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Abstract

This paper initiates research on the foundations of ranking systems, a fundamental ingredient of basic
e-commerce and Internet Technologies. In order to understand the essence and the exact rationale of
page ranking algorithms we suggest the axiomatic approach taken in the formal theory of social choice.
In this paper we deal with PageRank, the most famous page ranking algorithm. We present a set of
simple (graph-theoretic, ordinal) axioms that are satisfied by PageRank, and moreover any page ranking
algorithm that does satisfy them must coincide with PageRank. This is the first representation theorem
of that kind, bridging the gap between page ranking algorithms and the mathematical theory of social
choice.

1 Introduction

The ranking of agents based on other agents’ input is fundamental to e-commerce and multi-agent systems
(see e.g. [4, 16]). Moreover, the ranking of agents based on other agents’ input have become a central
ingredient of a variety of Internet sites, where perhaps the most famous examples are Google’s PageRank
algorithm[11] and ebay’s reputation system[15]. One important set of such ranking systems are page ranking
systems. It is well known that page ranking is fundamental for search technology, as well as for other
applications. A major problem therefore is the study of the rationale of using a particular page ranking
algorithm. What are the properties of a particular page ranking algorithm that characterize and differentiate
it from other page ranking algorithms? In order to address this challenge we introduce and adapt the
axiomatic approach, adopted in the mathematical theory of social choice, into the context of page ranking.

If we treat the Internet as a graph, where the nodes/pages are agents, and the links originating from
node/page p define the preferences of the corresponding agent (i.e. a page that p links to is preferable to a
page that p does not link to) then the page ranking problem becomes the problem of aggregating individual
rankings into a global (social) ranking. Hence, the problem of page ranking becomes a (novel) problem of
social choice. In the classical theory of social choice, as manifested by Arrow[1], a set of agents/voters is
called to rank a set of alternatives. Given the agents’ input, i.e. the agents’ individual rankings, a social
ranking of the alternatives is generated. The theory studies desired properties of the aggregation of agents’
rankings into a social ranking. In particular, Arrow’s celebrated impossibility theorem[1] shows that there
is no aggregation rule that satisfies some minimal requirements, while by relaxing any of these requirements
appropriate social aggregation rules can be defined. The novel feature of the page ranking setting is that the
set of agents and the set of alternatives coincide. Therefore, in such setting one may need to consider the
transitive effects of voting. For example, if agent (i.e. page) a reports on the importance of (i.e. links to)
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page b then this may influence the credibility of a report by b on the importance of agent c; these indirect
effects should be considered when we wish to aggregate the information provided by the agents into a social
ranking.

The theory of social choice is an axiomatic theory, and consists of two complementary perspectives:

• The normative perspective: devise a set of requirements that a social aggregation rule should satisfy,
and try to find whether there is a social aggregation rule that satisfies these requirements.

• The descriptive perspective: given a particular rule r for the aggregation of individual rankings into a
social ranking, find a set of axioms that are sound and complete for r. That is, find a set of requirements
that r satisfies; moreover, every social aggregation rule that satisfies these requirements should coincide
with r. A result showing such an axiomatization is termed a representation theorem and it captures
the exact essence of (and assumptions behind) the use of the particular rule.

An excellent example for the normative perspective is Arrow’s impossibility theorem mentioned above. In
[19] we presented such an approach for ranking systems. Many efforts have been invested in the descriptive
approach in the framework of the classical theory of social choice. In that setting, representation theorems
have been presented for classical voting rules such as the majority rule over two alternatives[8] (see [9] for
an overview). Tackling the descriptive approach in the new Internet context, where the set of voters and the
set of alternatives coincide (i.e. the page ranking context) remained an open major challenge.

In our work we address the above challenge by introducing a representation theorem for PageRank.
Needless to say that PageRank[11] is the most famous page ranking procedure. In particular, PageRank is
the basis for Google’s search technology1[2].If we treat the Internet as a strongly connected graph, where
the nodes are the pages and the edges are links between pages, then PageRank can be defined as the limit
probability distribution reached in a random walk on that graph. Roughly speaking, page p1 will be ranked
higher than page p2 if the probability of reaching p1 is greater than the probability of reaching p2. We will
show several simple properties (called axioms) one may require a page ranking algorithm to satisfy and prove
that the PageRank algorithm does satisfy these axioms. Then, we prove our main result: any page ranking
algorithm that does satisfy these axioms must coincide with PageRank!

The only work that we are familiar with which deals with a related axiomatization is the recent work on
the axiomatization of citation indexes [12]. This work deals however with the case of numeric inputs (e.g. the
inputs are not only graphs, as in page ranking, but include also numeric measures for the number of citations
by each node, and by each node for each other node), and (most importantly) the axioms considered are
numeric as well (e.g. when defining the axioms we are allowed for computations such as division or matrix
multiplication). Our aim is quite different: we are after ordinal, graph-theoretic requirements that will
provide sound and complete axiomatization for PageRank. This creates a most significant challenge: while
the PageRank algorithm is numeric and is based on the computation of eigenvectors, we are after simple
graph-theoretic properties that will fully characterize the related ranking procedure.

The classical theory of social choice lay the foundations to large part of the rigorous work on the design
and analysis of social interactions. Indeed, the most classical results in the theory of mechanism design (e.g.
the Gibbard-Satterthwaite [5, 17] theorems) are applications of the theory of social choice. While economic
mechanism design had become an extensive line of study in computer science (see e.g. [10]) and electronic
commerce (see e.g. [7, 13, 3]), our work introduces another connection between algorithms and Internet
technologies to the mathematical theory of social choice.

In the next section we define our setting and some preliminaries, including the PageRank ranking system.
In Section 3 we introduce five axioms one may require to hold for any page ranking procedure, and claim that

1In fact, ranking based on similar ideas can be found in other contexts as well. See [14] for the use of PageRank-like procedure
in the comparison of journals’ impact.
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PageRank does satisfy these axioms. In Section 4 we show some useful properties implied by the axioms. In
Section 5 we use these properties for proving that any page ranking procedure that does satisfy the axioms
should coincide with PageRank. Further discussion of the approach taken in this paper is presented in
Section 6. This paper is supplemented by an appendix which includes proofs of the theorems.

2 Page Ranking

The current practice of the ranking of Internet pages is based on the idea of computing the limit stationary
probability distribution of a random walk on the Internet graph, where the nodes are pages, and the edges
are links among the pages. In order for the result of that process will be well defined, we restrict our attention
to strongly connected graphs:

Definition 2.1. A directed graph G = (V, E) is called strongly connected if for all vertices v1,v2 ∈ V there
exists a path from v1 to v2 in E.

The output of a page ranking procedure can be viewed as a linear ordering of a set of alternatives:

Definition 2.2. Let A be some set. A relation R ⊆ A × A is called an ordering on A if it is reflexive,
transitive, complete and anti-symmetric. Let L(A) denote the set of orderings on A.

Notation: Let � be an ordering, then ' is the equality predicate of �. Formally, a ' b if and only if a � b
and b � a.

Given the above we can define what a ranking system is:

Definition 2.3. Let GV be the set of all strongly connected graphs with vertex set V . A ranking system F
is a functional that for every finite vertex set V maps every strongly connected graph G ∈ GV to an ordering
�F

G∈ L(V ).

In order to define the PageRank ranking system, we first recall the following standard definitions:

Definition 2.4. Let G = (V, E) be a directed graph, and let v ∈ V be a vertex in G. Then: The successor
set of v is SG(v) = {u|(v, u) ∈ E}, and the predecessor set of v is PG(v) = {u|(u, v) ∈ E}.

We now define the PageRank matrix which is the matrix which captures the random walk created by the
PageRank procedure. Namely, in this process we start in a random page, and iteratively move to one of the
pages that are linked to by the current page, assigning equal probabilities to each such page.

Definition 2.5. Let G = (V, E) be a directed graph, and assume V = {v1, v2, . . . , vn}. the PageRank Matrix
AG (of dimension n × n) is defined as:

[AG]i,j =

{

1/|SG(vj)| (vj , vi) ∈ E

0 Otherwise.

The PageRank procedure will rank pages according to the stationary probability distribution obtained
in the limit of the above random walk; this is formally defined as follows:

Definition 2.6. Let G = (V, E) be some strongly connected graph, and assume V = {v1, v2, . . . , vn}. Let r

be the unique solution of the system AG · r = r where r1 = 1. The PageRank PRG(vi) of a vertex vi ∈ V is
defined as PRG(vi) = ri. The PageRank ranking system is a ranking system that for the vertex set V maps
G to �PR

G , where �PR
G is defined as: for all vi, vj ∈ V : vi �PR

G vj if and only if PRG(vi) ≤ PRG(vj).

The above defines a powerful heuristic for the ranking of Internet pages, as adopted by search engines[11].
This is however a particular numeric procedure, and our aim is to treat it from an axiomatic social choice
perspective, providing graph-theoretic, ordinal representation theorem for PageRank.
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Figure 1: Sketch of several axioms

3 The Axioms

From the perspective of the theory of social choice, each page in the Internet graph is viewed as an agent,
where this agent prefers the pages (i.e. agents) it links to upon pages it does not link to. The problem of
finding a social aggregation rule will become therefore the problem of page ranking. The idea is to search for
simple axioms, i.e. requirements we wish the page ranking system to satisfy. Most of these requirements will
have the following structure: page a is preferable to page b when the graph is G if and only if a is preferable
to b when the graph is G′. Our aim is to search for a small set of axioms that can be shown to be satisfied by
PageRank. The axioms need to be simple graph-theoretic, ordinal properties, which do not refer to numeric
computations.

In explaining some of the axioms we will refer to Figure 1. For simplicity, while the axioms are stated as
”if and only if” statements, we will sometime emphasize in the intuitive explanation of an axiom only one
of the directions (in all cases similar intuitions hold for the other direction).

The first axiom is straightforward:

Axiom 3.1. (Isomorphism) A ranking system F satisfies isomorphism if for every isomorphism function
ϕ : V1 7→ V2, and two isomorphic graphs G ∈ GV1

, ϕ(G) ∈ GV2
: �F

ϕ(G)= ϕ(�F
G).

The isomorphism axiom tells us that the ranking procedure should be independent of the names we
choose for the vertices.

The second axiom is also quite intuitive. It tells us that if a is ranked at least as high as b if the graph
is G, where in G a does not link to itself, then a should be ranked higher than b if all that we add to G is
a link from a to itself. Moreover, the relative ranking of other vertices in the new graph should remain as
before. Formally, we have the following notation and axiom:2

2One may claim that this axiom makes no sense if we do not allow self loops. This is however only a simple technical issue.
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Notation: Let G = (V, E) ∈ GV be a graph s.t. (v, v) /∈ E. Let G′ = (V, E ∪ {(v, v)}). Let us denote
SelfEdge(G, v) = G′ and SelfEdge−1(G′, v) = G. Note that SelfEdge−1(G′, v) is well defined.

Axiom 3.2. (Self edge) Let F be a ranking system. F satisfies the self edge axiom if for every vertex
set V and for every vertex v ∈ V and for every graph G = (V, E) ∈ GV s.t. (v, v) /∈ E, and for every
v1, v2 ∈ V \ {v}: Let G′ = SelfEdge(G, v). If v1 �F

G v then v 6�F
G′ v1; and v1 �F

G v2 iff v1 �F
G′ v2.

The following, third axiom (titled Vote by committee) captures the following idea, which is illustrated in
Figure 1(a). If page a links to pages b and c, then the relative ranking of all pages should be the same as in
the case where the direct links from a to b and c are replaced by links from a to a new set of pages, which link
(only) to b and c. The idea here is that the amount of importance a provides to b and c by linking to them,
should not change due to the fact that a assigns its power through a committee of (new) representatives, all
of which behave as a. More generally, and more formally, we have the following:

Axiom 3.3. (Vote by committee) Let F be a ranking system. F satisfies vote by committee if for every
vertex set V , for every vertex v ∈ V , for every graph G = (V, E) ∈ GV , for every v1, v2 ∈ V , and for
every m ∈ N: Let G′ = (V ∪ {u1, u2, . . . , um}, E \ {(v, x)|x ∈ SG(v)} ∪ {(v, ui)|i = 1, . . . , m} ∪ {(ui, x)|x ∈
SG(v), i = 1, . . . , m}), where {u1, u2, . . . , um} ∩ V = ∅. Then, v1 �F

G v2 iff v1 �F
G′ v2.

The 4th axiom, termed collapsing is illustrated in Figure 1(b). The idea of this axiom is that if there is
a pair of pages, say a and b, where both a and b link to the same set of pages, but the sets of pages that
link to a and b are disjoint, then if we collapse a and b into a singleton, say a, where all links to b become
now links to a, then the relative ranking of all pages, excluding a and b of course, should remain as before.
The intuition here is that if there are two voters (i.e. pages), a and b, who vote similarly (i.e. have the same
outgoing links), and the power of each one of them stems from the fact a set of other voters have voted for
him, where the sets of voters for a and for b are disjoint, then if all voters for a and b would vote only for
a (dropping b) then a should provide the same importance to other agents as a and b did together. This
of course relies on having a and b voting for the same individuals. As a result, the following axiom is quite
intuitive:

Axiom 3.4. (collapsing) Let F be a ranking system. F satisfies collapsing if for every vertex set V , for every
v, v′ ∈ V , for every v1, v2 ∈ V \ {v, v′}, and for every graph G = (V, E) ∈ GV for which SG(v) = SG(v′),
PG(v)∩PG(v′) = ∅, and [PG(v)∪PG(v′)]∩{v, v′} = ∅: Let G′ = (V \{v′}, E\{(v′, x)|x ∈ SG(v′)}\{(x, v′)|x ∈
PG(v′)} ∪ {(x, v)|x ∈ PG(v′)}). Then, v1 �F

G v2 iff v1 �F
G′ v2.

The last axiom we introduce, termed the proxy axiom, is illustrated in Figure 1(c). Roughly speaking,
this axiom tells us that if there is a set of k pages, all having the same importance, which link to a, where a
itself links to k pages, then if we drop a and connect directly, and in a 1-1 fashion, the pages which linked to
a to the pages that a linked to, then the relative ranking of all pages (excluding a) should remain the same.
This axiom captures equal distribution of importance. The importance of a is received from k pages, all
with the same power, and is split among k pages; alternatively, the pages that link to a could pass directly
the importance to pages that a link to, without using a as a proxy for distribution. More formally, and more
generally, we have the following:

Axiom 3.5. (proxy) Let F be a ranking system. F satisfies proxy if for every vertex set V , for every vertex
v ∈ V , for every v1, v2 ∈ V \ {v}, and for every graph G = (V, E) ∈ GV for which |PG(v)| = |SG(v)|, for
all p ∈ PG(v): SG(p) = {v}, and for all p, p′ ∈ PG(v): p 'F

G p′: Assume PG(v) = {p1, p2, . . . , pm} and
SG(v) = {s1, s2, . . . , sm}. Let G′ = (V \ {v}, E \ {(x, v), (v, x)|x ∈ V } ∪ {(pi, si)|i ∈ {1, . . . , m}}). Then,
v1 �F

G v2 iff v1 �F
G′ v2.

If we do not allow self loops then the axiom should be replaced by a new one, where the addition of self-loop to a is replaced
by the addition of a new page, a

′, where a links to a
′ and where a

′ links only to a. Our results will remain similar.
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3.1 Soundness

Although we have provided some intuitive explanation for the axioms, one may argue that particular axiom(s)
are not that reasonable. As it turns out however, all the above axioms are satisfied by the PageRank
procedure. The proof of the following basic (soundness) proposition appears in the appendix. In Section
5 we show that the above axioms are not only satisfied by PageRank, but also completely and uniquely
characterize the PageRank procedure.

Proposition 3.6. The PageRank ranking system PR satisfies isomorphism, self edge, vote by committee,
collapsing, and proxy.

4 Several Useful Properties

In this section we prove three technical properties which are implied by our axioms. As a result, these three
properties are satisfied by the PageRank ranking system. The purpose of presenting them is rather technical:
they will be used in the next section, when we show that the PageRank ranking system is the only one that
satisfies our axioms.

Notation: Let V be a vertex set and let v ∈ V be a vertex. Let G = (V, E) ∈ GV be a graph where
S(v) = {s}, P (v) = {p}, and (s, p) /∈ E. We will use Del(G, v) to denote the graph G′ = (V ′, E′) defined
by:

V ′ = V \ {v}

E′ = E \ {(p, v), (v, s)} ∪ {(p, s)}.

The Del(·, ·) operator simply removes a vertex from the graph that has an in-degree and out-degree of
1, replacing it by an edge from its predecessor to its successor. The following lemma says that when our
axioms are satisfied then this operator does not change the relative ranking of all (remaining) pages. The
proof of this lemma appears in the appendix.

Definition 4.1. Let F be a ranking system. F has the weak deletion property if for every vertex set V , for
every vertex v ∈ V and for all vertices v1, v2 ∈ V \{v}, and for every graph G = (V, E) ∈ GV s.t. S(v) = {s},
P (v) = {p}, and (s, p) /∈ E: Let G′ = Del(G, v). Then, v1 �F

G v2 iff v1 �F
G′ v2.

Lemma 4.2. Let F be a ranking system that satisfies isomorphism, vote by committee and proxy. Then, F
has the weak deletion property.

We now move to a second deletion property satisfied by the axioms.

Notation: Let V be a vertex set and let v ∈ V be a vertex. Let G = (V, E) ∈ GV be a graph where
S(v) = {s1, s2, . . . , st} and P (v) = {pi

j |j = 1, . . . , t; i = 0, . . . , m}, and S(pi
j) = {v} for all j ∈ {1, . . . t} and

i ∈ {0, . . . , m}. We will use Delete(G, v, {(s1, {p
i
1|i = 0, . . .m}), . . . , (st, {p

i
t|i = 0, . . .m})}) to denote the

graph G′ = (V ′, E′) defined by:

V ′ = V \ {v}

E′ = E \ {(pi
j , v), (v, sj)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , sj)|i = 0, . . . , m; j = 1, . . . , t}.

When the grouping of the predecessors is trivial or understood from context, we will sloppily use Delete(G, v).

A sketch of the Delete operator can be found in Figure 2. In this figure we see that node x which links to
three other nodes, and has two sets of three predecessors, where the nodes in each such set are of the same
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Figure 3: Sketch of Duplicate(G, a, 3).

importance. The Delete operator will drop x and connect exactly one element from each of the predecessor
sets to exactly one node in the successor set. The following lemma says that when our axioms are satisfied
then this operator does not change the relative ranking of all (remaining) pages. The proof of this lemma
appears in the appendix.

Definition 4.3. Let F be a ranking system. F has the strong deletion property if for every vertex set V , for
every vertex v ∈ V , for all v1, v2 ∈ V \{v}, and for every graph G = (V, E) ∈ GV s.t. S(v) = {s1, s2, . . . , st},
P (v) = {pi

j |j = 1, . . . , t; i = 0, . . . , m}, S(pi
j) = {v} for all j ∈ {1, . . . t} and i ∈ {0, . . . , m}, and pi

j 'F
G pi

k

for all i ∈ {0, . . . , m} and j, k ∈ {1, . . . t}: Let G′ = Delete(G, v, {(s1, {pi
1|i = 0, . . .m}), . . . (st, {pi

t|i =
0, . . .m})}). Then, v1 �F

G v2 iff v1 �F
G′ v2.

Lemma 4.4. Let F be a ranking system that satisfies collapsing and proxy. Then, F has the strong deletion
property.

We conclude with a third property which is also satisfied by the axioms.

Notation: Let V be a vertex set and let G = (V, E) ∈ GV be a graph. Let S(v) = {s0
1, s

0
2, . . . , s

0
t}. We will

use Duplicate(G, v, m) to denote the graph G′ = (V ′, E′) defined by:

V ′ = V ∪ {si
j |i = 1, . . . , m − 1; j = 1, . . . t}

E′ = E ∪ {(v, si
j)|i = 1, . . . , m − 1; j = 1, . . . t} ∪

∪{(si
j , u)|i = 1, . . . , m − 1; j = 1, . . . t; u ∈ SG(s0

j )}.

A sketch of the Duplicate operator can be found in Figure 3. In this figure we see that a links to two
nodes, each of which has its own successor set. Then, each node in the successor set of a is duplicated by
a factor of three, i.e. for each node a′ in the successor set of a we add two new nodes to the successor set
of a, each of which with the same successor set as a′. The following lemma says that when our axioms are
satisfied then this operator does not change the relative ranking of the pages, excluding the ones which have
been duplicated. The proof appears in the Appendix.
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Definition 4.5. Let F be a ranking system. F has the edge duplication property if for every vertex set V , for
all vertices v, v1, v2 ∈ V , for every m ∈ N, and for every graph G = (V, E) ∈ GV : Let S(v) = {s0

1, s
0
2, . . . , s

0
t},

and let G′ = Duplicate(G, v, m). Then, v1 �F
G v2 iff v1 �F

G′ v2.

Lemma 4.6. Let F be a ranking system that satisfies isomorphism, vote by committee, collapsing, and proxy.
Then, F has the edge duplication property.

5 Completeness

We are now ready to show that that our axioms fully characterize the PageRank ranking system. We can
prove:

Theorem 5.1. A ranking system F satisfies isomorphism, self edge, vote by committee, collapsing, and
proxy if and only if F is the PageRank ranking system.

Given Proposition 3.6, it is enough to prove the following:

Proposition 5.2. Let F1 and F2 be a ranking systems that have the weak deletion, strong deletion, and edge
duplication properties, and satisfy the self edge and isomorphism axioms. Then, F1 and F2 are the same
ranking system (notation: F1 ≡ F2).

The proof of Proposition 5.2 is in the appendix. We shall now describe a sketch of the proof. The basic
idea of the proof is to begin with a graph G = (V, E) and two arbitrary vertices a and b in V , and manipulate
G by applying Del(·, ·), Delete(·, ·, ·), Duplicate(·, ·, ·), and SelfEdge(·, ·) to achieve a new graph Gn for
which F1 and F2 rank a and b the same as in G (Formally a �F

Gn
b ⇔ a �F

G b for F ∈ {F1, F2}). Afterwards,

Gn is further manipulated to generate Gn+δ for which a 'F
Gn+δ

b, but a �F
Gn

b ⇒ b 6�F
Gn+δ

a for F ∈ {F1, F2}

or vice versa (with a and b replaced). So, we conclude that a �F1

Gn
b ⇔ a �F2

Gn
b, and thus a �F1

G b ⇔ a �F2

G b.

The steps required to generate Gn from G, and then Gn+δ from Gn may be described algorithmically.
These steps are illustrated in Figure 4:

1. Add a new vertex on every edge on the initial graph (Figure 4b), thus splitting each original edge into
two new edges. These vertices do not change the relative ranking of a and b due to the weak deletion
property.

2. If no original vertices exist in the graph except a and b, go to step 8. Otherwise, select an original
vertex x /∈ {a, b} (in Figure 4 we start by selecting c).

3. Remove all vertices that are both predecessors and successors of x and all edges connected to these
vertices. All of these are new vertices, which have an in-degree and out-degree of 1.

Basically, this step removes all self-edges of x (with an added vertex on them). These deletions do not
change the relative ranking of a and b due to the weak deletion property and the self edge axiom.

4. Duplicate all predecessors of predecessors of x by x’s out-degree. This does not change the relative
ranking of a and b due to the duplication property (Figure 4c).

Note that all the vertices we duplicate are original ones (possibly a or b, but not x), so to add additional
in-between vertices before x, making the in-degree of x a multiple of its out degree, split into groups
of isomorphic, and thus equally ranked, vertices.

5. Delete x using Delete(G, x) (Figure 4d).
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6. Delete the successors of x (new vertices) to retain the state of one new vertex between each pair of
original vertices (Figure 4e). These deletions do not change the relative ranking of a and b due to the
strong deletion property.

7. Go to step 2 (Figure 4f illustrates the second iteration, where d is selected).

8. Now, a and b are the only original vertices remaining in the graph, and the graph could be defined by
the number of vertices (with edges) between a and b, between b and a, between a and a, and between
b and b.

9. Duplicate a by the number of edges with vertices from b to a and vice versa, thus equalizing the number
of edges with vertices from a to b the number from b to a (Figure 4g). This relative ranking between
a and b is retained due to the duplication property.

10. Now, add self edges (with vertices) to the vertex v ∈ {a, b} with fewer self-edges (with vertices), until
the number of self edges is equal between a and b (Figure 4h). Let v′ = {a, b} \ {v}. By the self edge
axiom and the weak deletion property, if v′ �F v before adding the self edges, then now v 6�F v′ for
F ∈ {F1, F2}.

11. By the isomorphism axiom, in this graph, a ' b, therefore in the graph after step 9, v′ �F v for
F ∈ {F1, F2}. But as the relative ranking of a and b did not change until step 10, v′ �F

G v for
F ∈ {F1, F2}, and thus a �F1

G b ⇔ a �F2

G b.

6 Discussion

Representation theorems are the formal mathematical tool for the justification of decision and choice rules.
We have already mentioned the formal theory of social choice, but representation theorems also lay mathe-
matical foundations for other branches of decision and choice theory. For example, the crowning achievement
of the theory of (single-agent) choice is Savage’s representation theorem [18], which provides sound and com-
plete axiomatization for the expected utility maximization decision criterion. Here also one looks for ordinal
requirements, which do not refer to numeric computations, under which an agent can be viewed as an ex-
pected utility maximizer. This is similar to our work, where we considered only graph-theoretic ordinal
axioms to justify the numeric computations done by PageRank.

Although PageRank is probably the most popular page ranking procedure, it may be interesting to
attempt and provide axiomatization for other page ranking procedures, such as Hubs and Authorities [6].
Once such axiomatization is found the different axiomatic systems can be compared as a basis for rigorous
evaluation.

We believe that the problem of ranking of Internet pages is indeed a fundamental problem. We see the fact
that this central problem is a new type of social choice problem as especially intriguing. In order to provide
mathematical foundations to page ranking systems we therefore need to search for basic representation
theorems that will provide ordinal, graph theoretic axiomatizations for basic heuristics and approaches for
page ranking. Representation theorems isolate the ”essence” of particular ranking systems, and provide
means for the evaluation (and potentially comparison) of such systems. In this paper we initiated work on
this topic by introducing such representation theorem for PageRank. We hope that others will join us in
exploring the connections between page ranking algorithms and the mathematical theory of social choice.
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A Proofs

This section includes our proofs. These proofs are not part of the extended abstract, but may be used by
the interested reviewer.

A.1 Proof of Proposition 3.6

Proof. The isomorphism axiom is satisfied directly from the definition by the assumption that V = {v1, v2, . . . , vn}.

For the vote by committee axiom, let V = {v1, v2, . . . , vn} be a vertex set, let G = (V, E) ∈ GV be a
graph, and let vs, vt ∈ V be vertices and let m ∈ N be a natural number. Assume vs �PR

G vt.

Let G′ = (V ∪{vn+1, vn+2, . . . , vn+m}, E\{(v1, x)|x ∈ SG(v1)}∪{(v1, vn+j)|j = 1, . . . , m}∪{(vn+j , x)|x ∈
SG(v1), j = 1, . . . , m}). Let r be the solution of AG · r = r, where r1 = 1. Let r′ be the following vector:

r′ =





















r1

...
rn

r1/m
...

r1/m





















We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix AG′ is

AG′ =





















0 a1,2 · · · a1,n a1,1 · · · a1,1

...
...

. . .
...

...
. . .

...
0 an,2 · · · an,n an,1 · · · an,1

1/m
... 0

1/m





















If we multiply, we get: for i ∈ {1, . . . n}:

[AG′r′]i =
n

∑

j=2

ai,jrj + mai,1 · r1/m =
n

∑

j=1

ai,jrj = ri,

and for i ∈ {n + 1, . . . n + m}, [AG′r′]i = 1/m · r1, as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all
j ∈ {1, . . . , n + m}. Now, PRG′(vs) = r′s = rs = PRG(vs) ≤ PRG(vt) = rt = r′t = PRG′(vt), as required.

For the collapsing axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV . Assume S(vn) = S(vn−1)
and P (vn) ∩ P (vn−1) = ∅. Let vk, vl ∈ V be vertices (k, l < n − 1). Assume vk �PR

G vl.

Let G′ = (V \ {vn}, E \ {(vn, x)|x ∈ SG(vn)} \ {(x, vn)|x ∈ PG(vn)} ∪ {(x, vn−1)|x ∈ PG(vn)}). Let r be
the solution of AG · r = r, where r1 = 1. Let r′ be the following vector:

r′ =











r1

...
rn−2

rn−1 + rn











i



We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix AG′ is

AG′ =











a1,1 a1,2 · · · a1,n−1

...
...

. . .
...

an−2,1 an−2,2 · · · an−2,n−1

an−1,1 + an,1 an−1,2 + an,2 · · · 0











If we multiply, we get for i ∈ {1, . . . n − 2}:

[AG′r′]i = ai,n−1(rn + rn−1) +

n−2
∑

j=1

ai,jrj = ai,n−1rn + ai,n−1rn−1 +

n−2
∑

j=1

ai,jrj

Note that ai,n = ai,n−1 = 1
|S(vn)| , so

[AG′r′]i =

n−2
∑

j=1

ai,jrj + ai,n−1rn−1 + ai,nrn =

n
∑

j=1

ai,jrj = ri.

[AG′r′]n−1 =

n−2
∑

j=1

(an−1,j + an,j)rj =

n−2
∑

j=1

an−1,jrj +

n−2
∑

j=1

an,jrj

Note that an−1,n−1 = an−1,n = an,n−1 = an,n = 0, so

[AG′r′]n−1 =

n
∑

j=1

an−1,jrj +

n
∑

j=1

an,jrj = rn−1 + rn

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all j ∈ {1, . . . , n − 1}. Now,
PRG′(vk) = r′k = rk = PRG(vk) ≤ PRG(vl) = rl = r′l = PRG′(vl), as required.

For the proxy axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV . Assume P (vn) = {v1, v2, . . . , vm},
v1 ' v2 ' · · · ' vm, and S(vn) = {vt+1, vt+2, . . . , vt+m}, where t ∈ {0, . . . , m}. Let vk, vl ∈ V be vertices
(k, l < n). Assume vk �PR

G vl.

Let G′ = (V \ {vn}, E \ {(x, vn), (vn, x)|x ∈ V } ∪ {(vi, vt+i)|i ∈ {1, . . . , m}}). Let r be the solution of
AG · r = r, where r1 = 1. Since v1 ' v2 ' · · · ' vm, we have r1 = r2 = · · · = rm, and note that because
PG(vn) = {v1, v2, . . . , vm} and S(vi) = {vn} for all i ∈ {1, . . . , m}:

rn =
n

∑

i=1

an,iri = r1 + r2 + · · · + rm = mr1 = m.

Let r′ = r−n. By definition of G′, the matrix AG′ is

AG′ =







































0 0 · · · 0 a1,m+1 a1,m+2 · · · a1,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 at,m+1 at,m+2 · · · at,n−1

1 0 · · · 0 at+1,m+1 at+1,m+2 · · · at+1,n−1

0 1 · · · 0 at+2,m+1 at+2,m+2 · · · at+2,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 at+m,m+1 at+m,m+2 · · · at+m,n−1

0 0 · · · 0 at+m+1,m+1 at+m+1,m+2 · · · at+m+1,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 an−1,m+1 an−1,m+2 · · · an−1,n−1
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We multiply can now multiply, and since ai,n = 0 for all i ∈ {1, . . . t, t + m + 1, . . . , n − 1} (because
S(vn) = {t+1, . . . , t+m}) and ai,j = 0 for all i ∈ {1, . . . , n−1} and j ∈ {1, . . . , m} (because S(vj) = {vn}),
we get for i ∈ {1, . . . t, t + m + 1, . . . , n − 1}:

[AG′r′]i =

n−1
∑

j=m+1

ai,jrj =

n
∑

j=1

ai,jrj = ri

and for i ∈ {t + 1, . . . , t + m}:

[AG′r′]i =

n−1
∑

j=m+1

ai,jrj + ri−t =

n−1
∑

j=1

ai,jrj + 1 =

n−1
∑

j=1

ai,jrj +
1

m
rn =

=

n−1
∑

j=1

ai,jrj + ai,nrn =

n
∑

j=1

ai,jrj = ri

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all j ∈ {1, . . . , n − 1}. Now,
PRG′(vk) = r′k = rk = PRG(vk) ≤ PRG(vl) = rl = r′l = PRG′(vl), as required.

For the self edge axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV . Assume (v1, v1) /∈ E. Let r

be the solution of AG · r = r, where r1 = 1. Let G′ = (V, E ∪ {(v1, v1)}) and let m = |SG(v1)|. Let r′ be the
following vector:

r′ =











r1
m

m+1r2

...
m

m+1rn











We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix AG′ is

AG′ =











1
m+1 a1,2 · · · a1,n

m
m+1a2,1 a2,2 · · · a2,n

...
...

. . .
...

m
m+1an,1 an,2 · · · an,n











If we multiply, we get: for i ∈ {2, . . . n}:

[AG′r′]1 =
1

m + 1
r1 +

n
∑

j=2

a1,j

m

m + 1
rj =

1

m + 1
r1 +

m

m + 1

n
∑

j=2

a1,jrj =

=
1

m + 1
r1 +

m

m + 1

n
∑

j=1

a1,jrj =
1

m + 1
r1 +

m

m + 1
r1 = r1

[AG′r′]i =
m

m + 1
ai,1r1 +

n
∑

j=2

ai,j

m

m + 1
rj =

m

m + 1

n
∑

j=1

ai,jrj =
m

m + 1
ri

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all j ∈ {1, . . . , n − 1}.

Assume v2 �PR
G v1. Then, PRG′(v2) = r′2 < r2 = PRG(v2) ≤ PRG(v1) = r1 = r′1 = PRG′(v1), as

required.

Now assume v2 �PR
G v3. Then, PRG′(v2) = r′2 = r2 = PRG(v2) ≤ PRG(v3) = r3 = r′3 = PRG′(v3), as

required.
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A.2 Proof of Lemma 4.2

Proof. Let V be a vertex set, let v ∈ V ; v1, v2 ∈ V \ {v} be vertices and let G = (V, E) ∈ GV be a graph s.t.
S(v) = {s}, P (v) = {p}, and (s, p) /∈ E. Assume v1 �F

G v2. Let s0 = v and S(p) = {s0, s1, s2, . . . , sm}.

• Let G1 = (V1, E1), where

V1 = V ∪ {p′}

E1 = E \ {(p, si)|i = 0, . . . , m} ∪ {p, p′} ∪

∪{(p′, si)|i = 0, . . . , m}.

By the vote by committee axiom with parameter 1, v1 �F
G1

v2.

• Let G2 = (V2, E2), where

V2 = V1 ∪ {ui|i = 0, . . . , m}

E2 = E1 \ {(p, p′)} ∪

∪{(p, ui), (ui, p
′)|i = 0, . . . , m}.

By the vote by committee axiom with parameter m + 1, v1 �F
G2

v2.

• Let G3 = (V3, E3), where

V3 = V2 \ {p
′}

E3 = E2 \ {(ui, p
′), (p′, si)|i = 0, . . . , m}.

∪{(ui, si)|i = 0, . . . , m}.

By the isomorphism axiom, ui 'G2
uj for all i, j ∈ {0, . . . , m}. By the proxy axiom, v1 �F

G3
v2.

• Let G4 = (V4, E4), where

V4 = V3 \ {v}

E4 = E3 \ {(u0, v), (v, s)} ∪ {(u0, s)}.

By the vote by committee axiom with parameter 1, v1 �F
G4

v2.

• Let G′ = Del(G, v). By the vote by committee, isomorphism, and proxy axioms, as between G and
G3 above, v1 �F

G′ v2 ⇔ v1 �F
G4

v2. Thus, v1 �F
G′ v2 as required.

A.3 Proof of Lemma 4.4

Proof. Let V be a vertex set, let v ∈ V ; v1, v2 ∈ V \ {v} be vertices and let G = (V, E) ∈ GV be a graph
s.t. S(v) = {s1, s2, . . . , st}, P (v) = {pi

j |j = 1, . . . , t; i = 0, . . . , m}, S(pi
j) = {v} for all j ∈ {1, . . . t} and

i ∈ {0, . . . , m}, and pi
j = pk

j for all j ∈ {1, . . . t} and i, k ∈ {0, . . . , m}. Assume v1 �F
G v2. Denote u0 = v.

• Let G1 = (V1, E1), where

V1 = V ∪ {ui|i = 1, . . . , m}

E1 = E \ {(pi
j , v)|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , u

i), (ui, sj)|i = 1, . . . , m; j = 1, . . . , t}

By the collapsing axiom applied in the reverse direction a total of m times for {(ui−1, ui)|i = 1, . . . , m},
v1 �F

G1
v2.
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• Let G2 = (V2, E2), where

V2 = V1 \ {u
i|i = 0, . . . , m}

E2 = E1 \ {(p
i
j , u

i), (ui, sj)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , sj)|i = 0, . . . , m; j = 1, . . . , t}.

By the proxy axiom applied a total of m + 1 times for {ui|i = 0, . . . , m}, v1 �F
G2

v2.

Note that G2 is exactly G′ = Delete(G, v, {(s1, {pi
1|i = 0, . . . m}), . . . (st, {pi

t|i = 0, . . .m})}), so v1 �F
G′ v2

as required.

A.4 Proof of Lemma 4.6

Proof. Let V be a vertex set, let v, v1, v2 ∈ V be vertices, and let m′ ∈ N be a natural number. Assume
m′ > 1 (otherwise G′ = G), and let m = m′ − 1. Let G = (V, E) ∈ GV be a graph. Assume v1 �F

G v2, and
let S(v) = {s0

1, s
0
2, . . . , s

0
t}.

• Let G1 = (V1, E1), where

V1 = V ∪ {ui
j |i = 0, . . . , m; j = 1, . . . t}

E1 = E \ {(v, x)|x ∈ SG(v)} ∪ {(v, ui
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(ui
j , x)|x ∈ SG(v), i = 0, . . . , m; j = 1, . . . t}.

By the vote by committee axiom with parameter (m + 1)t, v1 �F
G1

v2.

• Let G2 = (V2, E2), where

V2 = V1 ∪ {wi
j |i = 0, . . . , m; j = 1, . . . t}

E2 = E1 \ {(v, ui
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(v, wi
j), (w

i
j , u

i
j)|i = 0, . . . , m; j = 1, . . . t}

By the vote by committee axiom (applied (m − 1)t times) with parameter 1, v1 �F
G2

v2.

• Let G3 = (V3, E3), where

V3 = V2 \ {u
i
j |i = 0, . . . , m; j = 2, . . . , t}

E3 = E2 \ {(u
i
j , x|x ∈ SG(v); i = 0, . . . , m; j = 2, . . . , t} \

\{(wi
j , u

i
j)|i = 0, . . . , m; j = 2, . . . , t} ∪

∪{(wi
j , u

i
1)|i = 0, . . . , m; j = 2, . . . , t}.

By the collapsing axiom applied a total of (m+1)(t−1) times for {(ui
j−1, u

i
j)|j = 2, . . . , t; i = 0, . . . m},

v1 �F
G3

v2.

• Let G4 = (V4, E4), where

V4 = V3 \ {u
i
1|i = 0, . . . , m}

E4 = E3 \ {(u
i
1, x)|i = 0, . . . , m; x ∈ SG(v)} \

\{(wi
j , u

i
1)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(wi
j , s

0
j )|i = 0, . . . , m; j = 1, . . . , t}.

v



By the isomorphism axiom, wi
j ' wi

k for all i ∈ {0, . . . , m} and j, k ∈ {1, . . . , t}. By the proxy axiom

(applied a total of m + 1 times for {ui
1|i = 0, . . .m}), v1 �F

G4
v2.

• Let G5 = (V5, E5), where

V5 = V4 ∪ {si
j |i = 1, . . . , m; j = 1, . . . , t}

E5 = E4 \ {(w
i
j , s

0
j )|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(wi
j , s

i
j)|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(si
j , x)|x ∈ S(s0

j ); i = 1, . . . , m}.

By the collapsing axiom applied in the reverse direction a total of m · t times for {(si−1
j , si

j)|i =

1, . . . , m; j = 1, . . . , t}, v1 �F
G5

v2.

• Let G6 = (V6, E6), where

V6 = V5 \ {w
i
j |i = 0, . . . , m; j = 1, . . . t}

E6 = E5 \ {(v, wi
j), (w

i
j , s

i
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(v, si
j)|i = 0, . . . , m; j = 1, . . . t}.

By the vote by committee axiom applied in the reverse direction a total of (m + 1) · t times for
{wi

j |i = 0, . . . , m; j = 1, . . . t}, v1 �F
G6

v2.

Note that G6 is exactly Duplicate(G, v, m + 1) = Duplicate(G, v, m′) = G′, so v1 �F
G′ v2 as required.

A.5 Proof of Proposition 5.2

Proof. Let V be a vertex set and let G = (V, E) ∈ GV be some graph. If |V | = 1, then there exists only one
ordering on V , so trivially �F1

G ≡�F2

G . Assume V = {v1, v2, . . . , vn}. We will show that v1 �F1

G v2 ⇔ v1 �F2

G

v2. Without loss of generality we can show only one direction. Let F ∈ {F1, F2}.

Let G2 = (V2, E2) be the following graph (G with a vertex added on every edge):

V2 = V ∪ {ui,j |(vi, vj) ∈ E}

E2 = {(vi, ui,j), (ui,j , vj)|(vi, vj) ∈ E}.

Note that
G = Del(Del(· · ·Del(G2, u1) · · · , u|E|−1), u|E|)

where {u1, . . . , u|E|} = {ui,j |(vi, vj) ∈ E} and that G2 satisfies the conditions of weak deletion property for
the vertices {ui,j |(vi, vj) ∈ E}, thus v1 �F

G v2 ⇔ v1 �F
G2

v2.

For all strongly connected directed graphs G′ such that for all v ∈ V and for all v′ ∈ PG′(v) ∪ SG′(v)
s.t. |SG′(v′)| = |PG′(v′)| = 1, let us denote for all v ∈ V : S2

G(v) = {v′ ∈ V : x ∈ SG′(v), SG′(x) = {v′}} and
P 2

G(v) = {v′ ∈ V : x ∈ PG′(v), PG′(x) = {v′}}.

For, i = 3, . . . , n, we recursively define Gi as follows: Let {q1, q2, . . . , qm} = SGi−1
(vi) ∩ PGi−1

(vi). Let
G′

i−1 be the graph

G′
i−1 = SelfEdge−1(Del(· · ·SelfEdge−1(Del(Gi−1, q1), vi) · · · , qm), vi).

vi



Now, let P 2
G′

i−1

(v) = {p1, . . . , pk}. and let SG′

i−1
(vi) = {s1, s2, . . . , sl}. Let G′′

i−1 be defined as:

G′′
i−1 = Duplicate(· · ·Duplicate(G′

i−1, p1, l) · · · , pk, l)

Let {pi
j |i = 1, . . . , l} = SG′′

i−1
(pj) be the duplicated successors of pj for j = 1 . . . k. Now let Gi = (Vi, Ei) be

defined as:

G′′′
i−1 = Delete(G′

i−1, vi, {(s1, {p
1
j |j = 1, . . . , k}), . . . , (sl, {p

l
j |j = 1, . . . , k})})

Gi = Delete(· · ·Delete(Delete(G′′′
i−1, s1), s2) · · · , sl).

By the edge duplication and strong deletion properties and the self edge axiom, v1 �F
Gi

v2 for all i ∈
{2, . . . , n}.

We will now prove that for all i ∈ {2, . . . , n} and for all v ∈ Vi \ V : |PGi
(v)| = |SGi

(v)| = 1 and
PGi

(v)∪ SGi
(v) ⊆ V and for all v ∈ V : (PGi

(v)∪SGi
(v))∩ V = ∅. Proof by induction: G2 trivially satisfies

both requirements. Now assume that for all v ∈ Vi \ V : |PGi
(v)| = |SGi

(v)| = 1 and PGi
(v) ∪ SGi

(v) ⊆ V
and for all v ∈ V : (PGi

(v) ∪ SGi
(v)) ∩ V = ∅. Clearly, G′

i satisfies the conditions, because we only removed
elements from Vi, and not changed the predecessors or successors of any v ∈ V \ Vi. Also, all edges added
between vertices in V were removed. The Duplicate(·, ·, ·) operation adds vertices with in-degree 1 and
out-degree equal to the out degree of the successors of v, which is also 1. So, the new vertices added in G′′

i

satisfy the conditions. Furthermore, no edges were added between elements of V . Thus, G′′
i satisfies the

conditions. In Gi+1, we removed v and all its successors. The predecessors of v in G′′
i keep their out-degree

1, and point to elements of S2
G′′

i

(v), and thus still meet the requirements. Other elements of V ′′
i \ V have

not changed their edges, and thus still meet the requirements. Still, no edges were added between elements
of V . Therefore, for all v ∈ Vi+1 \ V : |PGi+1

(v)| = |SGi+1
(v)| = 1 and PGi+1

(v) ∪ SGi+1
(v) ⊆ V and for all

v ∈ V : (PGi+1
(v) ∪ SGi+1

(v)) ∩ V = ∅.

Specifically, this is true for Gn = (Vn, En). Furthermore, Vn∩V = {v1, v2}. Thus, Gn could be described
as:

Vn = {v1, v2} ∪ {vi
jk|j, k ∈ {1, 2}; i = 1, . . . , njk}

En = {(vj , v
i
jk), (vi

jk , vk)|j, k ∈ {1, 2}; i = 1, . . . , njk}.

The only parameters which affect the structure of Gn are njk (j, k ∈ {1, 2}), so we can denote Gn =
G[n11, n12, n21, n22]. Now, let

G′
n = Duplicate(Duplicate(Gn, v1, n21), v2, n12)

= G[n21n11, n21n12, n12n21, n12n22].

By the edge duplication property, v1 �F
G v2 ⇔ v1 �F

G′

n

v2.

Consider the following 3 cases:

• If n21n11 = n12n22, then the graph is isomorphic to itself, replacing v1 with v2 and vi
jk with vi

kj .

In this case, by the isomorphism axiom, v1 'F
G′

n

v2 and thus v1 'F
G v2, and therefore v1 �F

G v2 for

F ∈ {F1, F2}.

• If n21n11 > n12n22, let δ = n21n11 − n12n22 > 0. Now we define for i = n + 1, . . . n + δ:

G′
i = SelfEdge(Gi−1, v2)

Gi = G[n21n11, n21n12, n12n21, n12n22 + i − n].

Note that G′
i = Del(Gi, v

n12n22+i−n
22 ). Thus, by the self-edge axiom and the weak deletion property,

v1 �F
G v2 ⇒ v2 6�F

Gn+δ
v1. Now, note that Gn+δ = G[n21n11, n12n21, n12n21, n21n11], thus as before,

by isomorphism, v1 'F
Gn+δ

v2. Therefore we conclude that v1 6�F
G v2 for F ∈ {F1, F2}.
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• If n21n11 < n12n22, we can similarly conclude that v2 6�F
G v1, and therefore v1 �F

G v2 for F ∈ {F1, F2}.

We have shown that for every vertex set V , for all G = (V, E) ∈ GV , and for every v1, v2 ∈ V : v1 �F1

G v2 ⇔

v1 �F2

G v2. Thus, F1 ≡ F2, concluding the proof of the proposition.
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