thatu = (1...10...0). Define
v = (v11 v10 v01 v00) according to this partition ofu, so
that v11 andv01 have “1” entries andv10 andv00 have
“0” entries. Let ‖x‖ denote the weight, or number of
ones, of the label of nodex. We know the following:

v11 + v10 + v01 + v00 = k

v11 + v10 = ‖u‖
v01 + v10 = d

v11 + v01 = ‖v‖
We can solve in terms ofv11, yielding

v00 =k − d− v11

v10 = ‖u‖ − v11

v01 =d− ‖u‖+ v11

We also know that we must satisfy the following:

v11, v10, v01, v00 ≥ 0

2j < ‖u‖ ≤ 2j+1

‖u‖ − 2j ≤ d ≤ ‖u‖+ 2j

‖v‖ ≤ 2j

From these bounds we have

max(0, ‖u‖−d) ≤ v11 ≤ min(‖u‖ , k−d,
1

2
(2j+‖u‖−d))

Note that the second and third bounds do not affectv11.
Counting the number of nodes in the ball, we have

|Nu,t(d)| =
vu∑

v11=vl

(‖u‖
v11

)(
k − ‖u‖

d− ‖u‖+ v11

)

where we have substitutedvu and vl, for the upper
and lower bounds above, respectively. We can now
approximate the number of nodes inNu,t(d), using the
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entropy approximation for combinations. Let‖u‖ =
ak, d = bk, 2j = ck, x = v11. Using this notation, we
have

|Nu,t(d)| =
vu∑

x=vl

(
ak

x

)(
k(1 − a)

k(1− b) + x

)

≈
vu∑

x=vl

2
k(aH( x

ak )+(1−a)H

(

b−a+ x
k

1−a

)

)
(20)

≥2kX

where

X = max
x

aH
( x

ak

)

+ (1 − a)H

(
b− a+ x

k

1− a

)

(21)

subject to

kmax(0, a− b) ≤ x ≤ kmin(a, 1− b,
1

2
(a− b+ c))

Note that line (20) is true as
(
n
k

)
=

2n(H(p)+o(1)) whenk ∝ pn.
Note that the functionX is concave inx, so un-

constrained optimization yields the two solutions below,
each giving different values ofmin |Nu,t(d)|:

x∗
1 = ak − abk whenc ≥ a+ b(1− 2a)

yielding

min |Nu,t(d)| =
(
k

d

)

x∗
2 =

1

2
k(a− b+ c) whenc < a+ b(1− 2a)

yielding

min |Nu,t(d)| =
(
k − 2d

3
d
3

)

The resultingmin |Nu,t(d)| are derived in Sections A
and B below. As the second solution yields a smaller
min |Nu,t(d)|, we have an overallmin |Nu,t(d)| =
(k− 2d

3
d
3

)
.

A. Solution 1:c ≥ a+ b(1− 2a)

In this region, the solution to the unconstrained prob-
lem,x∗

1 = ak−abk gives us the maximalX . Substituting
in for the size ofNu,t(d) and using the same entropy
approximation as before, we have

|Nu,t(d)| = 2
k(aH( ak−abk

ak )+(1−a)H

(

b−a+
ak−abk

k
1−a

)

)

= 2k(aH(1−b)+(1−a)H(b))

= 2kH(b)

≈
(
k

bk

)

=

(
k

d

)

.

B. Solution 2:c < a+ b(1− 2a)

In this region, we choose one of the boundary points,
x∗
2 = 1

2k(a− b+ c), as the solution to the maximization
problem. Substituting this solution forx in |Nu,t(d)|, we
obtain

|Nu,t(d)| = 2k(aH(
a−b+c

2a )+(1−a)H(−a+b+c
2(1−a) ))

This gives us a function ofa, b, c, so we want to find
the worst casea, c that minimizes|Nu,t(d)|. The new
optimization problem is thus

f(b) =min |Nu,t(d)|

=min
a,c

aH

(
a− b+ c

2a

)

+ (1− a)H

(−a+ b+ c

2(1− a)

)

(22)

Note that the bounds for this region are:

1) a− b− c ≤ 0
2) a− b+ c ≥ 0
3) c < a ≤ 2c
4) 0 ≤ c ≤ 1

2
5) 0 ≤ a, b ≤ 1
6) 0 ≤ 2− a− b− c
7) 0 ≤ a+ b− c
8) 0 ≤ a+ b− c− 2ab

where 1) and 2) come from the bounds ond(u, v), 3)
comes from the bounds on‖u‖, and 4) and 5) come from
the ranges forj and the size of the network. Note that
1-5 are always true, not just in this region. 6),7), and 8)
come from the fact that our solutionx∗

2 is minimal in
this region. Note that 8) implies 7).

Computing the Hessian of the function in line (22)
shows that it is concave in botha and b; the derivation
is in Appendix B. Since our function is concave, the
min |Nu,t(d)| is found from the boundary points of
Region 2. Rearranging the bounds from before in terms
of a we have:

1) a ≤ b+ c
2) a ≥ b− c
3) a > c, a ≤ 2c
4) c > 0, c ≤ 1

2
5) 0 ≤ a, a ≤ 1
6) a ≤ 2− b− c
7) a ≥ −b+ c
8) a ≥ c

1−2b − b
1−2b whenb ≤ 1

2

9) a ≤ c
1−2b − b

1−2b whenb > 1
2
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Fig. 10. Boundaries off(b) whenb ≤ 1

2

When b ≤ 1
2 , only bounds (1,2,3,4) apply tof(b),

yielding 5 points that we need to examine, as shown
in Figure 10. Ifb ≥ .115, thenf(b) is minimal at point
(1), ( b3 ,

2b
3 ), yielding

min |Nu,t(d)| = 2
k(1− 2b

3 )H

(

b
3

1− 2b
3

)

≈
(
k − 2bk

3
bk
3

)

(23)

=

(
k − 2d

3
d
3

)

where line (23) holds for largek, using the entropy
approximation

(
n
k

)
= 2n(H(p)+o(1)). If b < 0.115, then

f(b) is minimal at point (5),(b, 2b), yielding

min |Nu,t(d)| = 2k2b = 4d

When b > 1
2 , only bounds (2,3,4,and 8) apply tof(b),

yielding 4 points that we need to examine, as shown in
Figure 11.

Fig. 11. Boundaries off(b) whenb ≥
1

2

For this region,f(b) is minimal at point (1), matching
point (5) in the previous region, yielding

min |Nu,t(d)| = 2
k(1− 2b

3 )H

(

b
3

1− 2b
3

)

≈
(
k − 2d

3
d
3

)

(24)

where line (24) holds for largek, using the entropy
approximation

(
n
k

)
= 2n(H(p)+o(1)). Thus, whenb <

0.115, we havemin |Nu,t(d)| = 4d, and whenb ≥
0.115, we havemin |Nu,t(d)| =

(k− 2d
3

d
3

)
. Finally, we

have that whenc < a+ b(1− 2a), we apply Solution 2,

and we havemin |Nu,t(d)| =
(k− 2d

3
d
3

)
when Solution 2

is valid. Comparing the Solution 1 with Solution 2, we
have again thatmin |Nu,t(d)| =

(k− 2d
3

d
3

)
.

X. A PPENDIX B - CONCAVITY OF f(a, b, c) FOR

SOLUTION 2

Lemma 10.1:The function f(a, b, c) =

aH
(
a−b+c

2a

)
+ (1 − a)H

(
−a+b+c
2(1−a)

)

is concave in
both a andb.

Proof: To prove that the function is concave in both
a andb, we need to see if the Hessian is negative definite.
Let

f(a, b, c) = aH

(
a− b+ c

2a

)

+(1−a)H

(−a+ b+ c

2(1− a)

)

Taking derivatives with respect toa, we find

∂f

∂a
=
1

2

(

− log
c+ a− b

2a
− log

b+ a− c

2a

+ log
c− a+ b

2(1− a)
+ log

2− a− b− c

2(1− a)

)

and

∂2f

∂a2
=

−(c− b)2

a(c+ a− b)(b+ a− c)

+
−(1− c− b)2

(1− a)(c− a+ b)(2− a− b− c)

=
1

2

( −1

a− b + c
+

−1

a+ b− c
+

2

a

+
−1

−a+ b+ c
+

−1

2− a− b− c
+

2

1− a

)

From the bounds for this region, we can see that the
function is concave ina.

Taking derivatives with respect toc, we find

∂f

∂c
=
1

2
(− log (c+ a− b) + log (a+ b− c)

− log (c− a+ b) + log (2− a− b− c))

and

∂2f

∂c2
=
1

2

( −1

c+ a− b
+

−1

a+ b− c

+
−1

c− a+ b
+

−1

2− a− b− c

)

From the bounds in this region, we can see that the
function is concave inc.
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Taking derivatives with respect to botha and c, we
find

∂2f

∂c∂a
=
1

2

( −1

a− b+ c
+

1

a+ b− c

+
1

−a+ b+ c
+

−1

2− a− b− c

)

The HessianH is
(

∂2

∂a2
∂2

∂a∂c

∂2

∂a∂c
∂2

∂c2

)

We want to show that the Hessian is negative definite,
i.e, thatH < 0. We have already shown that∂

2

∂a2 < 0, so
it remains to show that the second leading principal mi-
nor ofH is positive definite. This is just the determinant
of H

det[H ] =
∂2

∂a2
∂2

∂c2
−
(

∂2

∂a∂c

)2

> 0

We rewrite the second derivatives as

∂2

∂a2
=
1

2

(

f1 + f2 +
2

a
+

2

1− a

)

∂2

∂c2
=
1

2
(f1 + f2)

∂2

∂a∂c
=
1

2
(f1 − f2)

where, from above,

f1 =
−1

a− b+ c
+

−1

2− a− b− c
< 0

f2 =
−1

a+ b− c
+

−1

−a+ b+ c
< 0

So, our determinant is now

det[H ] =

(

f1 + f2 +
2

a
+

2

1− a

)

(f1 + f2)− (f1 − f2)
2

=
1

4
(f1 + f2)

2 +
1

4

(
2

a
+

2

1− a

)

(f1 + f2)

− 1

4
(f1 − f2)

2

=f1f2 +
(f1 + f2)

2a(1− a)

Simplifying, this is just

det[H ] =− (−a− b+ c+ 2ab)2

[(a− b+ c)(−2 + a+ b+ c)(a+ b− c)

(a− b− c)a(a− 1)]−1

which, from our bounds, is positive. Since the determi-
nant of H is positive, and since∂2

∂a2 is negative, we
can say thatH is negative definite, and the function is
concave in botha andc.
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