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Dynamics of Social Balance on Networks
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We study the evolution of social networks that contain both friendly and unfriendly pairwise links
between individual nodes. The network is endowed with dynamics in which the sense of a link in
an imbalanced triad—a triangular loop with 1 or 3 unfriendly links—is reversed to make the triad
balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a
steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update
event passes through 1/2. A finite network always falls into a socially-balanced absorbing state
where no imbalanced triads remain. If the additional constraint that the number of imbalanced
triads in the network does not increase in an update is imposed, then the network quickly reaches
a balanced final state.

PACS numbers: 02.50.Ey, 05.40.-a, 89.75.Fb

I. INTRODUCTION

In this work, we investigate the role of friends and en-
emies on the evolution of social networks. We represent
individuals as nodes in a graph and a relationship be-
tween individuals as a link that joins the corresponding
nodes. To quantify a relationship, we assign the binary
variable sij = ±1 to link ij, with sij = 1 if nodes i and j
are friends, and sij = −1 if i and j are enemies (Fig. 1).
A basic characterization of relationships between mutual
acquaintances is the notion of social balance [1, 2]. The
triad ijk is defined as balanced if the sign of the product
of the links in the triad sijsjkski equals 1, while the triad
is imbalanced otherwise. We define a triad to be of type
△k if it contains k negative links. Thus △0 and △2 are
balanced, while △1 and △3 are imbalanced. A balanced
triad therefore fulfills the adage

• a friend of my friend is my friend;
• an enemy of my friend is my enemy;
• a friend of my enemy is my enemy;
• an enemy of my enemy is my friend,

while an imbalanced triad is analogous to a frustrated
plaquette in a random magnet [3].

A network is balanced if each constituent triad is bal-
anced [1, 2]. An ostensibly more general definition of a
balanced network is that every cycle in the network is bal-
anced. Cartwright and Harary showed [4] that the cycle-
based and triad-based definitions of balance are equiv-
alent on complete graphs. Their result implies that if
an imbalanced cycle of any length exists in a complete
graph, an imbalanced triad also exists.

Balance theory has been initiated by Heider [1] and
other social psychologists [5, 6], and the subject remains
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an active research area [2, 7, 8, 9, 10, 11, 12]. Much
of this work was devoted to classifying balanced stable
states of networks when relationships are static. A funda-
mental result from these studies is that balanced societies
are remarkably simple: either all individuals are mutual
friends (we call such a state “paradise”), or the network
segregates into two antagonistic cliques where individu-
als within the same clique are mutual friends and indi-
viduals from distinct cliques are enemies (we call such
a state “bipolar”) [4]. Balance theory also has natural
applications to international relations [13]. As a par-
ticularly compelling example, the Triple Alliance (1882)
pitted Germany, Austria-Hungary, and Italy against the
Triple Entente (1907) countries of Britain, France, and
Russia [14]. This bipolar state of competing alliances
clearly contributed to the onset of World War I.

A large network is almost surely imbalanced if the re-
lationships are randomly chosen to be friendly or un-
friendly. Clearly such a network is socially unstable and
the web of relations must evolve to a more stable state
if the individual nodes behave rationally. In this work,
we go beyond a static description social relations and
investigate how an initially imbalanced society achieves
balance by endowing a network with a prototypical so-
cial dynamics that reflects the natural human tendency
to reduce imbalanced triads. A related line of investiga-
tion, based on evolving social networks with continuous
interaction strengths, has also recently appeared [15].

II. MODELS

We first consider what we term local triad dynamics

(LTD). In an update step of LTD, we first choose a triad
at random. If this triad is balanced (△0 or △2), no evo-
lution occurs. If the triad is imbalanced (△1 or △3), we
change s → −s on one of the links as follows: △1 → △0

occurs with probability p, and △1 → △2 occurs with
probability 1 − p, while △3 → △2 occurs with probabil-
ity 1 (Fig. 1). One unit of time is defined as L update
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events, where L is the total number of links. Notice that
for the special case of p = 1/3, each link of an imbalanced
triad is flipped equiprobably. When p > 1/3, the density
of friendly links consequently tends to increase and the
society is predisposed to tranquility, while for p < 1/3
the societal predisposition is hostility.

After an update step in LTD, the imbalanced target
triad becomes balanced, but other balanced triads that
share a link with this target may become imbalanced.
These triads can subsequently evolve and return to bal-
ance, leading to new imbalanced triads. Such an interac-
tion cascade is familiar in social settings. For example,
if a married couple breaks up, the acquaintances of the
couple may then be obliged to redefine their relations
with each partner in the couple so as to maintain bal-
anced triads. These redefinitions, may lead to additional
relationship shifts, etc.

1−p

p

j k

i
1

FIG. 1: Imbalanced triads △1 (left) and △3 (right) and the
possible outcomes after an update step by local triad dynam-
ics. Full and dashed lines represent friendly (e.g., sij = 1)
and unfriendly (e.g., sik = −1) relations respectively.

For p < 1/2, we shall show that LTD quickly drives
an infinite network to a quasi-stationary dynamic state
where global characteristics, such as the densities of
friendly relations or imbalanced triads, fluctuate around
stationary values. As p passes through a critical value of
1/2, the network undergoes a phase transition to a par-
adise state where no unfriendly relations remain. On the
other hand, a finite network always reaches a balanced
state. For p < 1/2, this balanced state is bipolar and the
time to reach this state scales faster than exponentially
with network size. For p ≥ 1/2, the final state is paradise.
The time to reach this state scales algebraically with N
when p = 1/2, and logarithmically in N for p > 1/2.

We also investigate constrained triad dynamics (CTD).
Here, we select a random link, and change s → −s for this
link if the total number of imbalanced triads decreases. If
the total number of imbalanced triads is conserved in an
update, then the update occurs with probability 1/2. Up-
dates that would increase the total number of imbalanced
triads are not allowed. We again define the unit of time as
L update events, so that on average each link is changed
once in unit of time. The global constraint accounts for
the socially-plausible feature that an agent considers all
of its mutual acquaintances before deciding to change
the character of a relationship. CTD also corresponds to
an Ising model with a three-spin interaction between the
links of a triad, H = −∑

ijk sijsjkski, where the sum
is over all triads ijk, with zero-temperature Glauber dy-
namics [16]. As we shall see, a crucial outcome of CTD

is that a network is quickly driven to a balanced state in
a time that scales as ln N .

In the following two sections we analyze the dynamics
of networks that evolve by LTD or CTD. For simplicity,
we consider networks with a complete graph topology—
everyone knows everyone else. This limit is appropriate
for small networks, such as the diplomatic relations of
countries. We then summarize and discuss some practical
implications of our results in Sec. IV.

III. LOCAL TRIAD DYNAMICS

A. Evolution Equations

We begin with essential preliminaries for writing the
governing equations for the various triad densities. Let
N , L =

(

N
2

)

, and N△ =
(

N
3

)

be the numbers of nodes,
links, and triads in the network. Define Nk as the number
of triads that contain k negative links, with nk = Nk/N△

the respective triad densities, and L+ (L−) the number
of positive (negative) links. The number of triads and
links are related by

L+ =
3N0 + 2N1 + N2

N − 2
, L−=

N1 + 2N2 + 3N3

N − 2
. (1)

The numerator counts the number of positive links in all
triads while the denominator appears because each link
is counted N − 2 times. The density of positive links
is therefore ρ = L+/L = (3n0 + 2n1 + n2)/3, while the
density of negative links is 1 − ρ = L−/L.

A fundamental network characteristic is N+
k , which is

defined as follows: for each positive link, count the num-
ber of triads of type △k that are attached to this link.
Then N+

k is the average number of such triads over all
positive links. This number is

N+
k =

(3 − k)Nk

L+
. (2)

The factor (3 − k)Nk accounts for the fact that each of
the Nk triads of type △k is attached to 3 − k positive
links; dividing by L+ then gives the average number of
such triads. Analogously, we introduce N−

k = kNk/L−.
Since the total number of triads attached to any given
link equals N − 2, the corresponding triad densities are

n+
k =

N+
k

N − 2
=

(3 − k)nk

3n0 + 2n1 + n2
(3a)

n−
k =

N−
k

N − 2
=

knk

n1 + 2n2 + 3n3
. (3b)

We now write the rate equations that account for
changes in the various triad densities in a single update
event. We choose a triad at random; if it is imbalanced
(△1 or △3) we change one of its links as shown in Fig. 1.
Let π+ be the probability that a link changes from + to
− in an update event, and vice versa for π−. Since a
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link changes from 1 → −1 with probability 1 − p when
△1 → △2, while a link changes from −1 → 1 with prob-
ability p if △1 → △0 and with probability 1 if △3 → △2,
we have (see Fig. 1)

π+ = (1 − p)n1 π− = p n1 + n3. (4)

Since each update changes N−2 triads, and we also de-
fined one time step as L update events, the rate equations
for the triad densities have the size-independent form

dn0

dt
= π−n−

1 − π+n+
0 ,

dn1

dt
= π+n+

0 + π−n−
2 − π−n−

1 − π+n+
1 ,

dn2

dt
= π+n+

1 + π−n−
3 − π−n−

2 − π+n+
2 ,

dn3

dt
= π+n+

2 − π−n−
3 .

(5)

B. Stationary States

We first study stationary states. Setting the left-hand
sides of Eqs. (5) to zero and also imposing π+ = π− to
ensure a fixed friendship density, we obtain

n+
0 = n−

1 , n+
1 = n−

2 , n+
2 = n−

3 .

By forming products such as n+
0 n−

2 = n+
1 n−

1 , these rela-
tions are equivalent to

3n0n2 = n2
1 , 3n1n3 = n2

2 . (6)

Substituting π+ and π− from Eq. (4) into the station-
arity condition, π+ = π−, gives n3 = (1 − 2p)n1. Using
this result, as well as the normalization

∑

nk = 1, in
Eqs. (6), we find, after some straightforward algebra

nj =

(

3

j

)

ρ3−j
∞ (1 − ρ∞)j , (7)

where

ρ∞ =

{

1/[
√

3(1 − 2p) + 1] p ≤ 1/2;

1 p ≥ 1/2;
(8)

is the stationary density of friendly links. Equation (7)
shows that relationships are uncorrelated in the station-
ary state. As shown in Fig. 2, the density of friendly
links ρ∞ monotonically increases with p for 0 ≤ p ≤ 1/2,
while for p ≥ 1/2, paradise is reached where all peo-
ple are friends. Near the phase transition, the density
of unfriendly links 1 − ρ∞ vanishes as

√
3ǫ + O(ǫ), as

ǫ ≡ 1 − 2p → 0.

C. Temporal Evolution

A remarkable feature of equations (5) is that if the
initial triad densities are given by Eq. (7)—uncorrelated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5
p

ρ∞
n0
n1
n2
n3

FIG. 2: Exact stationary densities nk(p) and the density of
friendly relations ρ∞ as a function of p. Simulation results
for ρ∞ for N = 64 (crosses) and 256 (boxes) are also shown.

densities—the densities will remain uncorrelated forever.
For such initial conditions it therefore suffices to study
the time evolution of the density of friendly links ρ(t).
This time evolution can be extracted from Eqs. (5), or it
can be established directly by noting that ρ(t) increases
if △3 → △2 or △1 → △0, and decreases if △1 → △2.
Taking into account that the respective probabilities for
these processes are 1, p, and 1 − p, we find

dρ

dt
= 3(2p− 1)ρ2(1 − ρ) + (1 − ρ)3. (9)

Thus the time dependence of the density of friendly links
is given by the implicit relation

∫ ρ

ρ0

dx

3(2p− 1)x2(1 − x) + (1 − x)3
= t. (10)

When p < 1/2, the stationary density of Eq. (8) is
approached exponentially in time:

ρ(t) − ρ∞ ∼ e−Ct , C =
6ǫ

1 +
√

3ǫ
,

where again ǫ = 1 − 2p. At the threshold value p = 1/2,
the friendship density is given by

ρ = 1 − 1 − ρ0
√

1 + 2(1 − ρ0)2t
. (11)

Here the approach to paradise is algebraic in time, viz.,
1 − ρ → 1/

√
2t as t → ∞. As a consequence,

(n0, n1, n2, n3) →
(

1 − 3√
2t

,
3√
2t

,
3

2t
,

1

(2t)3/2

)

. (12)

Finally when p > 1/2,

1 − ρ ∼ exp [−3(2p− 1)t] , (13)

so that paradise is reached exponentially quickly.
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D. Fate of a Finite Society

Although an infinite network reaches a dynamic steady
state for p < 1/2, a finite network ultimately falls into
an absorbing state for all p. Such absorbing states are
necessarily balanced, because any network that contains
an imbalanced triad continues to change. To see why
such an absorbing state must eventually be reached, con-
sider the evolution in which at each step an unfriendly
link changes to friendly in an imbalanced triad. Since
the number of unfriendly links always decreases, a bal-
anced state is reached in a finite number steps. Finally,
because this particular route to a balanced state has a
nonzero probability to occur, any initial network ulti-
mately reaches an absorbing balanced state.

106
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 4  6  8  10  12  14

T
N

N

(a)

104

103

102

10

1
103102101

T
N

N

(b)
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 10

 14

103102101

T
N

N

(c)

FIG. 3: Average absorption time as a function of N for an
initially antagonistic society (ρ0 = 0) for: (a) p = 1/3; (b)
p = 1/2; (c) p=3/4. The line in (b) has slope 4/3.

Our simulations show that a finite network evolves to
a bipolar state for p < 1/2, independent of the initial
state. The size difference of the two final cliques is virtu-
ally independent of the initial configuration because the
network spends an enormous time in a quasi-stationary
state before reaching the absorbing state. For p < 1/2,
we estimate the time to reach a bipolar state by the fol-
lowing crude argument [17]. Consider a nearly balanced

network. When a link is flipped on an imbalanced triad,
then of the order of N new imbalanced triads will be cre-
ated in the adjacent triads that contain the flipped link.
Thus starting near a balanced state, local triad dynam-
ics is equivalent to a biased random walk in the state
space of all network configurations, in which the bias is
directed away from the balanced state, with the bias ve-
locity v proportional to N . Conversely, when the network
is far from balance, local triad dynamics is diffusive in
character because the number of imbalanced triads will
change by of the order of ±N equiprobably in a single
update. The corresponding diffusion coefficient D is then
proportional to N2. Since the total number of triads in
a network of N nodes is N△ ∼ N3, we therefore expect
that the time TN to reach balance will scale as

TN ∼ evN△/D ∼ eN2

. (14)

When p ≥ 1/2, paradise is reached with a probabil-
ity that quickly approaches one as N → ∞. At the
threshold p = 1/2, a naive estimate for the time TN to
reach paradise is given by the time at which the den-
sity of unfriendly links a(t) ≡ 1 − ρ(t) is of the order
of N−2, corresponding to one unfriendly link in the net-
work. From Eq. (11), the criterion a(TN ) ∼ N−2 gives
TN ∼ N4. While simulations show that TN does scales
algebraically with N , the exponent value is much smaller
(Fig. 3(b)). The source of this smaller exponent is the
existence of anomalously large fluctuations in the number
of unfriendly links.

To determine these fluctuations in the thermodynamic
limit, we write the number of unfriendly links A(t) ≡
L−(t) in the canonical form [18]

A(t) = La(t) +
√

L η(t), (15)

where a(t) is deterministic and η(t) is a stochastic vari-
able. Both a and η are size independent in the thermo-
dynamic limit (L ≫ 1), and the form of Eq. (15) assures
that the average 〈A〉 and the variance 〈A2〉 − 〈A〉2 grow
linearly with the total number of links L. In Appendix A,
we show that σ ≡ 〈η2〉 grows as

σ ∼
√

t as t → ∞ . (16)

Thus the time to reach paradise TN is determined by
the criterion that fluctuations in A become of the same
order as the average, viz.,

√

Lσ(TN ) ∼ La(TN) . (17)

Using a(t) ∼ 1/
√

t from Eq. (11) together with Eq. (16)

and L ∼ N2, we rewrite Eq. (17) as N2 T
−1/2
N ∼ N T

1/4
N .

This leads to the estimate

TN ∼ N4/3 . (18)

Above the threshold p > 1/2, paradise is approached
exponentially quickly [see Eq. (13)] and the time to par-
adise scales logarithmically with network size:

TN ∼ (2p − 1)−1 lnN (19)
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Interestingly, the estimates (18) and (19) coincide when
2p − 1 ∼ N−4/3 lnN . That is, there is a finite-width
critical region near the phase transition due to finite-
size effects. In Appendix A, we estimate this width by
analyzing the fluctuations below the threshold p < 1/2
and obtain essentially this same result.

Summarizing, the asymptotics for the absorption time
are:

TN ∝











exp
(

N2
)

p < 1/2

N4/3 p = 1/2

(2p − 1)−1 lnN p > 1/2

(20)

in agreement with the simulation results in Fig. 3.

IV. CONSTRAINED TRIAD DYNAMICS

A. Jamming and Absorption Time

In constrained triad dynamics (CTD), the number of
imbalanced triads cannot increase in an update event,
and the final state can either be balanced or jammed.
A jammed state is one in which imbalanced triads exist
and for which the flip of any link increases the number
of imbalanced triads. Since this type of update is for-
bidden in CTD, there is no escape from a jammed state.
Moreover, jammed states turn out to be much more nu-
merous than balanced states (see Sec. IVD). In spite
of this fact, we find that the probability for the network
to reach a jammed state, Pjam(N), quickly goes to zero
as N increases, except for the case of an initially antag-
onistic society (ρ0 = 0), where Pjam(N) decays slowly
with N (Fig. 4). Thus the final network state is almost
always balanced for large N , and consists either of one
clique (paradise) or two antagonistic cliques. It is worth
mentioning that we never observed “blinkers” [19] in sim-
ulations, although we cannot prove that such states do
not exist. These are trajectories in the state space that
evolve forever and correspond to a network in which all
possible updates involve no change in the number of im-
balanced triads.

Another fundamental feature of CTD is that the time
TN for a network of N nodes to reach its final state gener-
ically scales as ln N . While TN now depends on the initial
condition, in contrast to LTD, this dependence occurs ei-
ther in the amplitude or in lower-order corrections of the
absorption time. Thus the logarithmic growth of TN with
N is a robust feature of CTD.

B. Final Clique Sizes

An unexpected feature of CTD is the phase transi-
tion for the difference in sizes C1 and C2 of the two fi-
nal cliques as a function of ρ0 (Fig. 5). We quantify this
asymmetry by the scaled size difference δ = (C1−C2)/N .
For ρ0 . 0.4 the cliques sizes in the final bipolar state

10-5

10-4

10-3

10-2

10-1

10310210

P j
am

N

ρ0 =  0
1/4
1/2

FIG. 4: Probability of reaching a jammed state Pjam as a
function of N for several values of ρ0.

are nearly the same size and 〈δ2〉 ≈ 0. As ρ0 increases
toward ρ∗0 ≈ 0.65, the size difference of the two cliques
continuously increases. A sudden change occurs at ρ∗0,
beyond which the final network state is paradise. The
probability distribution for δ is sharply peaked about its
average value as N → ∞ (Fig. 6). Since 〈δ2〉 and the den-
sity of friendly links ρ∞ are related by 〈δ2〉 = 2ρ∞ − 1
in a large balanced society, uncorrelated initial relations
generically lead to ρ∞ > ρ0. Thus CTD tends to drive a
network into a friendlier final state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

<
 δ

2  >

ρ0

N = 256
512

1024
2048

FIG. 5: Asymmetry of the final state as a function of the
initial friendship density ρ0 for several network sizes.

While we do not have a detailed understanding of this
phase transition, we give a qualitative argument that sug-
gests that a large network undergoes a sudden change
from ρ∞ = 0 (two equal size cliques) when ρ0 < 1/2 to
ρ∞ = 1 (paradise) when ρ0 > 1/2. The fact that the
transition appears to be located near ρ∗0 ≈ 0.65 (Fig. 5)
rather than at ρ0 = 1/2 indicates that our approach is
not a complete description for the transition.

We first assume, as observed in simulations of large
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FIG. 6: Scaled probability distribution of the relative differ-
ence between the final clique sizes for ρ0 = 0 and 1/2.

networks, that jammed states do not arise. We also
assume that a network remains uncorrelated during its
early stages of evolution. Consequently the densities
n

+ ≡ (n+
0 , n+

1 , n+
2 , n+

3 ) of triads that are attached to a
positive link are

n
+ = (ρ2, 2ρ(1 − ρ), (1 − ρ)2, 0). (21)

For a link to change from + to −, it is necessary that
n+

1 + n+
3 > n+

0 + n+
2 . From Eq. (21), this condition is

equivalent to 4ρ(1−ρ) > 1, which never holds. Similarly,
the densities n

− ≡ (n−
0 , n−

1 , n−
2 , n−

3 ) of triads attached to
a negative link are

n
− = (0, ρ2, 2ρ(1 − ρ), (1 − ρ)2). (22)

The requirement n−
1 + n−

3 > n−
0 + n−

2 now reduces to
1 > 4ρ(1 − ρ), which is valid when ρ 6= 1/2.

Thus for a large uncorrelated network, only negative
links flip in CTD. Since, the density of negative links is
1 − ρ, the governing rate equation is

dρ

dt
= 1 − ρ, (23)

from which

ρ = 1 − (1 − ρ0)e
−t. (24)

From the criterion 1 − ρ(TN) ∼ N−2, corresponding to
one unfriendly link remaining in the network, the time
to reach paradise is given by TN ∼ lnN , in agreement
with simulations. According to Eq. (24) a network should
evolve to paradise for any initial condition.

However, our simulations indicate that this homoge-
neous solution is unstable for ρ0 < 1/2. In this case, the
density of friendly links ρ initially still increases according
to (24) until ρ ≈ 1/2. At this point, correlations in the
relationship structure begin to arise and these ultimately
lead to a bipolar society with ρ∞ ≈ 1/2. We now give a
qualitative argument to support these observations.

When ρ(t) ≈ 1/2, there are many partitions of the
network into two subnetworks S1 and S2 of nearly equal
sizes C1 = |S1| and C2 = |S2|, for which the density of
friendly links within each subnetwork, ρ1 and ρ2, slightly
exceed 1/2, while the density β of friendly links between
subnetworks is slightly less than 1/2. Our basic point is
that this small fluctuation is amplified by CTD so that
the final state is two nearly equal-size cliques.

To appreciate how such an evolution can occur, we
assume that relationships within each subnetwork and
between subnetworks are homogeneous. Consider a neg-
ative link in S1. The densities of triads attached to this
link are given by (22), with ρ replaced by β when the
third vertex in the triad belongs to S2, and by (22), with
ρ replaced by ρ1 when the third vertex belongs to S1.
The requirement that a link can change from − to +
according to CTD now becomes

C1[1 − 4ρ1(1 − ρ1)] + C2[1 − 4β(1 − β)] > 0, (25)

which is always satisfied. Additionally, negative links
within each subnetwork can change to positive with rate
one, while positive links within each subnetwork can
never change.

Consider now a positive link between the subnetworks.
The triad densities attached to this link are given by

n
+
j = (βρj , β(1 − ρj) + ρj(1 − β), (1 − β)(1 − ρj), 0)

when the third vertex belongs to Sj . Since

β(1−ρj)+ρj(1−β)−βρj−(1−β)(1−ρj) = (2ρj−1)(1−2β) ,

the change + → − is possible if

[C1(2ρ1 − 1) + C2(2ρ2 − 1)](1 − 2β) > 0 . (26)

Thus if the situation arises where ρ1 > 1/2, ρ2 > 1/2, and
β < 1/2, the network subsequently evolves to increase the
density of intra-subnetwork friendly links and decrease
the density of inter-subnetwork friendly links. These link
densities thus evolve according to the rate equations

dρ1

dt
= 1 − ρ1 ,

dρ2

dt
= 1 − ρ2 ,

dβ

dt
= −β , (27)

and give the instability needed to drive the network to a
final bipolar state.

The last step in our argument is to note that when
C1 ≈ C2 ≈ N/2, the number of ways,

(

N
C1

)

, to partition
the original network into the two nascent subnetworks S1

and S2, is maximal. Consequently, the partition C1 = C2

has the highest likelihood of providing the initial link den-
sity fluctuation, after which the homogeneous evolution
(23) is replaced by the clique evolution (27) so that a
homogeneous network organizes into two nearly equal-
size cliques. Although our argument fails to account for
the quantitative details of the transition shown in Fig. 5,
the primary behaviors of 〈δ2〉 in the two limiting cases of
ρ0 → 0 and ρ0 → 1 are described correctly.
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C. Structure of Jammed Configurations

While jammed configurations can arise in CTD, we will
now show that: Jammed states are possible if and only

if the network size is N = 9 or N ≥ 11. To prove this
statement, we first explicitly construct jammed config-
urations for N = 9 and N ≥ 11. Fig. 7 shows three
jammed configurations for N = 9, the smallest possible
N where jammed configurations can occur. The exam-
ple in Fig. 7(a) was observed in simulations, while the
jammed configuration in Fig. 7(b) consists of three an-
tagonistic cliques of 3 nodes each. We now generalize this
latter construction of jammed states to arbitrary N ≥ 11.

Consider three mutually antagonistic cliques of sizes
(m1, m2, m3), with m1 + m2 + m3 = N . A link within
a clique is necessarily stable, as all attached triads are
of type △0 or △2. Conversely, a negative link between
clique 1 (circles in Fig. 7(b)) and clique 2 (squares) is
attached to both stable and imbalanced triads. There
are m1 − 1 + m2 − 1 attached stable triads of type △2,
where the third node of the triad is either within clique
1 or clique 2, and m3 attached imbalanced triads of type
△3, where the third node is in clique 3 (triangles). The
requirement for link stability among these cliques is then

m1 + m2 > m3 + 2

m2 + m3 > m1 + 2 (28)

m3 + m1 > m2 + 2,

where the last two equations arise by cyclic permutations
of the first.

We term a partition (m1, m2, m3) “jammed” if it satis-
fies the inequalities (28). By summing pairs of Eqs. (28),
we find mj ≥ 3, j = 1, 2, 3. Thus jammed partitions are
possible only for networks of size N = m1+m2+m3 ≥ 9.
Following the rules in Eq. (28), the following partitions
are jammed: for N = 3k with k ≥ 3, partitions of the
form (k, k, k); for N = 3k+2 with k ≥ 3, (k, k+1, k+1);
and for N = 3k+1 with k ≥ 4, (k, k, k+1). Thus jammed
partitions indeed exist for N = 9 and N ≥ 11.

Finally, we show that jammed states are impossible
for N ≤ 8 and N = 10. As a preliminary, we need the
following:

Lemma. Let ABC be imbalanced, ADC balanced, and
sAC = −1. Then one of the two triads ABD and BDC
is balanced, and the other is imbalanced.

Proof. Let sXY Z = sXY sY ZsZX be the sign of the
triad XY Z. For the imbalanced ABC triad we have
sABC = −1 while for the balanced triad sACD = 1. Using
additionally the identities sXY = sY X , s2

XY = 1, we
obtain the product of the signs of triads ABD and BDC:

sABDsBDC = sABsBDsDAsBDsDCsCB

= sABsDAsDCsCB

= sABsBCsCAsACsCDsDA

= sABCsACD = −1

from which the lemma immediately follows.

(a)

(b) (c)

FIG. 7: Examples of jammed configurations for N = 9 (only
friendly links are displayed). (a) A jammed configuration that
appeared in simulations. (b) A jammed state consisting of
three mutually antagonistic cliques. (c) A jammed state de-
rived from (b) in which the top clique from (b) is friendly
toward the remaining two cliques.

Now suppose that there is a jammed state in a net-
work with an even number of nodes N = 2k. By def-
inition, there is at least one imbalanced triad in the
jammed state; let ABC be such an imbalanced triad
with sAC = −1. Since the state is stable, out of the
N − 2 = 2k − 2 triads attached to the link AC, at least
k are balanced. (Note that this construction requires
k ≥ 3; however, it is trivial to show that there is no
jammed state for the case k = 2 [N = 4]). Take k such
balanced triads and denote them ADjC, j = 1, . . . , k.
To each pair of triads ABC and ADjC we now apply the
lemma. Then there is a certain number x of imbalanced
triads among ABDj , and a certain number y of imbal-
anced triads among CBDj , with x + y = k. Stability
ensures that there are at most k − 2 imbalanced triads
attached to the link AB. Recalling that ABC is imbal-
anced and that there are x imbalanced triads ABDj , we
obtain x + 1 ≤ k − 2. A similar argument applied to link
CB leads to y + 1 ≤ k − 2. Summing these inequalities
and using x + y = k gives k ≥ 6, or N ≥ 12 for even N .

The case of odd N is similar. We set N = 2k− 1, with
k ≥ 3. Now each link is attached to at least k balanced
triads and at most k − 1 imbalanced triads. Repeating
the same argument as for the even case we obtain the
conditions x+1 ≤ k−1 and y+1 ≤ k−1 with x+y = k,
which leads to N ≥ 9 for odd N .
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D. Number of Jammed Configurations

Last, we show that the number of jammed configu-
rations greatly exceeds the number of balanced config-
urations. The total number of distinct network con-
figurations is 2L. Each balanced state has the form
(m1, m2|m1 + m2 = N), and we enumerate all classes
of balanced states by counting the integer solutions of
m1 + m2 = N , with 0 ≤ m1 ≤ m2. Therefore the num-
ber of classes of balanced states is B = k + 1 for N = 2k
and N = 2k + 1. The total number B of balanced states
is determined from

B =
∑

m1+m2=N

(

m1 + m2

m1

)

= 2N , (29)

and is thus much larger than the number of classes of
balanced states.

For the number of classes of jammed states J and the
number of jammed states J, we can only establish lower
bounds. For large N , instead of exact counting we em-
ploy a continuum description. From Eq. (28), the number
of jammed partitions is equal to N2 times the area A of
the region inside the triangle x1 +x2 +x3 ≤ 1 defined by
inequalities x1 + x2 ≥ x3, x2 + x3 ≥ x1, x3 + x1 ≥ x2;
this area is A = 1/8. We also divide by 3! = 6 to account
for over-counting different permutations of m1, m2, m3.
Thus J > N2/48. We could improve this bound by
counting additional jammed states built from the con-
struction in Fig. 7(c), but this contribution would not af-
fect the N dependence of the bound. However, we do not
know whether J ∝ N2 or J grows faster than N2 due to
the existence of jammed states, such as those in Fig. 7(a),
that are not in the classes described in Sec. IVC.

We obtain a lower bound for J in a similar manner
to that in Eq. (29) for counting the number of balanced
states,

J >
∑

jammed

(

m1 + m2 + m3

m1, m2, m3

)

≈ 3N , (30)

where the sum is over jammed partitions, and the trino-
mial coefficient is

(

m1 + m2 + m3

m1, m2, m3

)

=
(m1 + m2 + m3)!

m1! m2! m3!
.

The summand in Eq. (30) is sharply peaked around m1 =
m2 = m3 = N/3 and therefore the sum is very close
to 3N which is the sum over all partitions. Again, the
lower bound may be weak because of the neglect of non-
tripartite jammed configurations.

In summary, we find that J > 3N ≫ 2N = B. Thus the
total number of jammed states greatly exceeds the total
number of balanced states. Nevertheless, for a random
initial condition, the probability to end in a balanced
state is very close to one while the probability to end in a
jammed state is negligible; that is, the basin of attraction
of balanced states greatly exceeds the basin of attraction
of jammed states.

V. SUMMARY AND DISCUSSION

In social relations, we may encounter the uncomfort-
able situation of an imbalanced triad. If you have two
friends that develop a mutual animosity, then an imbal-
anced triad of relations exists. You will then likely have
to choose between these two friends, thereby resolving
the social conflict and restoring the relationship triads to
balance. In this work, we implemented simple and pro-
totypical dynamical rules for healing imbalanced triads
and we investigated the resulting evolution of these social
networks.

In the case of local triad dynamics, a finite network
falls into a socially-balanced state, where no frustrated
triads remain. The time to reach this final state depends
very sensitively on the propensity p for forming friendly
links in the update events that heal social imbalance. For
an infinite network, the balanced state is never reached
when p < 1/2 and the system remains in a stationary
state. The density of unfriendly links gradually decreases
and the network undergoes a dynamical phase transition
to an absorbing, paradise state for p ≥ 1/2.

We also examined the dynamics in which an additional
global constraint is imposed that the number of imbal-
anced triads in the entire network cannot increase in an
update event. The virtue of this dynamics is that the
final outcome is always reached quickly. A downside,
however, is that the final configuration of the network
may be jammed—these are states that are not balanced,
but where flipping any link increases the number of im-
balanced triads. Fortunately, the probability of reaching
a jammed state is vanishingly small and the final state is
either a two-clique bipolar state or paradise.

As alluded to in the introduction, a natural applica-
tion for social balance ideas is to international relations,
with the prelude to World War I being a particularly
appropriate example. For example, the Three Emper-
ors’ League (1872, and revived in 1881) aligned Ger-
many, Austria-Hungary, Russia, leaving France isolated.
However, the Turkish-Russian war (1877) and tension
between Austria-Hungary and the Balkan states unrav-
eled Russia’s participation in the League, and a bipartite
agreement between Germany and Russia lapsed in 1890.
In the meantime, the Triple Alliance was formed in 1882
that joined Germany, Austria-Hungary, and Italy into a
bloc that continued until World War I.

On the other hand, a French-Russian alliance was
formed over the period 1891-94 that ended France’s diplo-
matic isolation with respect to the Triple Alliance. Sub-
sequently an Entente Cordiale between France and Great
Britain was consummated in 1904, and then a British-
Russian agreement in 1907, after long-standing tensions
between these two countries, that then bound France,
Great Britain, and Russia into the Triple Entente. While
our historical account of these Byzantine maneuvers is
very incomplete (see Refs. [14] for more information), the
basic point is that among the six countries that comprised
the two major alliances, bipartite relationships changed
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as triads became unbalanced and there was a reorganiza-
tion into a balanced state of the Triple Alliance and the
Triple Entente that became the two main protagonists at
the start of World War I.

On the theoretical side, there are several avenues for
additional research. One possibility is to relax the defi-
nition of imbalanced somewhat. This is the direction fol-
lowed by Davis [9] who proposed the “clusters model” in
which triads with three unfriendly relations are deemed
acceptable. The clusters model thus allows for the pos-
sibility that “an enemy of my enemy may still be my
enemy.” This more relaxed definition for imbalanced tri-
ads may lead to interesting dynamical behavior that will
be worthwhile to explore.

Another natural generalization of the balance model
would be to ternary relationships of positive +, nega-
tive −, or indifferent 0. These relations may lead to the
emergence of cliques (groups of mutual friends who dis-
like other people) and communities (groups of mutual
friends with no relations with other people). It would be
interesting to study the number of cliques and number of
communities as a function of network size and the density
of indifferent relationships. Communities on the Web can
be effectively identified [20], and these results may allow
for useful comparisons between data and model predic-
tions. Finally, relations need not be symmetric, that is,
sij may be different from sji, and it may be interesting to
generalize the basic notions of balance to networks with
such asymmetric interactions.
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APPENDIX A: FLUCTUATIONS IN LOCAL

TRIAD DYNAMICS

In this appendix, we compute the normalized variance
σ = 〈η2〉. We focus on the most interesting case of the
critical regime p = 1/2, where fluctuations exhibit the
asymptotic behavior of Eq. (16). Then we briefly discuss
the two regimes p < 1/2 and p > 1/2.

We first note that A changes according to

A →











A − 1 rate N3

A − 1 rate pN1

A + 1 rate (1 − p)N1

(A1)

which describe the processes N3 → N2, N1 → N0, and

N1 → N2, respectively. From (A1) we obtain

d

dt
〈A〉 = −〈N3〉 − p〈N1〉 + (1 − p)〈N1〉 , (A2)

which simplifies to

d

dt
〈A〉 = −〈N3〉 (A3)

at the threshold p = 1/2. Since 〈A〉 ∝ a and 〈N3〉 ∝
〈A3〉 ∝ a3 to lowest order, Eq. (A3) can be written as

da

dt
= −a3 (A4)

whose solution is given by Eq. (11). Similarly from (A1)
we obtain

d

dt
〈A2〉 = 〈(−2A + 1)N3〉 + p〈(−2A + 1)N1〉

+ (1 − p)〈(2A + 1)N1〉 (A5)

which, for p = 1/2, simplifies to

d

dt
〈A2〉 = 〈N3〉 + 〈N1〉 − 2〈AN3〉 . (A6)

Subtracting Eq. (A3) multiplied by 2〈A〉 from Eq. (A6),
we obtain the evolution equation for the variance

d

dt

(

〈A2〉 − 〈A〉2
)

= 〈N3〉+ 〈N1〉+ 2 (〈A〉〈N3〉 − 〈AN3〉) .

Now using standard methods [18] to compute moments

of the stochastic variable A = La +
√

Lη (15), we obtain
the leading behavior 〈A2〉 − 〈A〉2 ∝ σ, while 〈N3〉 ∝ a3,
and 〈N1〉 ∝ 3a(1 − a)2. Similarly, the leading terms in
〈A〉〈N3〉 and 〈AN3〉 cancel, while the next correction is

〈A〉〈N3〉 − 〈AN3〉 ∝ 3a2σ − 6a2σ . (A7)

Using these results for the various moments, the variance
satisfies

dσ

dt
= −6a2σ + a3 + 3a(1 − a)2 . (A8)

Dividing (A8) by (A4) we obtain

dσ

da
=

6

a
σ − a3 + 3a(1 − a)2

a3
. (A9)

Since σ = a6 solves the homogeneous equation dσ/da =
6σ/a, we seek a solution of the inhomogeneous equation
(A9) in the form σ = a6s(a). Equation (A9) becomes

ds

da
= −a3 + 3a(1 − a)2

a9
= − 3

a8
+

6

a7
− 4

a6
,

whose solution is

s =
3

7

1

a7
− 1

a6
+

4

5

1

a5
+ C . (A10)
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Thus σ = a6s(a), with s(a) given by (A10). The inte-
gration constant C is fixed to satisfy the initial condition
σ(a0) = 0. In particular, for a totally antagonistic initial
network (ρ0 = 0 or a0 = 1), C = −8/35. In this case
a = 1/

√
1 + 2t, and the variance becomes

σ =
3

7

1

a
− 1 +

4

5
a − 8

35
a6 . (A11)

The leading asymptotic behavior σ → (3
√

2/7) t1/2

holds independent of the initial condition. Hence we es-
tablish the crucial result (16), which leads to the asymp-
totic behavior (18) for the absorption time for p = 1/2.

For p 6= 1/2, or ǫ = 1 − 2p 6= 0, we recast Eq. (A2) to

da

dt
= 3ǫa(1 − a)2 − a3 (A12)

which is of course identical to Eq. (9). Following the
same steps that led to Eq. (A8), we then derive for the
variance

dσ

dt
= a3 +3a(1− a)2− 6σ[a2− ǫ(1− a)(1− 3a)] . (A13)

When p < 1/2, both a and σ quickly approach station-
ary values

a∞ =

√
3ǫ√

3ǫ + 1
, σ∞ =

3

4

1√
3ǫ

1 + ǫ

(
√

3ǫ + 1)2
(A14)

The density of unfriendly links in a finite system there-
fore exhibits fluctuations of the order of

√

σ∞/L about
the average density a∞. Close to the phase transition
point, the magnitude of fluctuations eventually becomes
comparable with the average. From a∞ ∼

√

σ∞/L
and Eq. (A14), we find that this equality occurs when
ǫ ∼ N−4/3; this gives an estimate of the width of the
phase transition region due to finite-size effects.

When p > 1/2, both a and σ vanish as t → ∞. A
straightforward asymptotic analysis of Eq. (A13) yields

σ → a

|ǫ| ≡
a

2p − 1
as a → 0. (A15)

Fluctuations become comparable with the deterministic
part when a ∼

√

σ/L ∼
√

a/(2p − 1)L, that is, when

La ∼ (2p − 1)−1. Using a ∼ e−3(2p−1)t from Eq. (13) we
estimate the time to reach paradise to be

TN ∼ (2p − 1)−1 ln[(2p − 1)N2]. (A16)

The difference between this result and Eq. (19), which
was established using the naive criterion La ∼ 1, is small
because the factor 2p− 1 appears inside the logarithm.
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