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Node characteristics and behaviors are often correlated with the
structure of social networks over time. While evidence of this type of
assortative mixing and temporal clustering of behaviors among
linked nodes is used to support claims of peer influence and social
contagion in networks, homophily may also explain such evidence.
Here we develop a dynamic matched sample estimation framework
to distinguish influence and homophily effects in dynamic networks,
and we apply this framework to a global instant messaging network
of 27.4 million users, using data on the day-by-day adoption of a
mobile service application and users’ longitudinal behavioral, demo-
graphic, and geographic data. We find that previous methods over-
estimate peer influence in product adoption decisions in this network
by 300–700%, and that homophily explains >50% of the perceived
behavioral contagion. These findings and methods are essential to
both our understanding of the mechanisms that drive contagions in
networks and our knowledge of how to propagate or combat them
in domains as diverse as epidemiology, marketing, development
economics, and public health.

dynamic matching estimation � peer influence � social
networks � identification

The recent availability of massive networked data sets has
enabled studies of population-level human interaction at un-

precedented scale (1–3). Such studies document the persistent
structural properties of networks (4), how they form, evolve, and
dissolve (5), and how their structure is correlated with social
interaction (1, 6, 7), individual and collaborative team performance
(8–11), health outcomes (12–14), and global product demand
patterns (15). Networks of interactions among individuals also
provide the primary pathways along which viral contagions spread
in social, biological, technological, and economic systems (16–18),
which may explain why network structure is correlated with such a
variety of outcomes. Yet although many studies model the dynamics
of viral spreading by using assumptions about susceptibility rates,
transition probabilities, and their relationships to network structure,
few large-scale empirical observations of networked contagions
exist to validate these assumptions (16–18).

We analyze a new, large scale dataset which comprehensively
captures the diffusion of a mobile service product over a social
network for 5 months after its launch date. A key challenge in
identifying true contagions in such data is to distinguish peer-to-
peer influence, in which a node influences or causes outcomes in its
neighbors, from homophily, in which dyadic similarities between
nodes create correlated outcome patterns among neighbors that
merely mimic viral contagions without direct causal influence (19).
Although the diffusion patterns created by peer influence-driven
contagions and homophilous diffusion are similar, they are likely to
result in significantly different dynamics. Influence-driven conta-
gions are self-reinforcing and display rapid, exponential, and less
predictable diffusion as they evolve (18, 20), whereas homophily-
driven diffusion processes are governed by the distributions of
characteristics over nodes. These distinctions make distinguishing
true contagions from homophilous diffusions at early stages im-
portant for the success or failure of contagion management efforts.

As more of a perceived contagion is explained by homophily rather
than peer influence, intervention strategies should shift from
peer-to-peer methods based on network structure to outreach
based on population segmentation across individuals’ characteris-
tics. Formal procedures for separating influence and homophily are
therefore essential to support policies that encourage or discourage
the spread of behaviors in networks, from health interventions to
viral marketing campaigns.

Contagions and homophilous diffusion are both typified by
correlations between network structure and individual outcomes
over time (1–3, 5–11, 17, 21, 22). Two empirical patterns have been
used to substantiate claims of peer influence and contagion in
networks (i) assortative mixing—correlations of behaviors among
linked nodes (23, 24)—and (ii) temporal clustering—temporal in-
terdependence of behaviors among linked nodes (12–14, 25–27).
Because peer influence is likely to lead to assortative mixing, some
studies claim assortative mixing is evidence of peer influence
(12–14, 25–27). Evidence of temporal clustering is used to corrob-
orate these claims because as Anagnostopoulos et al. (25) argue ‘‘if
influence does not play a role, even though an agent’s probability
of activation could depend on her friends, the timing of such
activation should be independent of the timing of other agents.’’
Yet, while evidence of assortative mixing and temporal clustering
in outcomes may indicate peer influence, social contagion, and viral
spreading, such outcomes may also be explained by homophily—
the demographic, technological, behavioral, and biological similar-
ities of linked nodes (28). If ties are more likely between similar
nodes, their outcomes could be correlated because of inherent
similarities in their characteristics rather than as a consequence of
their interactions. On one hand, linked nodes may directly influence
one another to exhibit similar outcomes, creating viral contagions.
On the other hand, linked nodes may simply have greater likeli-
hoods of displaying correlated outcomes, in time and in network
space, as a consequence of their similarities.

Here we develop a matched sample estimation framework to
distinguish influence and homophily effects in dynamic networks,
and we apply this framework to a unique dataset documenting
product adoption in a large network. We find that previous methods
significantly overestimate peer influence in this network, mis-
takenly identifying homophilous diffusion as influence-driven
contagion.

Data
We apply our statistical framework to a longitudinal dataset that
combines: (i) the global network of daily instant messaging (IM)
traffic among 27.4 million users of Yahoo.com (Fig. 1) with (ii) data
on the day-by-day adoption of a mobile service application
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launched in July 2007 (Yahoo! Go) (Fig. 2A), and (iii) precise
attribute and dynamic behavioral data on users’ demographics,
geographic location, mobile device type and usage, and per-day
page views of different types of content (e.g., sports, weather, news,
finance, and photo sharing) from desktop, mobile, and Go plat-
forms. Much of these data, such as mobile device usage and page
views of different types of content, provide fine-grained proxies for
individuals’ tastes and preferences. The complete set of covariates
includes 40 time-varying and 6 time-invariant individual and net-
work characteristics. Taken together, the sampled users of the IM

network registered �14 billion page views and sent 3.9 billion
messages over 89.3 million distinct relationships. For details about
the service, the data, and descriptive statistics see the Data section
of the SI.

Evidence of Assortative Mixing and Temporal Clustering
We observe strong evidence of both assortative mixing and tem-
poral clustering in Go adoption. At the end of the 5-month period,
adopters have a 5-fold higher percentage of adopters in their local
networks (t � stat � 100.12, p � 0.001; k.s. � stat � 0.06, p � 0.001)
and receive a 5-fold higher percentage of messages from adopters
than nonadopters (t � stat � 88.30, p � 0.001; k.s. � stat � 0.17,
p � 0.001). Both the number and percentage of one’s local network
who have adopted are highly predictive of one’s propensity to adopt
(Logistic: �(#) � 0.153, p � 0.001; �(%) � 1.268, p � 0.001), and to
adopt earlier (Hazard Rate: �(#) � 0.10, p � 0.001; �(%) � 0.003,
p � 0.001). The likelihood of adoption increases dramatically with
the number of adopter friends (Fig. 2C), and correspondingly,
adopters are more likely to have more adopter friends (Fig. 2B),
mirroring prior evidence on product adoption in networks (29).

Adoption decisions among friends also cluster in time. We
randomly reassigned all Go adoption times (while maintaining the
adoption frequency distribution over time) and compared observed
dyadic differences in adoption times among friends to differences
among friends with randomly reassigned adoption times, a proce-
dure known as the ‘‘shuffle test’’ of social influence (25). Compared
with these randomly reassigned adoption times, friends are between
100% and 500% more likely to adopt within 2 days of each other,
after which the temporal interdependence of adoption among
friends disappears (Fig. 1D).

Evidence of assortative mixing and temporal clustering may
suggest peer influence in Go adoption, but is by no means conclu-
sive. Demographic, behavioral, and preference similarities could
simultaneously drive friendship and adoption, creating assortative
mixing. Such homophily could also explain the temporal clustering

Fig. 1. Diffusion of Yahoo! Go over time. (A–C and D–F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.

Fig. 2. Assortative mixing and temporal clustering. (A) The number of Go adopters per day from July 1 to October 29, 2007. (B) The fraction of adopters and
nonadopters with a given number of adopter friends. (C) The ratio of the likelihood of adoption given n adopter friends Pa(n) and the likelihood of adoption given
0adopter friendsPa(0)wherethenumberofadopter friends isassessedatthetimeofadoption. (D) Frequencyofobserveddyadicdifferences inadoptiontimesbetween
friends compared with differences in adoption times between friends with randomly reassigned adoption times. �t � ti � tj, where ti represents the time of i’s adoption.
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of adoption decisions. If friends are more similar, they are more
likely to have similar strengths of preference for Go and similar
desires to be ‘‘early adopters’’ of mobile technology services,
making them more likely to adopt contemporaneously even if they
do not influence one another. These alternative explanations frame
a foundational puzzle: Do social choices and behaviors exhibit
assortative mixing and temporal clustering in networks because of
influence (friends induce friends to adopt), or homophily (friends
have similar backgrounds and tastes), and when is one explanation
more likely than the other? Robust answers to this question require
a statistical framework that estimates influence by taking into
account how individual characteristics and similarities among
linked nodes may drive assortative mixing and temporal clustering.
Some work on the identification of peer effects in networks [e.g.,
Oestreicher-Singer and Sundararajan (15), Brock and Durlauf (30),
and Bramoulle et al. (31)] has developed following seminal work by
Manski (32) and Frank and Strauss (33), or models of the co-
evolution of networks and behaviors by Snijders (34), methods
based on exogenous shocks to peers [e.g., Tucker (35)], or exami-
nation of random assignments [see the Dartmouth Roommate
studies, e.g., Sacerdote (36)]. However, identification conditions are
strict, methods are not typically scalable to large networks, obser-
vation of random assignment is rare, and shocks to peers used as
instruments are rarely truly exogenous because social relationships
typically signal unobserved reasons why these shocks should be
correlated among peers. We therefore attempt to describe a
scalable and widely applicable alternative method to distinguish
homophily and influence, one of which complements existing
research on the identification of peer effects.

Methods
In thecontextofproductadoption,peer influence isassociatedwiththepresence
of adopters in one’s local network (the treatment). However, identification of
causal peer influence effects (37) is complicated by the unobservability problem
(38). Each user either has adopter friends or not, making it impossible to observe
whether those with adopter friends (the treated) would have adopted had they
not had adopter friends. Homophily in this case creates a selection bias because
treatments are not randomly assigned: adopters are more likely to be treated
because of similarity with their neighbors. Thus, frequently used methods such as
regression analysis, which can only establish correlation, are insufficient. Causal
treatment effects can, on the other hand, be estimated by matched sampling,
which controls for confounding factors and overcomes selection bias by compar-
ing observations that have the same likelihood of treatment.

Toward this end we adapt matched sample estimation (2, 38) for use in
dynamic networked settings. Conditioning matches on a vector of observable
characteristics, behaviors, and attributes yields influence estimates that account
for the homophily that may make product adoption decisions cluster in the
network even if no influence exists. This procedure establishes upper bounds on
the degree to which influence (rather than homophily) explains assortative
mixing and temporal clustering in networks. Because influence can vary over
time, our framework provides estimates of its evolution. We can also assess the
marginal influence of having any number of friends.

We created a dynamic matched sample of treated and untreated nodes over
time, where receiving various degrees of the treatment is defined as having 1, 2,
3,or4ormorefriendswhoadoptedtheproduct.Wematchedtreatednodeswith
untreated nodes that were as likely to have the same number of adopter friends,
conditional on a vector of observable characteristics and behaviors (X), but who
did not have as many adopter friends. For every period, we estimated pit, the
propensity to have been treated at time t, using a logistic regression of the
likelihood of having a friend who adopted as a function of users’ attributes and
dynamic behaviors up to and on day t, as follows:

pit � P�Tit � 1�Xit� �
exp�� it � � itXit � � it	

1 � exp�� it � � itXit � � it	
,

where Tit is the treatment status of i on day t and Xit represents the vector of
demographic and behavioral covariates of i. As treatment status (the number
of friends who have adopted), adoption outcome (whether the focal node has
adopted), and the vector of observable characteristics Xit all vary over time, we
performed daily, weekly, and biweekly matched sample tests over the
4-month period. We dropped matched pairs for which the distance of pro-

pensity scores exceeded two standard deviations of the observed distribution
of propensity score differences. For all treated nodes i, (@i, Tit � 1) we chose
an untreated match j such that �pit � pjt� is minimized subject to min�pit � pjt�
� 2�d where d � pit � pjt. This process yielded matched pairs who are equally
likely to have a certain number of adopter friends because of observed and
correlated latent homophily, contrasting them on the sole dimension of their
neighbors’ actual adoption status—treated nodes had more adopter neigh-
bors than their untreated matches. We then compared fractions of treated
(n
) and untreated (n�) adopters over time.

To apply this framework to explain temporal clustering we defined treated
users as those with friends who had adopted within certain time intervals of one
another (1 day, 2 days, 3 days, etc). For a given recency (R), we considered a user
as treated if one of his friends had adopted Go within the specified time interval
(�t � ti

a � tj
a � R) where ti

a is the adoption time of the adopter i, and tj
a is the

adoptiontimeofadopter j, a friendof i.Multinomial logistic regressionwasagain
used to compute estimates of the propensity of a user to be treated, i.e., the
likelihood to have had a friend who had adopted R days earlier. Once propensity
scores were computed, treated users were matched with untreated users having
the closest likelihood of being treated. Untreated users, as before, were those
who have no adopter friends within the time window. We again dropped pairs
for which the distance of propensity scores exceeded two standard deviations of
the observed distribution of propensity score differences. Influence estimates are
thus bounded from above by the ratio of the number of treated adopters (n
) to
the number of untreated adopters (n�). This procedure was repeated for a range
of time intervals from 0 to 6 days (�t � [0, 6]) (Fig. 3D) where 0 corresponds to
friends adopting Go on the same day. Full details regarding propensity score
matching methods are provided in SI, Propensity Score Matching).

Results
To assess the upward bias in influence estimates created by ho-
mophily we compare our method (Fig. 3B) to random matching
(Fig. 3A) which matches each treated node to a randomly selected
node without conditioning the match on the vector of observable
characteristics Xit and is analogous to methods commonly used to
assess influence in networks: comparison to randomized or shuf-
fled networks (12–14, 25, 26). Because friendship is not random, the
selection of a random control group does not control for homophily,
which may lead to a greater assessed likelihood of adoption among
those with adopter friends. Indeed, in the first biweekly comparison,
the fraction of treated adopters is 9 times greater than the fraction
of randomly matched untreated adopters when treatment is defined
as having 1 or more friends who adopt the product (Fig. 3A, open
circles), implying that those with 1 or more adopter friends are 9
times more likely to adopt than a randomly selected ‘‘control’’
group. The implied marginal increases in adoption likelihoods for
having 2, 3, and 4 or more adopter friends (for which the results
imply a 15-fold increase in the average adoption likelihood) are also
shown.

When we compare these results to those produced by dynamic
matched sampling, which accounts for homophily and individual
characteristics, estimates of influence are substantially reduced
(Fig. 3B). In the first biweekly comparison the fraction of treated
adopters is only �3 times greater than the fraction of matched
untreated adopters when the treatment is defined as having 1 or
more adopter friends (filled circles). The random matching esti-
mates are 7 times greater than our matched sample estimates for the
effect of having four or more adopter friends, implying that random
matching overestimates influence by up to 700%.

Random matching overestimates influence to a greater degree
earlier in the product lifecycle, whereas matched sample estimates
are consistent over time (Fig. 3 A and B). We speculated that
exaggerated homophily among early adopters leads to greater
upward bias in random matching influence estimates in earlier
periods. Cosine distances of attribute vectors between adopters and
their adopter and nonadopter friends over time confirm that early
adopters are indeed more similar to each other and less similar to
their nonadopter friends than later adopters are to their respective
adopter and nonadopter friends (Fig. 3C). Intuitively, estimates of
influence that do not account for homophily display greater upward
bias in contexts where greater homophily exists, as is the case with
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early Go adopters. Random matching also implies that the marginal
influence of an additional adopter friend grows with the number of
adopter friends, whereas propensity score results show linear to
diminishing marginal influence effects of additional adopter friends
(Fig. 3B Right Inset). This occurs in part because there is exagger-
ated homophily among larger clusters of adopter friends (Fig. 3B
Left Inset). The more adopters there are in a group of friends the
more likely they are to be more similar to one another. Comparisons
to random therefore incorrectly imply that influence grows super-
linearly with the number of adopter friends, whereas there is simply
greater homophily in larger groups of adopters.

Homophily also accounts for temporal clustering. We redefined
treatment to capture the effect of having a friend who adopted
within a certain time period (or recency)(�t � ti

a � tj
a � R) and

reevaluated results under random and propensity score matching
(Fig. 3D). Random matching overestimates the contribution of
influence to the temporal clustering of adoption decisions by
�200% for dyads that adopt on the same day (�t � 0), �100% for
dyads that adopt 1 day apart (�t � 1), and so on. Friends who adopt
contemporaneously are again more similar along observable de-
mographic and behavioral dimensions [measured by cos(xit

a, xjt
a), Fig.

3D Inset], indicating that homophily explains a good deal of variance
in the temporal clustering of Go adoption decisions.

Thus, homophily can, to a large extent, explain what seems at first
to be a contagious process driven by peer influence. Over half of the
cumulative adoption of treated users (those with at least one
adopter friend) can be attributed to homophily effects (Fig. 4 A and
B). The remaining adoption events (49.8%) represent the upper
bound of influence effects established by our matched sample
estimates. We also evaluated these influence effects under various
environmental conditions (by holding out and varying one charac-
teristic (xi) at a time while matching on all other characteristics, SI,
Environmental Conditions) and found the upper bounds of influ-

ence vary across different segments of the population. When ego’s
average strength of ties to adopter friends is above the median, the
likelihood of adoption controlling for homophily is on average 2
times higher than when below the median (Fig. 4C). Those with
cohesive, dense local networks (with more ties among their friends)
adopt at a higher rate in the presence of an adopter friend
controlling for observed homophily (Fig. 4D), reinforcing prior
arguments that cohesive networks magnify information exchange
and persuasion via redundancy and trust (39). Finally, greater
consumption of news content makes ego more susceptible to
potential influence. Because Yahoo! Go delivers personalized
news, those with greater interest in such content are more suscep-
tible to influence, demonstrating the importance of creating robust
matches based on contextual behavioral variables (Fig. 4E). These
estimates provide examples of the types of environmental condi-
tions that affect the prevalence of influence in networks and
demonstrate how to test them.

Discussion
We present a generalized statistical framework for distinguishing
peer-to-peer influence from homophily in dynamic networks of any
size. Application of this framework to a network of 27 million
individuals connected by instant message traffic provides an esti-
mate of the degree to which peer influence and homophily affect
the diffusion of a new mobile service application across this
network. Most critically, the results show that previous methods
overestimate peer influence in this network by 300–700% and that
homophily explains �50% of the perceived behavioral contagion in
mobile service adoption. These findings demonstrate that homoph-
ily can account for a great deal of what appears at first to be a
contagious process.

Overestimates of influence are magnified at early stages of the
diffusion process because those who are most susceptible are also

Fig. 3. Distinguishing homophily and influence. (A and B) The fraction of observed treated to untreated adopters (n
/n�) under random (A) and propensity score
(B) matching over time. The dotted line shows a ratio of 1, when treatment has no effect. The Right Inset in B graphs the average marginal influence effects of having
1, 2, 3, or 4 adopter friends implied by random (open circles) and propensity score (filled circles) matching. The Left Inset graphs the average cosine distance of attribute
andbehaviorvectorsofadopters toadopterfriendsasthenumberofadopters inthe localnetwork increases (
i,j

n cos(xi
a,xj

a)/n). (C)Graphsthecosinedistancesofadopters
to their adopter friends cos(xit

a, xjt
a), their nonadopter friends cos(xit

a, xjt), and a random alter cos(xit
a, xrt) over time with trend lines fitted by ordinary least squares. (D)

The fraction of treated and untreated adopters, where treatment is defined as having a friend who adopted within a certain time period (or recency) (�t � ti
a � tj

a �
R), under random matching (open circles) and propensity score matching (filled circles). The Inset graphs the cosine distances of dyads of adopters cos(xit

a, xjt
a) by the time

interval between their adoption.
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more similar to one another and more dissimilar vis-à-vis the rest
of the population. Influence is also overestimated to a greater
degree in large clusters of adopters because in these clusters the
homophily effect is more pronounced. Large clusters of adopters
tend to be more similar to one another, creating greater risk of
overestimation of influence in the very cliques that seem to be the
most susceptible to contagious spread. We also find that different
subsets of the population, characterized by distributions of
individual and relational characteristics such as the strength of
ties and local clustering, display various susceptibilities to po-
tential influence.

Our work is not without limitations. First, although we measure
individuals’ dynamic characteristics, preferences, and behaviors in
great detail, the data are not necessarily comprehensive. Although
the matching process accounts for homophily on all observed
characteristics and those unobserved or latent characteristics that
are correlated with what we observe, unobserved and uncorrelated
latent homophily and unobserved confounding factors or contex-
tual effects (such as correlated exposure to advertising among
friends or information from common unobserved friends) may also
contribute to assortative mixing and temporal clustering. The
methods therefore establish upper bounds of influence estimates

that account for homophily, and limitations in observability are
likely to make our estimates of the homophily effect even more
conservative. Second, a distinct but related body of literature
examines selection and influence processes in the co-evolution of
behaviors and network structure in cases where tie formation is
likely to be a function of the behavior in question [see Snijders et
al. (34)]. In our context (and in many important contexts) link
formation is not likely to be driven by the behavior in question—Go
adoption is unlikely to drive friendship. However, extending these
methods to account for selection processes could prove useful in
cases where selection effects are more prevalent. Third, Yahoo! Go
2.0 does not exhibit direct network externalities and its adoption is
not likely to be driven by the desire to communicate with one’s
friends by using the application. We suspect that peer influence
effects differ for products with direct network externalities and
therefore encourage the application of these methods to influence
estimation in the adoption of such products.

Understanding the dynamic mechanisms that govern contagion
processes in networks is critical in numerous scientific disciplines
and for the development of effective social policy, public health
actions, and marketing strategies. A key challenge in identifying the
existence and strength of true contagions is to distinguish peer

Fig. 4. Influence and homophily effects in Go adoption. (A and B) All treated adopters (filled circles) and the number of treated adopters that can be explained by
homophily (open circles) per day (A) and cumulatively over time (B). (C–E) Treatment effects are then displayed when the average strength of ego’s ties to adopter
friends (measured by the volume of IM message traffic) is greater than and less than the median under random and propensity score matching (C); the clustering
coefficient in the network around ego is greater than and less than the median (D); and ego’s page views of news content are greater than and less than the
median (E).
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influence processes from alternative processes such as homophily
that can lead to observed outcomes that mimic contagion, especially
during early stages of diffusion. These findings, and the general
statistical methods used to identify them, document the conditions
under which peer influence exists and can help verify the implica-
tions of a broad class of social contagion models in a variety of
contexts and disciplines (40, 41). The implications for research and
policy are far reaching, because discovery of the mechanisms that
drive contagions is critical for estimating viral marketing effective-
ness, promoting health-related behavior change in large popula-
tions, and managing contagions in networks.

Materials and Methods
The data represent an anonymized sample of the Yahoo! Instant Messenger
(IM) network where each node is an IM user for whom we collected detailed
demographic, geographic, and behavioral information as well as daily IM
message traffic. We first sampled all Yahoo! IM users who adopted Yahoo! Go
between June 1, 2007, and October 29, 2007. This ‘‘seed experimental sample’’
consists of 532,365 users that we labeled ‘‘service adopters.’’ We then created
a ‘‘seed control sample’’ by taking a random sample of 2% of the entire IM
network. This seed control sample consists of 2,974,288 nodes that we labeled
‘‘random control seeds.’’ We executed a two-step snowball sampling proce-
dure that traversed network links, defined by the existence of IM message
traffic, two steps out from every control and experimental seed node, collect-
ing the complete local network neighborhoods of all seed nodes. The first step
of the snowball sampling procedure yielded 9.1 million new nodes (labeled
‘‘first-step nodes’’) that were IM contacts of the seed node populations. We
then collected the local network neighborhoods of all first-step nodes by
sampling all users who received at least one message from any of the first-step
nodes. The second step of the snowball sampling procedure yielded an
additional 14.9 million users, each of whom is two steps away from a seed
node.

Behavior and network-related user characteristics such as numbers of page
views, IM messages, and number of IM buddies are heavy tailed, a characteristic
common to network data (SI). To normalize results to account for fat tails and the
effectsofoutliersweusethe logarithmsofvariablevalues.Morespecifically,each
given value Y is normalized as log10(Y 
 1), where 1 is added to support cases in

which Y � 0. We find that regression results are qualitatively similar in both cases,
but that model fit is significantly better when the logarithm is used.

We test for assortative mixing by using t tests of mean differences, Kolmog-
orov–Smirnov tests of distributional differences, logistic regression and hazard
rate models of the rate of Go adoption. We use logistic regression (33) to assess
the effect of personal and local network characteristics on the probability of Go
service adoption, defined as y(X) � 1/(1 
 exp[�� � �X]), where X is a matrix of
covariates for each user that may contain both categorical (such as gender or
country of residence) and numerical user characteristics. We employ Cox propor-
tional hazards regression (34) to assess the effect of individual user characteristics
on the rate of adoption. The regression h(t, X) � h0(t)exp[� 
 �X 
 �] estimates
users’ rate of Yahoo! Go adoption, where h(t, X) represents the adoption rate, t
is user time in the risk set, and h0(t) is the baseline adoption rate. The effects of
independent variables are specified in the exponential power (SI, Multivariate
Survival Analysis).

We estimate homophily over time by constructing a vector of 20 personal,
behavioral, and local network attributes Table S7 and measure the cosine dis-
tance defined for vectors of characteristics, xi and xj for nodes i and j as follows:

cos�xi, xj� �
� kxik�xjk

�xi� ��xj�
.

To assess the aggregate effect of peer influence on Go adoption across the
entire population, we compute the fraction of treated to untreated adopters
and use it to estimate the gross number of adopters who would have adopted
had they not been treated (had they not had an adopter friend). We define n


T

as the number of matched adopters treated with certain treatment T, n�
T as the

number of the matched untreated adopters, and N

T as the total number of

treated adopters (matched or unmatched), and then estimate the number of
adopters who would have adopted had they not been treated Ñ�

T as follows:
Ñ�

T � Ñ

T �n�

T /n

T . And for all treatments, the estimated number of adopters Ñ�

is Ñ� � 
t N

T �n�

T /n

T , t � {1, 2, 3, �4}. Additional considerations related to this

technique are provided in SI, Aggregative Effect of Peer Influence.
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