
Local Graph Partitioning using PageRank Vectors

Reid Andersen
University of California, San Diego

Fan Chung
University of California, San Diego

Kevin Lang
Yahoo! Research

Abstract

A local graph partitioning algorithm finds a cut near a specified starting vertex, with a
running time that depends largely on the size of the small side of the cut, rather than the size
of the input graph. In this paper, we present an algorithm for local graph partitioning using
personalized PageRank vectors. We develop an improved algorithm for computing approximate
PageRank vectors, and derive a mixing result for PageRank vectors similar to that for random
walks. Using this mixing result, we derive an analogue of the Cheeger inequality for PageRank,
which shows that a sweep over a single PageRank vector can find a cut with conductance
φ, provided there exists a cut with conductance at most f(φ), where f(φ) is Ω(φ2/ logm), and
where m is the number of edges in the graph. By extending this result to approximate PageRank
vectors, we develop an algorithm for local graph partitioning that can be used to a find a cut
with conductance at most φ, whose small side has volume at least 2b, in time O(2b log3m/φ2).
Using this local graph partitioning algorithm as a subroutine, we obtain an algorithm that finds
a cut with conductance φ and approximately optimal balance in time O(m log4m/φ3).

1 Introduction

One of the central problems in algorithmic design is the problem of finding a cut with a small
conductance. There is a large literature of research papers on this topic, with applications in
numerous areas.

Spectral partitioning, where an eigenvector is used to produce a cut, is one of the few approaches
to this problem that can be analyzed theoretically. The Cheeger inequality [4] shows that the
cut obtained by spectral partitioning has conductance within a quadratic factor of the optimum.
Spectral partitioning can be applied recursively, with the resulting cuts combined in various ways,
to solve more complicated problems; for example, recursive spectral algorithms have been used to
find k-way partitions, spectral clusterings, and separators in planar graphs [2, 8, 13, 14]. There is
no known way to lower bound the size of the small side of the cut produced by spectral partitioning,
and this adversely affects the running time of recursive spectral partitioning.

Local spectral techniques provide a faster alternative to recursive spectral partitioning by avoid-
ing the problem of unbalanced cuts. Spielman and Teng introduced a local partitioning algorithm
called Nibble, which finds relatively small cuts near a specified starting vertex, in time proportional
to the volume of the small side of the cut. The small cuts found by Nibble can be combined to
form balanced cuts and multiway partitions in almost linear time, and the Nibble algorithm is
an essential subroutine in algorithms for graph sparsification and solving linear systems [15]. The
analysis of the Nibble algorithm is based on a mixing result by Lovász and Simonovits [9, 10],
which shows that cuts with small conductance can be found by simulating a random walk and
performing sweeps over the resulting sequence of walk vectors.

1

In this paper, we present a local graph partitioning algorithm that uses personalized PageRank
vectors to produce cuts. Because a PageRank vector is defined recursively (as we will describe
in section 2), we can consider a single PageRank vector in place of a sequence of random walk
vectors, which simplifies the process of finding cuts and allows greater flexibility when computing
approximations. We show directly that a sweep over a single approximate PageRank vector can
produce cuts with small conductance. In contrast, Spielman and Teng show that when a good
cut can be found from a series of walk distributions, a similar cut can be found from a series of
approximate walk distributions. Our method of analysis allows us to find cuts using approximations
with larger amounts of error, which improves the running time.

The analysis of our algorithm is based on the following results:

• We give an improved algorithm for computing approximate PageRank vectors. We use a
technique introduced by Jeh-Widom [7], and further developed by Berkhin in his Bookmark
Coloring Algorithm [1]. The algorithms of Jeh-Widom and Berkhin compute many personal-
ized PageRank vectors simultaneously, more quickly than they could be computed individu-
ally. Our algorithm computes a single approximate PageRank vector more quickly than the
algorithms of Jeh-Widom and Berkhin by a factor of log n.

• We prove a mixing result for PageRank vectors that is similar to the Lovász-Simonovits mixing
result for random walks. Using this mixing result, we show that if a sweep over a PageRank
vector does not produce a cut with small conductance, then that PageRank vector is close to
the stationary distribution. We then show that for any set C with small conductance, and
for many starting vertices contained in C, the resulting PageRank vector is not close to the
stationary distribution, because it has significantly more probability within C. Combining
these results yields a local version of the Cheeger inequality for PageRank vectors: if C is a
set with conductance Φ(C) ≤ f(φ), then a sweep over a PageRank vector pr(α, χv) finds a
set with conductance at most φ, provided that α is set correctly depending on φ, and that v
is one of a significant number of good starting vertices within C. This holds for a function
f(φ) that satisfies f(φ) = Ω(φ2/ logm).

Using the results described above, we produce a local partitioning algorithm PageRank-Nibble
which improves both the running time and approximation ratio of Nibble. PageRank-Nibble takes
as input a starting vertex v, a target conductance φ, and an integer b ∈ [1, logm]. When v is a
good starting vertex for a set C with conductance Φ(C) ≤ g(φ), there is at least one value of b
where PageRank-Nibble produces a set S with the following properties: the conductance of S is at
most φ, the volume of S is at least 2b−1 and at most (2/3)vol(G), and the intersection of S and C
satisfies vol(S ∩C) ≥ 2b−2. This holds for a function g(φ) that satisfies g(φ) = Ω(φ2/ log2m). The
running time of PageRank-Nibble is O(2b log3m/φ2), which is nearly linear in the volume of S.
In comparison, the Nibble algorithm requires that C have conductance O(φ3/ log2m), and runs in
time O(2b log4m/φ5).

PageRank-Nibble can be used interchangeably with Nibble, leading immediately to faster
algorithms with improved approximation ratios in several applications. In particular, we obtain an
algorithm PageRank-Partition that finds cuts with small conductance and approximately optimal
balance: if there exists a set C satisfying Φ(C) ≤ g(φ) and vol(C) ≤ 1

2vol(G), then the algorithm
finds a set S such that Φ(S) ≤ φ and 1

2vol(C) ≤ vol(S) ≤ 5
6vol(G), in time O(m log4m/φ3). This

holds for a function g(φ) that satisfies g(φ) = Ω(φ2/ log2m).

2

2 Preliminaries

In this paper we consider an undirected, unweighted graph G, where V is the vertex set, E is the
edge set, n is the number of vertices, and m is the number of undirected edges. We write d(v) for
the degree of vertex v, let D be the degree matrix (the diagonal matrix with Di,i = d(vi)), and let
A be the adjacency matrix. We will consider distributions on V , which are vectors indexed by the
vertices in V , with the additional requirement that each entry be nonnegative. A distribution p is
considered to be a row vector, so we can write the product of p and A as pA.
2.1. Personalized Pagerank Vectors
PageRank was introduced by Brin and Page [12, 3]. For convenience, we introduce a lazy variation
of PageRank, which we define to be the unique solution pr(α, s) of the equation

pr(α, s) = αs+ (1− α)pr(α, s)W, (1)

where α is a constant in (0, 1] called the teleportation constant, s is a distribution called the
preference vector, and W is the lazy random walk transition matrix W = 1

2(I + D−1A). In the
Appendix, we show that this is equivalent to the traditional definition of PageRank (which uses a
regular random walk step instead of a lazy step) up to a change in α.

The PageRank vector that is usually associated with search ranking has a preference vector
equal to the uniform distribution ~1

n . PageRank vectors whose preference vectors are concentrated
on a smaller set of vertices are often called personalized PageRank vectors. These were introduced
by Haveliwala [6], and have been used to provide personalized search ranking and context-sensitive
search [1, 5, 7]. The preference vectors used in our algorithms have all probability on a single
starting vertex.

Here are some useful properties of PageRank vectors (also see [6] and [7]). The proofs are given
in the Appendix.

Proposition 1. For any starting distribution s, and any constant α in (0, 1], there is a unique
vector pr(α, s) satisfying pr(α, s) = αs+ (1− α)pr(α, s)W.

Proposition 2. For any fixed value of α in (0, 1], there is a linear transformation Rα such that
pr(α, s) = sRα. Furthermore, Rα is given by the matrix

Rα = α
∞∑

t=0

(1− α)tW t, (2)

which implies that a PageRank vector is a weighted average of lazy walk vectors,

pr(α, s) = α

∞∑
t=0

(1− α)t
(
sW t

)
. (3)

It follows that pr(α, s) is linear in the preference vector s.

2.2 Conductance
The volume of a subset S ⊆ V of vertices is

vol(S) =
∑
x∈S

d(x).

3

We remark that vol(V) = 2m, and we will sometimes write vol(G) in place of vol(V). The edge
boundary of a set is defined to be ∂(S) = {{x, y} ∈ E | x ∈ S, y 6∈ S} , and the conductance of a set
is

Φ(S) =
|∂(S)|

min (vol(S), 2m− vol(S))
.

2.3. Distributions
Two distributions we will use frequently are the stationary distribution,

ψS(x) =

{
d(x)

vol(S) if x ∈ S
0 otherwise

.

and the indicator function,

χv(x) =
{

1 if x = v
0 otherwise

.

The amount of probability from a distribution p on a set S of vertices is written

p (S) =
∑
x∈S

p(x).

We will sometimes refer to the quantity p(S) as an amount of probability even if p(V) is not equal
to 1. As an example of this notation, the PageRank vector with teleportation constant α and
preference vector χv is written pr(α, χv), and the amount of probability from this distribution on
a set S is written [pr(α, χv)] (S). The support of a distribution is Supp(p) = {v | p(v) 6= 0}.
2.4. Sweeps
A sweep is an efficient technique for producing cuts from an embedding of a graph, and is often
used in spectral partitioning [11, 14]. We will use the following degree-normalized version of a
sweep. Given a distribution p, with support size Np = |Supp(p)|, let v1, . . . , vNp be an ordering of
the vertices such that p(vi)

d(vi)
≥ p(vi+1)

d(vi+1) . This produces a collection of sets, Sp
j = {v1, . . . , vj} for each

j ∈ {0, . . . , Np}, which we call sweep sets. We let

Φ(p) = min
j∈[1,Np]

Φ(Sp
j)

be the smallest conductance of any of the sweep sets. A cut with conductance Φ(p) can be
found by sorting p and computing the conductance of each sweep set, which can be done in time
O(vol(Supp(p)) log n).
2.5. Measuring the spread of a distribution
We measure how well a distribution p is spread in the graph using a function p [k] defined for all
integers k ∈ [0, 2m]. This function is determined by setting

p [k] = p
(
Sp

j

)
,

for those values of k where k = vol(Sp
j), and the remaining values are set by defining p [k] to be

piecewise linear between these points. In other words, for any integer k ∈ [0, 2m], if j is the unique
vertex such that vol(Sp

j) ≤ k ≤ vol(Sp
j+1), then

p [k] = p
(
Sp

j

)
+
k − vol(Sp

j)
d(vj)

p (vj+1).

This implies that p [k] is an increasing function of k, and a concave function of k. It is not hard to
see that p [k] is an upper bound on the amount of probability from p on any set with volume k; for
any set S, we have p (S) ≤ p [vol(S)] .

4

3 Computing approximate PageRank vectors

To approximate a PageRank vector pr(α, s), we compute a pair of distributions p and r with the
following property.

p+ pr(α, r) = pr(α, s). (4)

If p and r are two distributions with this property, we say that p is an approximate PageRank vector,
which approximates pr(α, s) with the residual vector r. We will use the notation p = apr(α, s, r) to
refer to an approximate PageRank vector obeying the equation above. Since the residual vector is
nonnegative, it is always true that apr(α, s, r) ≤ pr(α, s), for any residual vector r.

In this section, we give an algorithm that computes an approximate PageRank vector with a
small residual vector and small support, with running time independent of the size of the graph.

Theorem 1. ApproximatePageRank(v, α, ε) runs in time O(1
εα), and computes an approximate

PageRank vector p = apr(α, χv, r) such that the residual vector r satisfies maxu∈V
r(u)
d(u) < ε, and

such that vol(Supp(p)) ≤ 1
εα .

We remark that this algorithm is based on the algorithms of Jeh-Widom [7] and Berkhin [1],
both of which can be used to compute similar approximate PageRank vectors in time O(log n

εα). The
extra factor of log n in the running time of these algorithms is overhead from maintaining a heap
or priority queue, which we eliminate. The proof of Theorem 1 is based on a series of facts which
we describe below.

Our algorithm is motivated by the following observation of Jeh-Widom.

pr(α, s) = αs+ (1− α)pr(α, sW). (5)

Notice that the equation above is similar to, but different from, the equation used in Section 2 to
define PageRank. This observation is simple, but it is instrumental in our algorithm, and it is not
trivial. To prove it, first reformulate the linear transformation Rα that takes a starting distribution
to its corresponding PageRank vector, as follows.

Rα = α
∞∑

t=0

(1− α)tW t

= αI + (1− α)WRα.

Applying this rearranged transformation to a starting distribution s yields equation (5).

pr(α, s) = sRα

= αs+ (1− α)sWRα

= αs+ (1− α)pr(α, sW).

This provides a flexible way to compute an approximate PageRank vector. We maintain a pair
of distributions: an approximate PageRank vector p and its associated residual vector r. Initially,
we set p = ~0 and r = χv. We then apply a series of push operations, based on equation (5), which
alter p and r. Each push operation takes a single vertex u, moves an α fraction of the probability
from r(u) onto p(u), and then spreads the remaining (1 − α) fraction within r, as if a single step
of the lazy random walk were applied only to the vertex u. Each push operation maintains the
invariant

p+ pr(α, r) = pr(α, χv), (6)

5

which ensures that p is an approximate PageRank vector for pr(α, χv) after any sequence of push
operations. We now formally define pushu, which performs this push operation on the distributions
p and r at a chosen vertex u.

pushu(p, r):

1. Let p′ = p and r′ = r, except for the following changes:

(a) p′(u) = p(u) + αr(u).

(b) r′(u) = (1− α)r(u)/2.

(c) For each v such that (u, v) ∈ E: r′(v) = r(v) + (1− α)r(u)/(2d(u)).

2. Return (p′, r′).

Lemma 1. Let p′ and r′ be the result of the operation pushu on p and r. Then

p′ + pr(α, r′) = p+ pr(α, r).

The proof of Lemma 1 can be found in the Appendix. During each push, some probability is
moved from r to p, where it remains, and after sufficiently many pushes r can be made small. We
can bound the number of pushes required by the following algorithm.

ApproximatePageRank (v, α, ε):

1. Let p = ~0, and r = χv.

2. While maxu∈V
r(u)
d(u) ≥ ε:

(a) Choose any vertex u where r(u)
d(u) ≥ ε.

(b) Apply pushu at vertex u, updating p and r.

3. Return p, which satisfies p = apr(α, χv, r) with maxu∈V
r(u)
d(u) < ε.

Lemma 2. Let T be the total number of push operations performed by ApproximatePageRank, and
let di be the degree of the vertex u used in the ith push. Then

T∑
i=1

di ≤
1
εα
.

Proof. The amount of probability on the vertex pushed at time i is at least εdi, therefore |r|1
decreases by at least αεdi during the ith push. Since |r|1 = 1 initially, we have αε

∑T
i=1 di ≤ 1, and

the result follows.

To implement ApproximatePageRank, we determine which vertex to push at each step by main-
taining a queue containing those vertices u with r(u)/d(u) ≥ ε. At each step, push operations are
performed on the first vertex in the queue until r(u)/d(u) < ε for that vertex, which is then removed
from the queue. If a push operation raises the value of r(x)/d(x) above ε for some vertex x, that
vertex is added to the back of the queue. This continues until the queue is empty, at which point
every vertex has r(u)/d(u) < ε. We will show that this algorithm has the properties promised in
Theorem 1. The proof is contained in the Appendix.

6

4 A mixing result for PageRank vectors

In this section, we prove a mixing result for PageRank vectors that is an analogue of the Lovász-
Simonovits mixing result for random walks. For an approximate PageRank vector apr(α, s, r), we
give an upper bound on apr(α, s, r) [k] that depends on the smallest conductance found by a sweep
over apr(α, s, r). In contrast, the mixing result of Lovász and Simonovits bounds the quantity
p(t) [k] for the lazy random walk distribution p(t) in terms of the smallest conductance found by
sweeps over the previous walk distributions p(0), . . . , p(t−1). The recursive property of PageRank
allows us to consider a single vector instead of a sequence of random walk vectors, simplifying the
process of finding cuts.

We use this mixing result to show that if an approximate PageRank vector apr(α, s, r) has
significantly more probability than the stationary distribution on any set, the sweep over apr(α, s, r)
produces a cut with small conductance.

Theorem 2. If there exists a set S of vertices and a constant δ ≥ 2√
m

satisfying

apr(α, s, r)(S)− vol(S)
vol(G)

> δ,

then

Φ(apr(α, s, r)) <

√
18α lnm

δ
.

The proof of this theorem, and the more general mixing result from which it is derived, is
described at the end of this section. The proof requires a sequence of lemmas, which we present
below.

Every approximate PageRank vector, no matter how large the residual vector, obeys the fol-
lowing inequality. It is a one-sided version of the equation used to define PageRank.

Lemma 3. If apr(α, s, r) is an approximate PageRank vector, then

apr(α, s, r) ≤ αs+ (1− α)apr(α, s, r)W.

The proof of Lemma 3 can be found in the Appendix. Notice that this inequality relates
apr(α, s, r) to apr(α, s, r)W . We will soon prove a result, Lemma 4, which describes how proba-
bility mixes in the single walk step between apr(α, s, r) and apr(α, s, r)W . We will then combine
Lemma 4 with the inequality from Lemma 3 to relate apr(α, s, r) to itself, removing any reference
to apr(α, s, r)W .

We now present definitions required for Lemma 4. Instead of viewing an undirected graph as
a collection of undirected edges, we view each undirected edge {u, v} as a pair of directed edges
(u, v) and (v, u). For each directed edge (u, v) we let

p(u, v) =
p(u)
d(u)

.

For any set of directed edges A, we define

p(A) =
∑

(u,v)∈A

p(u, v).

7

When a lazy walk step is applied to the distribution p, the amount of probability that moves from
u to v is 1

2p(u, v). For any set S of vertices, we have the set of directed edges into S, and the set of
directed edges out of S, defined by in(S) = {(u, v) ∈ E | u ∈ S}, and out(S) = {(u, v) ∈ E | v ∈ S},
respectively.

Lemma 4. For any distribution p, and any set S of vertices,

pW (S) ≤ 1
2

(p (in(S) ∪ out(S)) + p (in(S) ∩ out(S))) .

The proof of Lemma 4 can be found in the Appendix. We now combine this result with the
inequality from Lemma 3 to relate apr(α, s, r) to itself. In contrast, the proof of Lovász and
Simonovits [9, 10] relates the walk distributions p(t) and p(t+1), where p(t+1) = p(t)W , and p(0) = s.

Lemma 5. If p = apr(α, s, r) is an approximate PageRank vector, then for any set S of vertices,

p(S) ≤ αs(S) + (1− α)
1
2

(p (in(S) ∪ out(S)) + p (in(S) ∩ out(S))) .

Furthermore, for each j ∈ [1, n− 1],

p
[
vol(Sp

j)
]
≤ αs

[
vol(Sp

j)
]

+ (1− α)
1
2

(
p
[
vol(Sp

j)− |∂(Sp
j)|
]

+ p
[
vol(Sp

j) + |∂(Sp
j)|
])
.

The proof of Lemma 5 is included in the Appendix.
The following lemma uses the result from Lemma 5 to place an upper bound on apr(α, s, r) [k].

More precisely, it shows that if a certain upper bound on apr(α, s, r) [k]− k
2m does not hold, then

one of the sweep sets from apr(α, s, r) has both small conductance and a significant amount of
probability from apr(α, s, r). This lower bound on probability will be used in Section 6 to control
the volume of the resulting sweep set.

Theorem 3. Let p = apr(α, s, r) be an approximate PageRank vector with |s|1 ≤ 1. Let φ and γ
be any constants in [0, 1]. Either the following bound holds for any integer t and any k ∈ [0, 2m]:

p [k]− k

2m
≤ γ + αt+

√
min(k, 2m− k)

(
1− φ2

8

)t

,

or else there exists a sweep cut Sp
j with the following properties:

1. Φ(Sp
j) < φ,

2. p
(
Sp

j

)
− vol(Sp

j)

2m > γ + αt+
√

min(vol(Sp
j), 2m− vol(Sp

j))
(
1− φ2

8

)t
, for some integer t,

3. j ∈ [1, |Supp(p)|].

The proof can be found in the Appendix.
We can rephrase the sequence of bounds from Theorem 3 to prove the theorem promised at the

beginning of this section. Namely, we show that if there exists a set of vertices, of any size, that
contains a constant amount more probability from apr(α, s, r) than from the stationary distribution,
then the sweep over apr(α, s, r) finds a cut with conductance roughly

√
α lnm. We remark that

this applies to any approximate PageRank vector, regardless of the size of the residual vector: the
residual vector only needs to be small to ensure that apr(α, s, r) is large enough that the theorem
applies. The proof is given in the appendix.

8

5 Local partitioning using approximate PageRank vectors

In this section, we show how sweeps over approximate PageRank vectors can be used to find cuts
with nearly optimal conductance. Unlike traditional spectral partitioning, where a sweep over an
eigenvector produces a cut with conductance near the global minimum, the cut produced by a
PageRank vector depends on the starting vertex v, and also on α. We first identify a sizeable
collection of starting vertices for which we can give a lower bound on apr(α, χv, r)(C).

Theorem 4. For any set C and any constant α, there is a subset Cα ⊆ C, with vol(Cα) ≥ vol(C)/2,
such that for any vertex v ∈ Cα, the approximate PageRank vector apr(α, χv, r) satisfies

apr(α, χv, r)(C) ≥ 1− Φ(C)
α

− vol(C) max
u∈V

r(u)
d(u)

.

We will outline the proof of Theorem 4 at the end of this section. Theorem 4 can be combined
with the mixing results from Section 4 to prove the following theorem, which describes a method
for producing cuts from an approximate PageRank vector.

Theorem 5. Let φ be a constant in [0, 1], let α = φ2

135 ln m , and let C be a set satisfying

1. Φ(C) ≤ φ2

1350 ln m ,

2. vol(C) ≤ 2
3vol(G).

If v ∈ Cα, and if apr(α, χv, r) is an approximate PageRank vector with residual vector r satisfying
maxu∈V

r(u)
d(u) ≤

1
10vol(C) , then Φ(apr(α, χv, r)) < φ.

We prove Theorem 5 by combining Theorem 4 and Theorem 2. A detailed proof is provided in
the Appendix. As an immediate consequence of Theorem 5, we obtain a local Cheeger inequality
for personalized PageRank vectors, which applies when the starting vertex is within a set that
achieves the minimum conductance in the graph.

Theorem 6. Let Φ(G) be the minimum conductance of any set with volume at most vol(G)/2, and
let Copt be a set achieving this minimum. If pr(α, χv) is a PageRank vector where α = 10Φ(G),
and v ∈ Copt

α , then
Φ(pr(α, χv)) <

√
1350Φ(G) lnm.

Theorem 6 follows immediately from Theorem 5 by setting φ =
√

1350Φ(G) lnm.
To prove Theorem 4, we will show that a set C with small conductance contains a significant

amount of probability from pr(α, χv), for many of the vertices v in C. We first show that this holds
for an average of the vertices in C, by showing that C contains a significant amount of probability
from pr(α, ψC).

Lemma 6. The PageRank vector pr(α, ψC) satisfies

[pr(α, ψC)](C̄) ≤ Φ(C)
2α

.

The proof of Lemma 6 will be given in the Appendix. To prove Theorem 4 from Lemma 6, we
observe that for many vertices in C, pr(α, χv) is not much larger than pr(α, ψC), and then bound
the difference between apr(α, χv, r) and pr(α, χv) in terms of the residual vector r. A detailed proof
can be found in the Appendix.

9

6 An algorithm for nearly linear time graph partitioning

In this section, we extend our local partitioning techniques to find a set with small conductance,
while providing more control over the volume of the set produced. The result is an algorithm called
PageRank-Nibble that takes a scale b as part of its input, runs in time proportional to 2b, and
only produces a cut when it finds a set with conductance φ and volume roughly 2b. We prove that
PageRank-Nibble finds a set with these properties for at least one value of b ∈ [1, dlogme], provided
that v is a good starting vertex for a set of conductance at most g(φ), where g(φ) = Ω(φ2/ log2m).

PageRank-Nibble(v, φ, b):
Input: a vertex v, a constant φ ∈ (0, 1], and an integer b ∈ [1, B], where B = dlog2me.

1. Let α = φ2

225 ln(100
√

m)
.

2. Compute an approximate PageRank vector p = apr(α, χv, r) with residual vector r
satisfying maxu∈V

r(u)
d(u) ≤ 2−b 1

48B .

3. Check each set Sp
j with j ∈ [1, |Supp(p)|], to see if it obeys the following conditions:

Conductance: Φ(Sp
j) < φ,

Volume: 2b−1 < vol(Sp
j) < 2

3vol(G),

Probability Change: p
[
2b
]
− p

[
2b−1

]
> 1

48B ,

4. If some set Sp
j satisfies all of these conditions, return Sp

j . Otherwise, return nothing.

Theorem 7. PageRank-Nibble(v, φ, b) can be implemented with running time O(2b log3 m
φ2).

Theorem 8. Let C be a set satisfying Φ(C) ≤ φ2/(22500 log2 100m) and vol(C) ≤ 1
2vol(G), and let

v be a vertex in Cα for α = φ2/(225 ln(100
√
m)). Then, there is some integer b ∈ [1, dlog2me] for

which PageRank-Nibble(v, φ, b) returns a set S. Any set S returned by PageRank-Nibble(v, φ, b)
has the following properties:

1. Φ(S) < φ,

2. 2b−1 < vol(S) < 2
3vol(G),

3. vol(S ∩ C) > 2b−2.

The proofs of Theorems 7 and 8 are included in the Appendix.
PageRank-Nibble improves both the running time and approximation ratio of the Nibble algo-

rithm of Spielman and Teng, which runs in timeO(2b log4m/φ5), and requires Φ(C) = O(φ3/ log2m).
PageRank-Nibble can be used interchangeably with Nibble in several important applications. For
example, both PageRank-Nibble and Nibble can be applied recursively to produce cuts with nearly
optimal balance. An algorithm PageRank-Partition with the following properties can be created
in essentially the same way as the algorithm Partition in [15], so we omit the details.

Theorem 9. The algorithm PageRank-Partition takes as input a parameter φ, and has ex-
pected running time O(m log(1/p) log4m/φ3). If there exists a set C with vol(C) ≤ 1

2vol(G) and
Φ(C) ≤ φ2/(1845000 log2m), then with probability at least 1− p, PageRank-Partition produces a
set S satisfying Φ(S) ≤ φ and 1

2vol(C) ≤ vol(S) ≤ 5
6vol(G).

10

References

[1] Pavel Berkhin. Bookmark-coloring approach to personalized pagerank computing. Internet
Mathematics, To appear.

[2] Christian Borgs, Jennifer T. Chayes, Mohammad Mahdian, and Amin Saberi. Exploring the
community structure of newsgroups. In KDD, pages 783–787, 2004.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[4] F. Chung. Spectral graph theory, volume Number 92 in CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

[5] D. Fogaras and B. Racz. Towards scaling fully personalized pagerank. In Proceedings of the
3rd Workshop on Algorithms and Models for the Web-Graph (WAW), pages pages 105–117,
October 2004.

[6] Taher H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web
search. IEEE Trans. Knowl. Data Eng., 15(4):784–796, 2003.

[7] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th
World Wide Web Conference (WWW), pages 271–279, 2003.

[8] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
J. ACM, 51(3):497–515, 2004.

[9] László Lovász and Miklós Simonovits. The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume. In FOCS, pages 346–354, 1990.

[10] László Lovász and Miklós Simonovits. Random walks in a convex body and an improved
volume algorithm. Random Struct. Algorithms, 4(4):359–412, 1993.

[11] M. Mihail. Conductance and convergence of markov chains—a combinatorial treatment of
expanders. In Proc. of 30th FOCS, pages pp. 526–531, 1989.

[12] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

[13] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM Journal on
Scientific Computing, 18(5):1436–1445, 1997.

[14] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and
finite element meshes. In IEEE Symposium on Foundations of Computer Science, pages 96–
105, 1996.

[15] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In ACM STOC-04, pages 81–90, New York,
NY, USA, 2004. ACM Press.

11

7 Appendix

To demonstrate the equivalence of lazy and standard PageRank vectors, let rpr(α, s) be the standard
PageRank vector, defined to be the unique solution p of the equation p = αs+ (1− α)pM , where
M is the random walk transition matrix M = D−1A. We prove the following proposition.

Proposition 3. pr(α, s) = rpr(2α
1+α , s).

Proof. We have the following sequence of equations.

pr(α, s) = αs+ (1− α)pr(α, s)W

pr(α, s) = αs+ (
1− α

2
)pr(α, s) + (

1− α

2
)pr(α, s)(D−1A)

(
1 + α

2
)pr(α, s) = αs+ (

1− α

2
)pr(α, s)(D−1A)

pr(α, s) = (
2α

1 + α
)s+ (

1− α

1 + α
)pr(α, s)m

Since pr(α, s) satisfies the equation for rpr(2α
1+α , s), and since this equation has a unique solution,

the result follows.

Proof of Proposition 1. The equation p = αs+ (1− α)pW is equivalent to αs = p[I − (1− α)W].
The matrix (I − (1− α)W) is nonsingular, since it is strictly diagonally dominant, so this equation
has a unique solution p.

Proof of Proposition 2. The sum in equation (2) that defines Rα is convergent for α ∈ (0, 1],
and the following computation shows that sRα obeys the steady state equation for pr(α, s).

αs+ (1− α)sRαW = αs+ (1− α)s

(
α

∞∑
t=0

(1− α)tW t

)
W

= αs+ s

(
α

∞∑
t=1

(1− α)tW t

)

= s

(
α

∞∑
t=0

(1− α)tW t

)
= sRα.

Since the solution to the steady state equation is unique by Proposition 1, it follows that pr(α, s) = sRα.

Proof of Lemma 1. After the push operation, we have

p′ = p+ αr(u)χu.

r′ = r − r(u)χu + (1− α)r(u)χuW.

Using equation (5),

p+ pr(α, r) = p+ pr(α, r − r(u)χu) + pr(α, r(u)χu)
= p+ pr(α, r − r(u)χu) + [αr(u)χu + (1− α)pr(α, r(u)χuW)]
= [p+ αr(u)χu] + pr(α, [r − r(u)χu + (1− α)r(u)χuW])
= p′ + pr(α, r′).

12

Proof of Theorem 1. Lemma 1 implies that p + pr(α, r) = pr(α, χv) at every step of the algo-
rithm, and so the vector returned by the algorithm is an approximate PageRank vector apr(α, χv, r).
It is clear from the stopping condition that maxu∈V

r(u)
d(u) < ε.

To bound the support volume, notice that for each vertex in Supp(p), ApproximatePageRank
must have performed at least one push operation on that vertex. If di is the degree of the vertex
pushed during step i, then Lemma 2 implies

vol(Supp(p)) =
∑

v∈Supp(p)

d(v) ≤
T∑

i=1

di ≤
1
εα
.

It is possible to perform a push operation on the vertex u, and perform any necessary queue updates,
in time proportional to d(u). The running time then follows from Lemma 2.

Proof of Lemma 3. From the definition of the approximate PageRank vector apr(α, s, r), we
have the following sequence of equations.

apr(α, s, r) = pr(α, s)− pr(α, r)
= αs+ (1− α)pr(α, s)W − pr(α, r)
= αs+ (1− α)(pr(α, s)− pr(α, r))W + (1− α)pr(α, r)W − pr(α, r)
= αs+ (1− α)apr(α, s, r)W + ((1− α)pr(α, r)W − pr(α, r))
= αs+ (1− α)apr(α, s, r)W − αr

≤ αs+ (1− α)apr(α, s, r)W.

The last line uses the fact that r is nonnegative.

Proof of Lemma 4. The amount of probability from pW on a vertex u can be written as follows.

pW (u) =
1
2
p(u) +

1
2

∑
(v,u)∈E

p(v)
d(v)

=
1
2

∑
(u,v)∈E

p(u, v) +
1
2

∑
(v,u)∈E

p(v, u)

=
1
2
p (in(u)) +

1
2
p (out(u)) .

The amount of probability on a set S can then be written this way.

pW (S) = p(in(S)) + p(out(S))
= p (in(S) ∪ out(S)) + p (in(S) ∩ out(S)) .

Proof of Lemma 5. Let p = apr(α, s, r) be an approximate PageRank vector. By Lemma 3 we
have the inequality p ≤ αs+ (1− α)pW , which implies

p(S) ≤ [αs+ (1− α)pW] (S)
= αs(S) + (1− α)pW (S)

≤ αs(S) + (1− α)
1
2

(p (in(S) ∪ out(S)) + p (in(S) ∩ out(S))) .

13

This proves the first part of the lemma. To prove the second part, recall that p
[
vol(Sp

j)
]

= p(Sp
j)

for any integer j ∈ [0, n]. Also, for any set of directed edges A, we have the bound p(A) ≤ p [|A|].
Therefore,

p
[
vol(Sp

j)
]

= p(Sp
j)

≤ αs(Sp
j) + (1− α)

1
2

(
p
(
in(Sp

j) ∪ out(Sp
j)
)

+ p
(
in(Sp

j) ∩ out(Sp
j)
))

≤ αs
[
vol(Sp

j)
]

+ (1− α)
1
2

(
p
[∣∣∣in(Sp

j) ∪ out(Sp
j)
∣∣∣]+ p

[∣∣∣in(Sp
j) ∩ out(Sp

j)
∣∣∣]) .

All that remains is to bound the sizes of the sets in the inequality above. Notice that∣∣∣in(Sp
j) ∪ out(Sp

j)|+ |in(Sp
j) ∩ out(Sp

j)
∣∣∣ = 2vol(Sp

j),

and ∣∣∣in(Sp
j) ∪ out(Sp

j)
∣∣∣− ∣∣∣in(Sp

j) ∩ out(Sp
j)
∣∣∣ = 2|∂(Sp

j)|.

This implies that ∣∣∣in(Sp
j) ∪ out(Sp

j)
∣∣∣ = vol(Sp

j) + |∂(Sp
j)|,

and ∣∣∣in(Sp
j) ∩ out(Sp

j)
∣∣∣ = vol(Sp

j)− |∂(Sp
j)|.

The result follows.

Proof of Theorem 3. Let kj = vol(Sp
j), let kj = min(kj , 2m− kj), and let

ft(k) = γ + αt+
√

min(k, 2m− k)
(

1− φ2

8

)t

.

Assuming that there does not exist a sweep cut with all of the properties stated in the theorem,
we will prove by induction that the following holds for all t ≥ 0:

p [k]− k

2m
≤ ft(k), for any k ∈ [0, 2m]. (7)

For the base case, equation (7) holds for t = 0, with any choice of γ and φ. To see this, notice
that for each integer k ∈ [1, 2m− 1],

p [k]− k

2m
≤ 1 ≤

√
min(k, 2m− k) ≤ f0(k).

For k = 0 and k = 2m we have p [k] − k
2m ≤ 0 ≤ f0(k). The claim follows because f0 is concave,

p [k] is less than f0 for each integer value of k, and p [k] is linear between these integer values.
Assume for the sake of induction that equation (7) holds for t. To prove that equation (7)

holds for t+ 1, which will complete the proof of the theorem, it suffices to show that the following
equation holds for each j ∈ [1, |Supp(p)|]:

p [kj]−
kj

2m
≤ ft+1(kj). (8)

14

This equation holds trivially for j = 0, and j = n. The theorem will follow because ft+1 is concave,
we have shown that equation (8) holds at kj for each j in the set [1, |Supp(p)|]∪ {0, n}, and p [k] is
linear between these points.

Consider an index j ∈ [1, |Supp(p)|]. If property 2 does not hold for j, then this directly implies
that equation (8) holds at j. If property 1 does not hold for j, then we have Φ(Sp

j) ≥ φ, and Lemma
5 implies the following.

p
[
vol(Sp

j)
]

≤ αs
[
vol(Sp

j)
]

+ (1− α)
1
2

(
p
[
vol(Sp

j)− |∂(Sp
j)|
]

+ p
[
vol(Sp

j) + |∂(Sp
j)|
])

≤ α+
1
2

(
p
[
vol(Sp

j)− |∂(Sp
j)|
]

+ p
[
vol(Sp

j) + |∂(Sp
j)|
])

= α+
1
2

(
p
[
kj − Φ(Sp

j)kj

]
+ p

[
kj + Φ(Sp

j)kj

])
≤ α+

1
2
(
p
[
kj − φkj

]
+ p

[
kj + φkj

])
.

The last step above follows from the concavity of p [k]. Using the induction hypothesis,

p [kj] ≤ α+
1
2

(
ft(kj − φkj) +

kj − φkj

2m
+ ft(kj + φkj) +

kj + φkj

2m

)
.

= α+
kj

2m
+

1
2
(
ft(kj − φkj) + ft(kj + φkj)

)
.

Therefore,

p [kj]−
kj

2m
≤ α+

1
2
(
ft(kj − φkj) + ft(kj + φkj)

)
= γ + α+ αt

+
1
2

(√
min(kj − φkj , 2m− kj + φkj) +

√
min(kj + φkj , 2m− kj − φkj)

)(
1− φ2

8

)t

≤ γ + α+ αt+
1
2

(√
kj − φkj +

√
kj + φkj

)(
1− φ2

8

)t

.

This last step can be verified by considering the two cases kj ≤ m and kj ≥ m separately.
By examining the Taylor series of

√
1 + φ at φ = 0, we obtain the following for any k ≥ 0 and

φ ∈ [0, 1].

1
2

(√
k − φk +

√
k + φk

)
≤

√
k

2

(
(1− φ

2
− φ2

8
) + (1 +

φ

2
− φ2

8
)
)

≤
√
k

(
1− φ2

8

)
.

By applying this with k = kj , we obtain

p [kj]−
kj

2m
≤ γ + α+ αt+

√
kj

(
1− φ2

8

)(
1− φ2

8

)t

= ft+1(kj).

15

Proof of Theorem 2. Let φ = Φ(apr(α, s, r)). Theorem 3 implies

apr(α, s, r)(S)− vol(S)
vol(G)

≤ αt+
√

min(vol(S), 2m− vol(S))
(

1− φ2

8

)t

,

for any integer t ≥ 0 and any k ∈ [0, 2m]. If we let t = d 8
φ2 ln 2

√
m

δ e, then we have

δ < apr(α, s, r)(S)− vol(S)
vol(G)

≤ αd 8
φ2

ln
2
√
m

δ
e+

δ

2
,

which implies
δ

2
< αd 8

φ2
ln

2
√
m

δ
e ≤ α

9
φ2

lnm.

The result follows by solving for φ.

Proof of Lemma 6. We first prove the following monotonicity property for the PageRank oper-
ator: for any starting distribution s, and any k ∈ [0, 2m],

pr(α, s) [k] ≤ s [k] . (9)

This is a consequence of Lemma 5; if we let p = pr(α, s), then for each j ∈ [1, n− 1] we have

p
[
vol(Sp

j)
]

≤ αs
[
vol(Sp

j)
]

+ (1− α)
1
2

(
p
[
vol(Sp

j)− |∂(Sp
j)|
]

+ p
[
vol(Sp

j) + |∂(Sp
j)|
])

≤ αs
[
vol(Sp

j)
]

+ (1− α)p
[
vol(Sp

j)
]
,

where the last line follows from the concavity of p [k]. This implies that pr(α, s) [kj] ≤ s [kj], where
kj = vol(Spr(α,s)

j), for each j ∈ [1, n− 1]. The result follows, since s [k] is concave, and pr(α, s) [k]
is linear between the points where k = kj .

The amount of probability that moves from C to C̄ in the step from pr(α, ψC) to pr(α, ψC)W
is bounded by 1

2pr(α, ψC) [|∂(C)|], since |∂(C)| is the number of directed edges from C to C̄. By
the monotonicity property,

pr(α, ψC) [|∂(C)|] ≤ ψC [|∂(C)|]

=
|∂(C)|
vol(C)

= Φ(C).

Using the recursive property of PageRank,

[pr(α, ψC)]
(
C̄
)

= [αψC + (1− α)pr(α, ψC)W]
(
C̄
)

≤ (1− α)[pr(α, ψC)]
(
C̄
)

+
1
2
pr(α, ψC) [|∂(C)|]

≤ (1− α)[pr(α, ψC)]
(
C̄
)

+
1
2
Φ(C).

This implies

[pr(α, ψC)](C̄) ≤ Φ(C)
2α

.

16

Proof of Theorem 4. For a set C ⊆ V , let Cα be the set of vertices v in C satisfying

pr(α, χv)
(
C̄
)
≤ Φ(C)

α
.

Let v be a vertex chosen randomly from the distribution ψC , and define the random variable
X = pr(α, χv)

(
C̄
)
. The linearity property of PageRank vectors from Proposition 2, combined with

the bound from Lemma 6, implies the following bound on the expectation of X.

E [X] = pr(α, ψC)
(
C̄
)
≤ Φ(C)

2α
.

Then,

Pr [v 6∈ Cα] ≤ Pr [X > 2E [X]] ≤ 1
2
.

Since Pr [v ∈ Cα] ≥ 1
2 , the volume of Cα is at least 1

2vol(G).
If v is a vertex in Cα, we can obtain a lower bound for apr(α, χv, r)(C) by bounding the difference

between apr(α, χv, r) and pr(α, χv) in terms of the residual vector r. Using the monotonicity
property pr(α, r) [k] ≤ r [k] from equation (9), we have

apr(α, χv, r)(C) = pr(α, χv)(C)− pr(α, r)(C)
≥ pr(α, χv)(C)− pr(α, r) [vol(C)]
≥ pr(α, χv)(C)− r [vol(C)]

≥ 1− Φ(C)
α

− vol(C) max
u∈V

r(u)
d(u)

.

Proof of Theorem 5. Theorem 4 gives a lower bound on apr(α, χv, r)(C).

apr(α, χv, r) (C) ≥ 1− Φ(C)
α

− vol(C) max
u∈V

r(u)
d(u)

≥ 1− Φ(C)
α

− 1
10
.

Since Φ(C)
α ≤ 1

10 , we have apr(α, χv, r)(C) ≥ 4
5 , which implies

apr(α, χv, r)(C)− vol(C)
vol(G)

≥ 4
5
− 2

3
=

2
15
.

Theorem 2 then implies
Φ(apr(α, s, r)) <

√
135α lnm = φ.

We remark that it is possible to replace the term lnm in Theorem 5 with lnM , where M is an
upper bound on the volume of the set C. This can be done by setting α as a function of logM
rather than logm, and changing the value of t used in the proof of Theorem 2. Although the proof
follows by similar methods, this would complicate the statement of the theorem. Similarly, the
term lnm in Theorem 6 could be replaced with ln(vol(Copt)).

17

Proof of Theorem 7. An approximate PageRank vector p = apr(α, χv, r), with residual vector
r satisfying maxu∈V

r(u)
d(u) ≤

2−b

48B , can be computed in time O(2b log m
α) using ApproximatePageRank.

By Theorem 1, we have vol(Supp(p)) = O(2b log m
α). It is possible to check each of the conditions in

step 4, for every set Sp
j with j ∈ [1, |Supp(p)|], in time

O(vol(Supp(apr(α, χv, r))) log n) = O(2b log2m

α
).

Therefore, the running time of PageRank-Nibble is

O(2b log2m

α
) = O(2b log3m

φ2
).

Proof of Theorem 8. Consider the PageRank vector pr(α, χv). Since v is in Cα, and since
Φ(C)

α ≤ 1
96B , we have

pr(α, χv) [vol(C)]− vol(C)
2m

≥ (1− φ(C)
α

)− 1
2

≥ 1
2
− 1

96
.

We have set α so that αt ≤ 1/25 when t = d 8
φ2 ln(100

√
m)e, and with this choice of t we have

αt+
√

min(vol(C), 2m− vol(C))
(

1− φ2

8

)t

<
1
25

+
1

100
.

Since 1
2 −

1
96 >

5
12 + 1

25 + 1
100 , the following equation holds with γ = 5

12 .

pr(α, χv) [vol(C)]− vol(C)
2m

> γ + αt+
√

min(vol(C), 2m− vol(C))
(

1− φ2

8

)t

. (10)

Let B = dlog2me. For each integer b in [1, B], let γb = γ(9
10 + 1

10
b
B). Consider the smallest

value of b in [1, B] for which the following equation holds for some k ≤ 2b.

pr(α, χv) [k]− k

2m
> γb + αt+

√
min(k, 2m− k)

(
1− φ2

8

)t

, for some integer t ≥ 0. (11)

Equation (10) shows that this equation holds with b = B and k = m. Let b0 be the smallest value
of b for which this equation holds, and let k0 be some value such that k0 ≤ m and such that this
equation holds with b = b0 and k = k0. Notice that sb0−1 < k0 ≤ sb0 , because if equation (11)
holds for b = b0 and k = k0, it also holds for b = b0 − 1 and k0.

When PageRank-Nibble is run with b = b0, the approximate PageRank vector apr(α, χv, r) com-
puted by PageRank-Nibble has only a small amount of error on a set of volume k0: the error is small

18

enough that the difference pr(α, χv) [k0]− apr(α, χv, r) [k0] is less than γb − γb−1 = 1
10Bγ = 1

24B .

apr(α, χv, r) [k0] ≥ pr(α, χv) [k0]−max
u∈V

r(u)
d(u)

k0

≥ pr(α, χv) [k0]−
2−b0

48B
k0

≥ pr(α, χv) [k0]−
1

48B

≥ pr(α, χv) [k0]− (γb0 − γb0−1) +
1

48B
.

We then use the lower bound on pr(α, v) [k0] implied by the definition of b0: for some integer t ≥ 0,

apr(α, χv, r) [k0]−
k0

2m
>

(
γb0 + αt+

√
min(k0, 2m− k0)

(
1− φ2

8

)t
)
− (γb0 − γb0−1) +

1
48B

> (γb0−1 +
1

48B
) + αt+

√
min(k0, 2m− k0)

(
1− φ2

8

)t

.

Theorem 3 then shows that there exists a sweep cut Sj , with Sj = S
apr(α,χv ,r)
j for some value of j

in the range [1, |Supp(apr(α, χv, r))|], such that Φ(Sj) ≤ φ, and such that following lower bound
holds for some integer t:

apr(α, χv, r) (Sj)−
vol(Sj)

2m
> (γb0−1 +

1
48B

)+αt+
√

min(vol(Sj), 2m− vol(Sj))
(

1− φ2

8

)t

. (12)

We will show that this cut Sj satisfies all the requirements of PageRank-Nibble.
It must be true that vol(Sj) > 2b0−1, since if were true that vol(Sj) ≤ 2b0−1, the definition of

b0 would imply that for any integer t,

apr(α, χv, r) (Sj)−
vol(Sj)

2m
= apr(α, χv, r) [vol(Sj)]−

vol(Sj)
2m

≤ pr(α, s) [vol(Sj)]−
vol(Sj)

2m

≤ γb0−1 + αt+
√

min(vol(Sj), 2m− vol(Sj))
(

1− φ2

8

)t

,

and this would contradict the lower bound from equation (12).
It must also be true that vol(Sj) < 2

3vol(G). Otherwise, the lower bound from equation (12)
would imply that for some integer t,

apr(α, χv, r) (Sj) >
vol(Sj)

2m
+ γb0−1 + αt+

√
min(vol(Sj), 2m− vol(Sj))

(
1− φ2

8

)t

>
2
3

+ γb0−1

≥ 2
3

+
9
10
γ.

Since γ = 5
12 , this implies apr(α, χv, r) (Sj) > 1, which is impossible.

19

To prove that there is a significant difference between apr(α, χv, r)
[
2b0
]
and apr(α, χv, r)

[
2b0−1

]
,

observe that equation (12) does not hold with b = b0−1 and k = 2b0−1. Therefore, for every integer
t ≥ 0,

apr(α, χv, r)
[
2b0−1

]
− k0

2m
≤ γb0−1 + αt+

√
min(2b0−1, 2m− 2b0−1)

(
1− φ2

8

)t

. (13)

We also know that for some integer t,

apr(α, χv, r) [k0]−
k0

2m
> (γb0−1 +

1
48B

) + αt+
√

min(k0, 2m− k0)
(

1− φ2

8

)t

. (14)

Since 2b0−1 ≤ k0 ≤ m, we have
√

min(sb0−1, 2m− sb0−1) ≤
√

min(k0, 2m− k0). Taking an integer
t that makes equation (14) true, and plugging this value of t into equations (14) and (13), yields
the following inequality.

apr(α, χv, r)
[
2b0
]
− apr(α, χv, r)

[
2b0−1

]
≥ apr(α, χv, r) [k0]− apr(α, χv, r)

[
2b0−1

]
>

1
48B

.

We have shown that Sj meets all the requirements of PageRank-Nibble, which proves that the
algorithm outputs some cut when run with b = b0. We now prove a lower bound on vol(S∩C), which
holds for any cut S output by PageRank-Nibble, with any value of b. Let p′ [k] = p [k]− p [k − 1].
Since p′ [k] is a decreasing function of k,

p′
[
2b−1

]
≥

p
[
2b
]
− p

[
2b−1

]
2b − 2b−1

>
1

2(b−1)48B
.

It is not hard to see that combining this lower bound on p′
[
2b−1

]
with the upper bound p

(
C̄
)
≤ Φ(C)

α
gives the following bound on the volume of the intersection.

vol(Sj ∩ C) ≥ 2b−1 −
p
(
C̄
)

p′ [2b−1]

> 2b−1 − 2b−1(48B
Φ(C)
α

).

Since we have assumed that Φ(C)
α ≤ 1

96B , we have

vol(S ∩ C) > 2b−1 − 2b−2 = 2b−2.

20

