
J. Parallel Distrib. Comput. 68 (2008) 609–625
www.elsevier.com/locate/jpdc

Multi-level direct K-way hypergraph partitioning with
multiple constraints and fixed vertices�

Cevdet Aykanata,∗, B. Barla Cambazoglub, Bora Uçarc,1

aComputer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
bDepartment of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA

cCERFACS, 42. Av. G. Coriolis, 31057 Toulouse, France

Received 27 July 2006; received in revised form 20 September 2007; accepted 25 September 2007
Available online 7 October 2007

Abstract

K-way hypergraph partitioning has an ever-growing use in parallelization of scientific computing applications. We claim that hypergraph
partitioning with multiple constraints and fixed vertices should be implemented using direct K-way refinement, instead of the widely adopted
recursive bisection paradigm. Our arguments are based on the fact that recursive-bisection-based partitioning algorithms perform considerably
worse when used in the multiple constraint and fixed vertex formulations. We discuss possible reasons for this performance degradation. We
describe a careful implementation of a multi-level direct K-way hypergraph partitioning algorithm, which performs better than a well-known
recursive-bisection-based partitioning algorithm in hypergraph partitioning with multiple constraints and fixed vertices. We also experimentally
show that the proposed algorithm is effective in standard hypergraph partitioning.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Hypergraph partitioning; Multi-level paradigm; Recursive bisection; Direct K-way refinement; Multi-constraint; Fixed vertices

1. Introduction

1.1. Motivation

In the literature, combinatorial models based on hyper-
graph partitioning are proposed for various complex and
irregular problems arising in parallel scientific computing
[4,10,17,26,50,53], VLSI design [2,42], software engineer-
ing [6], and database design [22,23,41,43,46]. These models
formulate an original problem as a hypergraph partitioning
problem, trying to optimize a certain objective function (e.g.,
minimizing the total volume of communication in parallel

� This work is partially supported by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) under project EEEAG-106E069.

∗ Corresponding author. Fax: +90 312 2664047.
E-mail addresses: aykanat@cs.bilkent.edu.tr (C. Aykanat),

barla@bmi.osu.edu (B.B. Cambazoglu), ubora@cerfacs.fr (B. Uçar).
1 The work of this author was supported by the Scientific and Techno-

logical Research Council of Turkey (TÜBİTAK) under the program 2219,
by the University Research Committee of Emory University, and by Agence
Nationale de la Recherche through project ANR-06-CIS6-010.

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.09.006

volume rendering, optimizing the placement of circuitry on a
dice area, minimizing the access to disk pages in processing
GIS queries) while maintaining a constraint (e.g., balancing the
computational load in a parallel system, using disk page ca-
pacities as an upper bound in data allocation) imposed by the
problem. In general, the solution quality of the hypergraph
partitioning problem directly relates to the formulated prob-
lem. Hence, efficient and effective hypergraph partitioning al-
gorithms are important for many applications.

1.2. Definitions

A hypergraph H=(V, N) consists of a set of vertices V and
a set of nets N [5]. Each net nj ∈ N connects a subset of
vertices in V . The set of vertices connected by a net nj are
called its pins and denoted as Pins(nj). The size of a net nj is
equal to the number of its pins, that is, s(nj)=|Pins(nj)|. A
cost c(nj) is associated with each net nj . The nets connecting
a vertex vi are called its nets and denoted as Nets(vi). The
degree of a vertex vi is equal to the number of its nets, that
is, d(vi)=|Nets(vi)|. A weight w(vi) is associated with each

http://www.elsevier.com/locate/jpdc
mailto:aykanat@cs.bilkent.edu.tr
mailto:barla@bmi.osu.edu
mailto:ubora@cerfacs.fr

610 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

vertex vi . In case of multi-constraint partitioning, multiple
weights w1(vi), w

2(vi), . . . , w
T (vi) may be associated with a

vertex vi , where T is the number of constraints.
�={V1, V2, . . . ,VK} is a K-way vertex partition if each part

Vk is non-empty, parts are pairwise disjoint, and the union of
parts gives V . In �, a net is said to connect a part if it has at
least one pin in that part. The connectivity set �j of a net nj

is the set of parts connected by nj . The connectivity �j=|�j |
of a net nj is equal to the number of parts connected by nj . If
�j=1, then nj is an internal net. If �j>1, then nj is an external
net and is said to be cut.

The K-way hypergraph partitioning problem (e.g., see [2]) is
defined as finding a vertex partition �={V1, V2, . . . ,VK} for a
given hypergraph H=(V, N) such that a partitioning objective
defined over the nets is optimized while a partitioning constraint
is maintained.

In general, the partitioning objective is to minimize a cost
function defined over the cut nets. Frequently used cost func-
tions [42] include the cut-net metric

cutsize(�)=
∑

nj ∈Ncut

c(nj), (1)

where each cut net incurs its cost to cutsize(�), and the
connectivity-1 metric

cutsize(�)=
∑

nj ∈Ncut

c(nj)(�j − 1), (2)

where each cut net nj incurs a cost of c(nj)(�j − 1) to
cutsize(�). In Eqs. (1) and (2), Ncut denotes the set of cut
nets. In this work, we use the connectivity-1 metric.

Typically, the partitioning constraint is to maintain one or
more balance constraints on the part weights. A partition � is
said to be balanced if each part Vk satisfies the balance criteria

Wt(Vk)�(1 + �t)W t
avg for k=1, 2, . . . , K

and t=1, 2, . . . , T . (3)

In Eq. (3), for the t th constraint, each weight Wt(Vk) of a part
Vk is defined as the sum of the weights wt(vi) of the vertices
in that part, Wt

avg is the weight that each part must have in
the case of perfect balance, and �t is the maximum imbalance
ratio allowed. In case of hypergraph partitioning with fixed
vertices [1], there is an additional constraint on part assignment
of some vertices, i.e., a number of vertices are assigned to parts
prior to partitioning with the condition that, at the end of the
partitioning, those vertices will remain in the part that they are
assigned to.

1.3. Issues in hypergraph partitioning

The hypergraph partitioning problem is known to be NP-hard
[42], and the algorithms used in partitioning a hypergraph are
heuristics. Consequently, the partitioning algorithms must be
carefully designed and implemented for increasing the quality

of the optimization. At the same time, the computational over-
head due to the partitioning process should be minimized in
case this overhead is a part of the entire cost to be minimized
(e.g., the duration of preprocessing within the total run-time of
a parallel application).

The very first works (mostly in the VLSI domain) on hyper-
graph partitioning used the recursive bisection (RB) paradigm.
In the RB paradigm, a hypergraph is recursively bisected (i.e.,
two-way partitioned) until the desired number of parts is ob-
tained. At each bisection step, cut-net removal and cut-net
splitting techniques [16] are adopted to optimize the cut-net
and connectivity-1 metrics, respectively. Iterative improvement
heuristics based on vertex moves or swaps between the parts
are used to refine bisections to decrease the cutsize. The perfor-
mance of iterative improvement heuristics deteriorate in parti-
tioning hypergraphs with large net sizes [36] and small vertex
degrees [29]. Moreover, those improvement heuristics do not
have a global view of the problem, and hence solutions are
usually far from being optimal.

The multi-level hypergraph partitioning approach emerged
as a remedy to these problems [8]. In multi-level bisection, the
original hypergraph is coarsened into a smaller hypergraph af-
ter a series of coarsening levels, in which highly coherent ver-
tices are grouped into supervertices, thus decreasing the sizes
of the nets. After the bisection of the coarsest hypergraph, the
generated coarse hypergraphs are uncoarsened back to the orig-
inal, flat hypergraph. At each uncoarsening level, a refinement
heuristic (e.g., FM [28] or KL [39]) is applied to minimize the
cutsize while maintaining the partitioning constraint. The multi-
level partitioning approach has proven to be very successful
[16,30,33,34,36] in optimizing various objective functions.

With the widespread use of hypergraph partitioning in mod-
eling computational problems outside the VLSI domain, the
RB scheme adopting the FM-based local improvement heuris-
tics turned out to be inadequate due to the following reasons.
First, in partitioning hypergraphs with large net sizes, if the
partitioning objective depends on the connectivity of the nets
(e.g., the connectivity-1 metric), good partitions cannot always
be obtained. The possibility of finding vertex moves that will
reduce the cutsize is limited, especially at the initial bisection
steps, where net sizes are still large, as nets with large sizes
are likely to have large numbers of pins on both parts of the
bisection [36]. Second, in partitioning hypergraphs with large
variation in vertex weights, targeted balance values may not
always be achieved since the imbalance ratio needs to be adap-
tively adjusted at each bisection step. Third, the RB scheme’s
nature of partitioning hypergraphs into two equally weighted
parts restricts the solution space. In general, imbalanced bisec-
tions have the potential to lead to better cutsizes [47]. Finally,
several formulations that are variations of the standard hyper-
graph partitioning problem (e.g., multiple balance constraints,
multi-objective functions, fixed vertices), which have recently
started to find application in the literature, are not appropriate
for the RB paradigm.

As stated above, the RB scheme performs rather poorly in
problems where a hypergraph representing the computational
structure of a problem is augmented by imposing more than

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 611

one constraints on vertex weights or introducing a set of fixed
vertices into the hypergraph. In the multi-constraint partition-
ing case, the solution space is usually restricted since multiple
constraints may further restrict the movement of vertices be-
tween the parts. Equally weighted bisections have a tendency
to minimize the maximum of the imbalance ratios (according
to multiple weights) to enable the feasibility of the follow-
ing bisections. This additional restriction has manifested itself
as 20–30% degradation in cutsizes with respect to the single-
constraint formulation in some recent applications [35,51,54].

In partitioning with fixed vertices, the RB-based approaches
use fixed vertices to guide the partitioning at each bisection
step. A set of vertices fixed to a certain subset of parts (a prac-
tical option is to select the vertices fixed to the first K/2 parts)
are placed in the same part in the first bisection step. As there
is no other evident placement information, the same kind of
action is taken in the following bisection steps as well. Note
that this is a restriction since any bisection that keeps the ver-
tices fixed to half of the parts in the same side of the partition
is feasible. That is, parts can be relabeled after the partitioning
took place according to the fixed vertex information. In other
words, there are combinatorially many part labelings that are
consistent with the given fixed vertex information, and the RB-
based approaches do not explore these labelings during parti-
tioning. Combined with the aforementioned shortcomings of
the RB scheme, this can have a dramatic impact on the solu-
tion quality. In Section 5.4, we report cutsize improvements up
to 33.30% by a carefully chosen part labeling combined with
K-way refinement.

1.4. Contributions

In this work, we propose a new multi-level hypergraph parti-
tioning algorithm with direct K-way refinement. Based on this
algorithm, we develop a hypergraph partitioning tool capable of
partitioning hypergraphs with multiple constraints. Moreover,
we extend the proposed algorithm and the tool in order to par-
tition the hypergraphs with fixed vertices. The extension is to
temporarily remove the fixed vertices, partition the remaining
vertices, and then optimally assign the fixed vertices to the ob-
tained parts prior to direct K-way refinement. The fixed-vertex-
to-part assignment problem is formulated as an instance of the
maximum-weighted bipartite graph matching problem.

We conduct experiments on a wide range of hypergraphs
with different properties (i.e., number of vertices, average net
sizes). The experimental results indicate that, in terms of both
execution time and solution quality, the proposed algorithm
performs better than the state-of-the-art RB-based algorithms
provided in PaToH [16]. In the case of multiple constraints and
fixed vertices, the obtained results are even superior.

The rest of the paper is organized as follows. In Section
2, we give an overview of the previously developed hyper-
graph partitioning tools and a number of problems that are
modeled as a hypergraph partitioning problem in the literature.
The proposed hypergraph partitioning algorithm is presented in
Section 3. In Section 4, we present an extension to this algo-
rithm in order to encapsulate hypergraph partitioning with fixed

vertices. In Section 5, we verify the validity of the proposed
work by experimenting on well-known benchmark data sets.
The paper is concluded in Section 6.

2. Previous work on hypergraph partitioning

2.1. Hypergraph partitioning tools

Although hypergraph partitioning is widely used in both
academia and industry, the number of publicly available tools
is limited. Other than the Mondriaan partitioning tool [53],
which is specialized on sparse matrix partitioning, there are five
general-purpose hypergraph partitioning tools that we are aware
of: hMETIS [33], PaToH [16], MLPart [9], Parkway [48], and
Zoltan [24], listed in chronological order.

hMETIS [33] is the earliest hypergraph partitioning tool,
published in 1998 by Karypis and Kumar. It contains algorithms
for both RB-based and direct K-way partitioning. The objective
functions that can be optimized using this tool are the cut-net
metric and the sum of external degrees metric, which simply
sums the connectivities of the cut nets. The tool has support for
partitioning hypergraphs with fixed vertices.

PaToH [16] was published in 1999 by Çatalyürek and
Aykanat. It is a multi-level, RB-based partitioning tool with
support for multiple constraints and fixed vertices. Built-in ob-
jective functions are the cut-net and connectivity-1 cost metrics.
A high number of heuristics for coarsening, initial partitioning,
and refinement phases are readily available in the tool.

MLPart [9] was published in 2000 by Caldwell et al. This
is an open source hypergraph partitioning tool specifically de-
signed for circuit hypergraphs and partitioning-based placement
in VLSI layout design. It has support for partitioning with fixed
vertices.

Parkway [48] is the first parallel hypergraph partitioning tool,
published in 2004 by Trifunovic and Knottenbelt. It is suit-
able for partitioning large hypergraphs in multi-processor sys-
tems. The tool supports both the cut-net and connectivity-1 cost
metrics.

Also, Sandia National Labs’ Zoltan toolkit [25] contains a re-
cently developed parallel hypergraph partitioner [24]. This par-
titioner is based on the multi-level RB paradigm and currently
supports the connectivity-1 cost metric.

2.2. Applications of hypergraph partitioning

Hypergraph partitioning has been used in VLSI design
[2,20,32,42,45] since 1970s. The application of hypergraph par-
titioning in parallel computing starts by the work of Çatalyürek
and Aykanat [15,17]. This work addresses 1D (rowwise or
columnwise) partitioning of sparse matrices for efficient par-
allelization of matrix–vector multiplies. Later, Çatalyürek and
Aykanat [18,19] and Vastenhouw and Bisseling [53] proposed
hypergraph partitioning models for 2D (non-zero-based) par-
titioning of sparse matrices. In these models, the partitioning
objective is to minimize the total volume of communication
while maintaining the computational load balance. These ma-
trix partitioning models are used in different applications that
involve repeated matrix–vector multiplies, such as computa-

612 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

tion of response time densities in large Markov models [26],
restoration of blurred images [52], and integer factorization in
the number field sieve algorithm in cryptology [7].

In parallel computing, there are also hypergraph partition-
ing models that address objectives other than minimizing the
total volume of communication. For example, Aykanat et al.
[4] consider minimizing the border size in permuting sparse
rectangular matrices into singly bordered block diagonal form
for efficient parallelization of linear programming solvers, LU
and QR factorizations. Another example is the communication
hypergraph model proposed by Uçar and Aykanat [49] for
considering message latency overhead in parallel sparse
matrix–vector multiples based on 1D matrix partitioning.

Besides matrix partitioning, hypergraph models are also pro-
posed for other parallel and distributed computing applica-
tions. These include workload partitioning in data aggregation
[11], image-space-parallel direct volume rendering [10], data
declustering for multi-disk databases [41,43], and scheduling
file-sharing tasks in heterogeneous master–slave computing en-
vironments [37,38,40].

Formulations that extend the standard hypergraph partition-
ing problem (e.g., multiple vertex weights and fixed vertices)
also find application. For instance, multi-constraint hypergraph
partitioning is used for 2D checkerboard partitioning of sparse
matrices [19] and parallelizing preconditioned iterative meth-
ods [51]. Hypergraph partitioning with fixed vertices is used
in formulating the remapping problem encountered in image-
space-parallel volume rendering [10].

Finally, we note that hypergraph partitioning also finds ap-
plication in problems outside the parallel computing domain

Fig. 1. The proposed multi-level K-way hypergraph partitioning algorithm.

such as road network clustering for efficient query pro-
cessing [22,23], pattern-based data clustering [44], reducing
software development and maintenance costs [6], topic iden-
tification in text databases [13], and processing spatial join
operations [46].

3. K-way hypergraph partitioning algorithm

The proposed algorithm follows the traditional multi-level
partitioning paradigm. It includes three consecutive phases:
multi-level coarsening, initial partitioning, and multi-level
K-way refinement. Fig. 1 illustrates the algorithm.

3.1. Multi-level coarsening

In the coarsening phase, a given flat hypergraph H0 is con-
verted into a sufficiently small hypergraph Hm, which has ver-
tices with high degrees and nets with small sizes, after m

successive coarsening levels. At each level �, an intermediate
coarse hypergraph H�+1=(V�+1, N �+1) is generated by coars-
ening the finer parent hypergraph H�=(V�, N �). The coarsen-
ing phase results in a sequence H1, H2, . . . ,Hm of m coarse
hypergraphs.

The coarsening at each level � is performed by coalescing
vertices of H� into supervertices in H�+1. For vertex grouping,
agglomerative or matching-based heuristics may be used. In
our case, we use the randomized heavy-connectivity matching
heuristic [16,17]. In this heuristic, vertices in vertex set V� are
visited in a random order. In the case of unit-cost nets, every
visited, unmatched vertex vi ∈ V� is matched with a currently
unmatched vertex vj ∈ V� that shares the maximum number of

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 613

nets with vi . In the case of nets with variable costs, vi is matched
with a vertex vj such that

∑
nh∈Cij

c(nh) is the maximum over
all unmatched vertices that share at least one net with vi , where
Cij={nh: nh ∈ Nets(vi) ∧ nh ∈ Nets(vj)}, i.e., Cij denotes the
set of nets that connect both vi and vj . Each matched vertex
pair (vi ∈ V�, vj ∈ V�) forms a single supervertex in V�+1.

As the coarsening progresses, nets with identical pin sets
may emerge. Such nets become redundant for the subsequent
coarser hypergraphs and hence can be removed. In this work,
we use an efficient algorithm for identical net detection and
elimination. This algorithm is similar to the algorithm in [3],
which is later used in [31] for supervariable identification in
nested-dissection-based matrix reordering.

3.2. RB-based initial partitioning

The objective of the initial partitioning phase is to obtain a
K-way initial partition �m={Vm

1 , Vm
2 , . . . ,Vm

K } of the coars-
est hypergraph Hm before direct K-way refinement. For this
purpose, we use the multi-level RB scheme of PaToH to par-
tition Hm into K parts. We have observed that it is better to
avoid further coarsening within PaToH since Hm is already
coarse enough. At each bisection step of PaToH, we use the
greedy hypergraph growing heuristic to bisect the intermediate
hypergraphs and the tight boundary FM heuristic [16,17] for
refinement. At the end of the initial partitioning phase, if the
current imbalance is over the allowed imbalance ratio �, a bal-
ancer, which performs vertex moves (starting with the moves
having highest FM gains, i.e., the highest reduction in the cut-
size) among the K parts at the expense of an increase in the
cutsize, is executed to drop the imbalance below �.

Although possibilities other than RB exist for generating
the initial set of vertex parts, RB emerges as a viable and
practical method. A partition of the coarsest hypergraph Hm

generated by RB is very amenable to FM-based refinement
since Hm contains nets of small sizes and vertices of high
degrees.

3.3. Multi-level uncoarsening with direct K-way refinement

Every uncoarsening level � includes a refinement step, fol-
lowed by a projection step. In the refinement step, which in-
volves a number of passes, partition �� is refined by moving
vertices among the K vertex parts, trying to minimize the cut-
size while maintaining the balance constraint. In the projection
step, the current coarse hypergraph H� and partition �� are
projected back to H�−1 and ��−1. The refinement and projec-
tion steps are iteratively repeated until the top-level, flat hy-
pergraph H0 with a partition �0 is obtained. This algorithm is
similar to the one described in [36].

At the very beginning of the uncoarsening phase, a connec-
tivity data structure � and a lookup data structure � are cre-
ated. These structures keep the connectivity of the cut nets to
the vertex parts. � is a 2D ragged array, where each 1D array
keeps the connectivity set of a cut net. That is, �(ni) returns
the connectivity set �i of a cut net ni . No information is stored

in � for internal nets. � is an |Ncut| by K , 2D array to lookup
the connectivity of a cut net to a part in constant time. That is,
�(ni, Vk) returns the number of the pins that cut net ni has in
part Vk , i.e., �(ni, Vk)=|Pins(ni) ∩ Vk|.

Both � and � structures are allocated once at the beginning
of the uncoarsening phase and maintained during the projec-
tion steps. For this purpose, after each coarsening level, a map-
ping between the nets of the fine and coarse hypergraphs is
computed so that � and � arrays are modified appropriately in
the corresponding projection steps. Since the pin counts of the
nets on the parts may change due to the uncoarsening, the pin
counts in the � array are updated by iterating over the cut nets
in the coarse hypergraph and using the net map created during
the corresponding coarsening phase. Similar to the net map,
vertex maps are computed in the coarsening steps to be able to
determine the part assignments of the vertices in the fine hy-
pergraphs during the projection. Part assignments of vertices
are kept in a 1D Part array, where Part(vi) shows the current
part of vertex vi .

During the refinement passes, only boundary vertices are
considered for movement. For this purpose, a FIFO queue B

of boundary vertices is maintained. A vertex vi is boundary if
it is among the pins of at least one cut net nj . B is updated
after each vertex move if the move causes some non-boundary
vertices to become boundary or some boundary vertices become
internal to a part. Each vertex vi has a lock count bi , indicating
the number of times vi is inserted into B. The lock counts are
initially set to 0 at the beginning of each refinement pass. Every
time a vertex enters B, its lock count is incremented by 1. No
vertex vi with a bi value greater than a prespecified threshold
is allowed to re-enter B. This way, we avoid moving the same
vertices repeatedly. The boundary vertex queue B is randomly
shuffled at the beginning of each refinement pass.

For vertex movement, each boundary vertex vi ∈ B is con-
sidered in turn. The move of vertex vi is considered only to
those parts that are in the union of the connectivity sets of the
nets connecting vi , excluding the part containing vi , if the move
satisfies the balance criterion. Note that once the imbalance on
part weights is below �, it is never allowed to rise above this
ratio during the direct K-way refinement. After gains are com-
puted, the vertex is moved to the part with the highest positive
FM gain. Moves with negative FM gains as well as moves with
non-positive leave gains are not performed. A refinement pass
terminates when queue B becomes empty. No more refinement
passes are made if a predetermined pass count is reached or im-
provement in the cutsize drops below a prespecified threshold.

For FM-based move gain computation for a vertex vi , we use
the highly efficient algorithm given in Fig. 2. This algorithm
first iterates over all nets connecting vertex vi and computes
the leave gain for vi . If the leave gain is not positive, no further
positive move gain is possible and hence the algorithm simply
returns. Otherwise, the maximum arrival loss is computed by
iterating over all nets connecting vi as well as a separate move
gain for all parts (excluding vi’s current part) that are connected
by at least one cut net of vi . Finally, a total move gain is
computed for each part by adding the move gain for the part to
the leave gain and subtracting the maximum arrival loss. The

614 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

Fig. 2. The algorithm for computing the K-way FM gains of a vertex vi .

maximum move gain is determined by taking the maximum of
the total move gains.

3.4. Extension to multiple constraints

Extension to multi-constraint formulation requires verify-
ing the balance constraint for each weight component. As be-
fore, zero-gain moves are not performed. During the coarsening
phase, the maximum allowed vertex weight is set according to
the constraint which has the maximum total vertex weight over
all vertices. In the initial partitioning phase, the multi-constraint
RB-based partitioning feature of PaToH is used with default
parameters to obtain an initial K-way partition.

4. Extensions to hypergraphs with fixed vertices

Our extension to partitioning hypergraphs with fixed ver-
tices follows the multi-level paradigm, which is, in our case,
composed of three phases: coarsening with modified heavy-
connectivity matching, initial partitioning with maximum-
weighted bipartite graph matching, and K-way direct

refinement with locked fixed vertices. Throughout the presenta-
tion, we assume that, at each coarsening/uncoarsening level �,
f �

i is a fixed vertex in the set F� of fixed vertices, and
o�
j is an ordinary vertex in the set O� of ordinary vertices,

where O�=V�−F�. For each part V0
k , there is a set F0

k of fixed
vertices that must end up in V0

k at the end of the partitioning
such that F0=F0

1 ∪ F0
2 · · · ∪ F0

K . We also assume that the
weights of the fixed vertex sets are fairly balanced.

For the coarsening phase of our algorithm, we modify the
heavy-connectivity matching heuristic such that no two fixed
vertices f �

i ∈ F� and f �
j ∈ F� are matched at any coarsening

level �. However, any fixed vertex f �
i in a fixed vertex set F�

k can
be matched with an ordinary vertex o�

j ∈ O�, forming a fixed

supervertex f �+1
i in F�+1

k . Ordinary vertices are matched as
before. Consequently, fixed vertices are propagated throughout
the coarsening such that |F�+1

k |=|F�
k |, for k=1, 2, . . . , K and

�=0, 1, . . . , m−1. Hence, in the coarsest hypergraph Hm, there
are |Fm|=|F0| fixed supervertices.

In the initial partitioning phase, a hypergraph H̃m=(Om,

Ñ m) that is free from fixed vertices is formed by temporarily
removing fixed supervertices from Hm. In H̃m, Ñ m is a subset
of nets in N m whose pins contain at least two ordinary ver-
tices, i.e., Ñ m={nm

i : nm
i ∈ N m ∧ |Om ∩ Pins(nm

i)|>1}. Note
that the nets that connect only one ordinary vertex are not re-
tained in H̃m since single-pin nets do not contribute to the cut-
size at all. After H̃m is formed, it is partitioned to obtain a
K-way vertex partition �̃m={Om

1 , Om
2 , . . . ,Om

K} over the set
Om of ordinary vertices. Partition �̃m induces an initial part
assignment for each ordinary vertex in Vm, i.e., om

i ∈ Om
k ⇒

Part(vm
i)=Vm

k . However, this initial assignment induced by �̃m

may not be appropriate in terms of the cutsize since fixed
vertices are not considered at all in computation of the cut-
size. Note that cutsize(�̃m) is a lower bound on cutsize(�m).
A net nj has the potential to increase the cutsize by its cost
times the number of fixed vertex parts that it connects, i.e.,
by c(nm

j)�̄m
j , where �̄m

j =|�̄m

j |=|{Fm
k : P ins(nm

j) ∩ Fm
k �= ∅}|.

Therefore, U=cutsize(�̃m)+∑
nm

j
c(nm

j)�̄m
j is an upper bound

on cutsize(�m). At this point, a relabeling of ordinary vertex
parts must be found so that the cutsize is tried to be minimized
as the fixed vertices are assigned to appropriate parts. We for-
mulate this relabeling problem as a maximum-weighted bipar-
tite graph matching problem [12]. This formulation is valid for
any number of fixed vertices.

In the proposed formulation, the sets of fixed supervertices
and the ordinary vertex parts form the two node sets of a bi-
partite graph B=(X , Y). That is, in B, for each fixed vertex set
Fm

k , there exists a node xk ∈ X , and for each ordinary vertex
part Om

� of �̃m, there exists a node y� ∈ Y . The bipartite graph
contains all possible (xk, y�) edges, initially with zero weights.
The weight of an edge (xk, y�) is increased by the cost of every
net that connects at least one vertex in both Fm

k and Om
� . That is,

a net nm
j increases the weight of edge (xk, y�) by its cost c(nm

j)

if and only if Pins(nm
j) ∩ Fm

k �= ∅ and Pins(nm
j) ∩ Om

� �= ∅.
This weight on edge (xk, y�) corresponds to a saving of c(nm

j)

from upper bound U if Fm
k is matched with Om

� .

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 615

Fig. 3. (a) A sample coarse hypergraph. (b) Bipartite graph representing the hypergraph in Fig. 3(a) and assignment of parts to fixed vertex sets via
maximum-weighted matching shown by bold edges.

In this setting, finding the maximum-weighted matching
in bipartite graph B corresponds to finding a matching be-
tween fixed vertex sets and ordinary vertex parts which has
the minimum increase in the cutsize when fixed vertices are
re-introduced into H̃m. Each edge (xk, y�) in the resulting
maximum-weighted matching M matches a fixed vertex set to
an ordinary vertex part. Using M, ordinary vertex parts are re-
labeled. Vertices in Om

� are reassigned to part Vm
k if and only if

edge (xk, y�) is in M. Note that the fixed vertices in Fm
k are in

part Vm
k and hence the partition conforms to the given partition

on fixed vertices. This relabeling induces an initial partition
�m. Here, cutsize(�m)=U − weight(M), where weight(M)

is the weight of matching M and is equal to the saving on
the cutsize. Since M is the maximum-weighted matching, this
defines an optimum solution for the relabeling problem.

Fig. 3(a) shows a sample, coarse hypergraph Hm, where fixed
and ordinary vertices are, respectively, represented as triangles
and circles. For ease of presentation, unit net costs are assumed
and only the nets connecting the fixed vertices and ordinary
vertices are displayed since all cost contribution on the edges of
the constructed bipartite graph are due to such nets. Note that,
in this example, the upper bound on cutsize(�m) is U=3 +
11=14. The linear assignment of fixed vertex sets to ordinary
vertex parts (i.e., Fm

k matched with Om
k , for k=1, 2, . . . , K)

has a cost saving of weight(M)=1 + 1 + 1 + 1=4. Hence,
cutsize(�m)=U − weight(M)=14 − 4=10.

Fig. 3(b) displays the bipartite graph constructed for the sam-
ple hypergraph in Fig. 3(a), without displaying the zero-weight
edges for clarity. In this figure, triangles and circles denote the
sets of fixed vertices and ordinary vertex parts, respectively. As
seen in Fig. 3(b), there exists an edge (x2, y3) with a weight of
2. This is because two unit-cost nets connect Fm

2 and Om
3 . In

the figure, the set of bold edges shows the maximum-weighted

matching M={(x1, y2), (x2, y4), (x3, y1), (x4, y3)}, which as-
signs the vertices in Fm

1 , Fm
2 , Fm

3 , and Fm
4 to Om

2 , Om
4 , Om

1 , and
Om

3 , respectively. As seen in the figure, matching M obtains the
highest possible cost saving of weight(M)=2 + 1 + 1 + 3=7.
Hence, cutsize(�m)=U −weight(M)=14−7=7. This cutsize
is 10−7=3 less than the cutsize achieved by linear assignment.

During the K-way refinement phase, �m is refined using
a modified version of the algorithm described in Section 3.3.
Throughout the uncoarsening, the fixed vertices are locked to
their parts and are not allowed to move between the parts.
Hence, each fixed vertex f 0

i whose corresponding superver-
tex in the mth level is f m

i ends up in part V0
k if and only if

f m
i ∈ Fk .

5. Experiments

5.1. Experimental platform

In the experiments, a Pentium IV 3.00 GHz PC with 1 GB of
main memory, 512 KB of L2 cache, and 8 KB of L1 cache is
used. All algorithms are implemented in C and are compiled in
gcc with -O3 optimization option. Due to the randomized nature
of some of the heuristics, the results are reported by averaging
the values obtained in 20 different runs, each randomly seeded.

The hypergraphs used in the experiments are the row-net
hypergraphs [17] of some widely used square sparse matrices
obtained from the University of Florida Sparse Matrix Col-
lection [21]. The properties of the hypergraphs are given in
Table 1, where the hypergraphs are sorted in increasing order
of the number of pins. In all hypergraphs, the number of nets is
equal to the number of vertices, and the average vertex degree
is equal to the average net size since all matrices are square
matrices. Since the internal data structures maintained during

616 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

Table 1
Properties of the hypergraphs used in the experiments

Data set # of vertices # of pins Avg. net size

dawson5 51, 537 1, 010, 777 19.61
language 399, 130 1, 216, 334 3.05
Lin 256, 000 1, 766, 400 6.90
poisson3Db 85, 623 2, 374, 949 27.74
helm2d03 392, 257 2, 741, 935 6.99
stomach 213, 360 3, 021, 648 14.16
barrier2-1 113, 076 3, 805, 068 33.65
Hamrle3 1, 447, 360 5, 514, 242 3.81
pre2 659, 033 5, 959, 282 9.04
cage13 445, 135 7, 479, 343 16.80
hood 220, 542 10, 768, 436 48.83
bmw3_2 227, 362 11, 288, 630 49.65

the partitioning do not fit into the memory for the Hamrle3,
cage13, and pre2 data sets, they are partitioned on a PC
with 2 GB main memory, all other parameters remaining the
same. We compare the proposed algorithm, referred to here as
kPaToH, with PaToH [16] for two reasons. First, the imple-
mentation of kPaToH is based on PaToH. Second, in previous
experiments (e.g., see [14,27]), PaToH was found to be per-
forming better than the other hypergraph partitioners.

In the tables, the minimum cutsizes (Min cutsize) and av-
erage cutsizes (Avg cutsize) achieved by both partitioners are
reported over all data sets together with their average partition-
ing times (Avg time), for varying number K of parts, where
K ∈ {32, 64, 128, 256, 512}. The rightmost two columns in
Tables 2, 5, 6, and 8 show the percent average cutsize improve-
ment (%Cutsize) and the speedup (Spdup) of kPaToH over Pa-
ToH. The averages over all data sets are displayed as a separate
entry at the bottom of these tables. Unless otherwise stated, the
maximum number of K-way refinement passes in kPaToH is
set to 3. Since identical net elimination brings around 5% im-
provement on the execution time of kPaToH but no speedup
on PaToH, we run both PaToH and kPaToH without identical
net elimination for a fair comparison. In single-constraint par-
titioning, weight w1(vi) of a vertex vi is set equal to its ver-
tex degree d(vi), i.e., w1(vi)=d(vi). The allowed imbalance
threshold is set to 10% and is met in all experiments. PaToH
is executed with default options.

5.2. Experiments on standard hypergraph partitioning

Table 2 displays the performance comparison of PaToH and
kPaToH for standard hypergraph partitioning. According to the
averages over all data sets, as K increases, kPaToH begins to
perform better in reducing the cutsize compared to PaToH. The
average cutsize improvement of 4.82% at K=32 rises to 6.81%
at K=256. A similar behavior is observed in the improvement
of kPaToH over PaToH in the minimum cutsizes achieved. In
the speedups kPaToH obtains over PaToH, a slight decrease is
observed as K increases. However, even at K=256, kPaToH
runs 1.62 times faster than PaToH and is 1.78 times faster on
the overall average.

According to Table 2, except for a single case (the
language data set with K=32), kPaToH achieves lower
cutsizes than PaToH for all data sets and K values. In general,
kPaToH performs relatively better in reducing the cutsize on
hypergraphs having average net sizes between 6 and 20. This
is expected since PaToH is already very effective in parti-
tioning hypergraphs with low net sizes (e.g., language and
Hamrle3). On the other hand, in partitioning hypergraphs
with very large net sizes (e.g., barrier2-1 and bmw3_2),
the performance gap between the partitioners begins to de-
crease. This is mainly due to performing only the moves with
positive gains. Such moves are rare when the nets are highly
connected to the parts.

Tables 3 and 4 show the overall percent execution time dis-
section of the PaToH and kPaToH algorithms, respectively. The
tables further display the percent execution time dissection of
coarsening and uncoarsening phases for both algorithms. These
experiments are conducted on three data sets (language,
pre2, and hood) each with different average net size char-
acteristics (3.05, 9.04, and 48.83, respectively), for K=32 and
256. The dissections of both PaToH and kPaToH algorithms
are given according to the traditional multi-level partitioning
paradigm, which involves an initialization phase followed by
the coarsening, initial partitioning, and uncoarsening phases. In
case of PaToH, these phases are repeated for each hypergraph
produced via bisection, and hence the cost of splitting the hy-
pergraph into two after bisections is also considered.

According to Tables 3 and 4, the main overhead of PaToH
is at the coarsening step, whereas the percent overhead of un-
coarsening is relatively more dominant in case of kPaToH. In
general, as K increases from 32 to 256, percent uncoarsening
and splitting overheads of PaToH slightly increase. In case of
kPaToH, the K-way initial partitioning phase is what most suf-
fers from large K values. In kPaToH, the behavior of the un-
coarsening phase is data set dependent. As the average net size
increases, the percent overhead of uncoarsening begins to in-
crease with increasing K . This is because the refinement step,
which takes the most of the uncoarsening time, is not affected
by changing K if the average net size is low as in the case of
the language data set. In the hood data set, the increase in
the percent overhead of the uncoarsening phase from 27.1% to
57.7% as K goes from 32 to 256 is due to the increase in the
solution space, which prevents quick termination of the refine-
ment phase.

5.3. Experiments on multi-constraint partitioning

Tables 5 and 6 show the performance of PaToH and kPaToH
in multi-constraint partitioning (2 and 4 constraints, respec-
tively). In the 2-constraint case, a unit weight is used as the sec-
ond vertex weight for all vertices, i.e., w2(vi)=1, in addition to
the first vertex weight w1(vi)=d(vi). In the 4-constraint case,
random integer weights w3(vi)=�i , where 1��i �w1(vi)− 1,
and w4(vi)=w1(vi)−�i are, respectively, used as the third and
fourth vertex weights.

As seen from Tables 5 and 6, kPaToH performs much bet-
ter than PaToH. A comparison of Tables 2, 5, and 6 shows

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 617

Table 2
Performance of PaToH and kPaToH in partitioning hypergraphs with a single partitioning constraint and no fixed vertices

Data set K Min. cutsize Avg. cutsize Avg. time Improvement

PaToH kPaToH PaToH kPaToH PaToH kPaToH %Cutsize Spdup

dawson5 32 6, 959 6,286 7, 468 6,907 1.524 0.715 7.51 2.13
64 11, 293 10,136 11, 907 10,643 1.809 0.934 10.62 1.94

128 19, 058 17,140 19, 393 17,767 2.099 1.291 8.39 1.63
256 29, 655 28,035 30, 351 28,396 2.380 1.762 6.44 1.35

language 32 94, 210 94,178 95, 399 95,956 12.266 9.721 −0.58 1.26
64 107, 299 106,728 108, 432 107,758 13.064 9.830 0.62 1.33

128 119, 636 117,781 120, 234 119,184 13.835 9.992 0.87 1.38
256 131, 251 130,679 131, 690 131,526 14.489 10.303 0.12 1.41

Lin 32 49, 458 43,926 50, 800 44,733 5.763 4.751 11.94 1.21
64 68, 994 60,107 70, 645 60,832 6.632 5.505 13.89 1.20

128 91, 701 79,910 93, 622 80,878 7.471 6.510 13.61 1.15
256 119, 529 105,567 121, 346 105,916 8.327 7.942 12.72 1.05

poisson3Db 32 40, 599 38,212 41, 759 39,314 9.358 7.867 5.85 1.19
64 59, 198 56,075 60, 013 57,371 10.407 9.072 4.40 1.15

128 84, 630 81,849 86, 118 82,896 11.366 10.416 3.74 1.09
256 121, 733 114,384 123, 051 116,147 12.240 11.738 5.61 1.04

helm2d03 32 13, 016 12,487 13, 591 12,965 7.689 2.845 4.61 2.70
64 19, 677 18,841 20, 251 19,236 8.757 3.228 5.01 2.71

128 29, 169 27,660 29, 696 28,096 9.801 3.790 5.38 2.59
256 42, 763 40,517 43, 079 40,950 10.850 4.717 4.94 2.30

stomach 32 26, 231 25,757 27, 054 26,184 6.635 3.327 3.22 1.99
64 37, 885 36,732 38, 918 37,113 7.795 4.097 4.64 1.90

128 54, 651 52,150 55, 370 52,817 8.968 5.175 4.61 1.73
256 78, 289 74,863 79, 143 75,572 10.156 6.774 4.51 1.50

barrier2-1 32 52, 877 51,472 53, 560 52,623 9.797 7.292 1.75 1.34
64 73, 864 71,879 75, 037 73,149 11.135 8.609 2.52 1.29

128 102, 750 99,629 104, 035 100,679 12.406 9.895 3.23 1.25
256 142, 833 135,074 143, 995 136,757 13.526 11.372 5.03 1.19

Hamrle3 32 35, 728 35,419 36, 814 36,747 21.190 8.798 0.18 2.41
64 52, 475 51,813 53, 770 52,885 24.201 9.772 1.65 2.48

128 75, 818 73,923 76, 851 75,194 26.802 11.418 2.16 2.35
256 106, 555 105,704 107, 983 106,384 29.187 13.687 1.48 2.13

pre2 32 82, 591 75,860 85, 456 80,238 24.406 15.070 6.11 1.62
64 108, 714 99,609 112, 486 105,476 28.484 16.929 6.23 1.68

128 139, 605 120,469 143, 879 122,822 32.250 18.071 14.64 1.78
256 177, 310 137,899 183, 037 141,091 35.702 19.743 22.92 1.81

cage13 32 369, 330 339,563 373, 617 345,740 45.887 45.590 7.46 1.01
64 490, 789 448,407 497, 744 455,056 51.035 49.528 8.58 1.03

128 643, 278 584,178 647, 609 589,316 55.754 52.972 9.00 1.05
256 824, 294 749,315 829, 962 752,394 59.928 56.450 9.35 1.06

hood 32 22, 799 22,204 24, 392 23,041 15.693 5.386 5.54 2.91
64 37, 877 37,058 39, 855 38,239 18.383 6.607 4.05 2.78

128 60, 039 56,903 61, 087 58,198 20.983 8.073 4.73 2.60
256 91, 007 86,009 92, 367 87,284 23.515 10.303 5.50 2.28

bmw3_2 32 29, 861 28,298 31, 129 29,792 15.383 5.545 4.30 2.77
64 44, 208 42,465 45, 376 43,820 18.150 6.682 3.43 2.72

128 65, 752 63,652 67, 551 64,956 20.853 8.065 3.84 2.59
256 100, 504 97,714 102, 548 99,341 23.454 10.196 3.13 2.30

AVERAGE 32 1.000 0.950 1.000 0.952 1.000 0.606 4.82 1.88
64 1.000 0.947 1.000 0.945 1.000 0.611 5.47 1.85

128 1.000 0.938 1.000 0.938 1.000 0.633 6.18 1.77
256 1.000 0.934 1.000 0.932 1.000 0.679 6.81 1.62

618 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

Table 3
Percent dissection of PaToH execution time

Execution phase language pre2 hood

K=32 K=256 K=32 K=256 K=32 K=256

Initialization 1.0 0.9 1.1 0.8 2.1 1.4

Coarsening 73.5 70.9 84.5 82.8 86.3 84.6
Visit order computation 0.8 1.2 0.5 0.6 0.2 0.3
Vertex matching 72.3 70.0 73.6 74.2 80.7 81.4
Vertex mapping 2.2 2.7 1.1 1.1 0.5 0.5
Hypergraph construction 24.7 26.1 24.8 24.1 18.6 17.8

Initial partitioning 1.9 1.9 1.0 1.3 0.4 0.9

Uncoarsening 19.1 20.6 9.5 10.6 4.6 5.8
Initial gain computations 27.0 27.0 32.8 30.7 19.9 20.1
Refinement 44.2 43.4 17.4 24.1 18.5 29.4
Projection 28.8 29.6 49.8 45.2 61.6 50.5

Splitting 4.5 5.7 3.9 4.5 6.6 7.3

Table 4
Percent dissection of kPaToH execution time

Execution phase language pre2 hood

K=32 K=256 K=32 K=256 K=32 K=256

Initialization 2.9 2.8 3.7 2.8 12.0 6.4

Coarsening 45.2 38.5 32.1 22.6 56.8 28.8
Visit order computation 0.4 0.4 0.6 0.6 0.2 0.2
Vertex matching 81.0 84.5 70.5 73.5 76.7 77.9
Vertex mapping 1.3 1.3 1.2 1.2 0.5 0.6
Hypergraph construction 17.3 13.8 27.7 24.7 22.6 21.3

Initial partitioning 4.5 11.3 4.4 11.8 4.1 7.1

Uncoarsening 47.4 47.4 59.8 62.8 27.1 57.7
Initialization 1.5 6.2 1.3 5.4 1.5 4.3
Refinement 88.3 82.7 91.6 84.8 87.9 85.6
Projection 10.2 11.1 7.1 9.8 10.6 10.1

that increasing number of partitioning constraints favors kPa-
ToH. On average, the cutsize improvement of kPaToH over Pa-
ToH, which is 5.82% in the single-constraint case, increases to
20.98% in the 2-constraint case and further increases to 40.02%
in the 4-constraint case. In other words, the degradation in the
solution qualities of kPaToH is considerably less than that of
PaToH as the number of constraints increases.

The speedups, although being slightly lower, are close to
the speedups in the single-constraint case. This slight decrease
stems from the fact that the overhead that multi-constraint par-
titioning introduces to the FM-based refinement algorithm is
higher in kPaToH compared to PaToH.

5.4. Experiments on partitioning with fixed vertices

In experiments on partitioning hypergraphs with fixed ver-
tices, we use hypergraphs emerging in a real-life problem [10].
The properties of the hypergraphs are given in Table 7. In nam-
ing the data sets, the numbers after the dash indicate the num-
ber F of fixed vertices in the hypergraph, e.g., there are F=32

fixed vertices in the BF-32 data set. In the experiments, each
part is assigned an equal number of fixed vertices. In CC data
sets, the net size variation is low, whereas, in BF and OP data
sets, the net sizes show high variation.

Table 8 illustrates the performance results obtained in parti-
tioning hypergraphs with fixed vertices. These results are im-
pressive as kPaToH outperforms PaToH by up to 31.28% in
reducing the cutsize. On the overall average, kPaToH incurs
a lower cutsize (between 17.09% and 21.07%) than PaToH.
At the same time, kPaToH is around 2.3 times faster on the
average.

In general, kPaToH shows better cutsize performance than
PaToH as K decreases and F increases. This is due to the fact
that the disability of PaToH to recursively bisect fixed vertices
between two parts in a way that will lead to better cutsizes
in the following bisections becomes more pronounced if the
number of fixed vertices per part is high. In general, compared
to PaToH, the relative performance of kPaToH in minimizing
the cutsize is better in BF and OP data sets, which have high
variation in net sizes.

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 619

Table 5
Performance of PaToH and kPaToH in partitioning hypergraphs with two partitioning constraints

Data set K Min. cutsize Avg. cutsize Avg. time Improvement

PaToH kPaToH PaToH kPaToH PaToH kPaToH %Cutsize Spdup

dawson5 32 11, 294 7,721 12, 598 8,209 1.418 0.749 34.84 1.89
64 18, 342 12,206 19, 446 13,240 1.673 1.003 31.91 1.67

128 28, 382 21,065 30, 553 22,383 1.919 1.380 26.74 1.39
256 45, 929 34,469 48, 331 35,921 2.142 1.839 25.68 1.16

language 32 110, 620 100,817 114, 748 102,026 10.342 9.547 11.09 1.08
64 124, 426 113,295 127, 849 114,223 11.024 9.662 10.66 1.14

128 135, 843 125,074 140, 173 126,498 11.742 9.489 9.76 1.24
256 149, 615 138,889 154, 821 139,876 12.159 10.024 9.65 1.21

Lin 32 60, 912 44,377 62, 727 46,004 5.060 4.661 26.66 1.09
64 84, 861 61,455 86, 483 62,713 5.805 5.386 27.49 1.08

128 114, 890 81,905 117, 727 83,223 6.509 6.385 29.31 1.02
256 151, 652 108,679 153, 346 109,597 7.177 7.702 28.53 0.93

poisson3Db 32 47, 813 38,750 50, 122 41,726 8.138 7.858 16.75 1.04
64 71, 849 58,218 74, 269 59,538 9.099 8.939 19.83 1.02

128 104, 590 84,667 108, 143 85,879 9.964 10.213 20.59 0.98
256 152, 908 119,271 154, 651 120,802 10.703 11.515 21.89 0.93

helm2d03 32 21, 292 13,322 22, 531 14,056 6.491 2.875 37.62 2.26
64 30, 305 20,056 32, 557 20,693 7.384 3.244 36.44 2.28

128 44, 819 29,254 46, 078 30,100 8.240 3.788 34.68 2.18
256 62, 859 42,427 64, 195 43,225 9.046 4.694 32.67 1.93

stomach 32 34, 168 26,555 35, 787 27,906 6.051 3.365 22.02 1.80
64 48, 082 38,487 49, 632 39,917 7.088 4.154 19.57 1.71

128 66, 512 55,439 68, 199 56,549 8.115 5.211 17.08 1.56
256 92, 662 77,772 95, 056 79,367 9.128 6.693 16.51 1.36

barrier2-1 32 63, 376 55,270 65, 498 57,687 8.711 6.958 11.92 1.25
64 89, 650 78,398 92, 626 80,831 9.876 8.354 12.73 1.18

128 125, 234 110,596 127, 423 113,046 10.949 9.881 11.28 1.11
256 171, 482 151,321 177, 107 155,823 11.922 11.449 12.02 1.04

Hamrle3 32 49, 678 37,991 54, 846 39,470 19.498 9.015 28.04 2.16
64 66, 303 54,298 74, 097 56,011 22.257 10.013 24.41 2.22

128 94, 701 77,382 99, 669 79,023 24.763 11.544 20.71 2.14
256 132, 449 110,070 135, 964 110,872 27.072 13.729 18.46 1.97

pre2 32 106, 199 80,682 114, 920 88,445 22.688 15.680 23.04 1.45
64 139, 973 112,521 155, 620 121,046 26.474 17.567 22.22 1.51

128 200, 692 168,097 207, 614 173,300 29.936 19.665 16.53 1.52
256 270, 510 216,747 280, 857 224,725 33.100 22.134 19.99 1.50

cage13 32 432, 428 368,686 443, 298 381,828 37.214 45.613 13.87 0.82
64 568, 292 485,297 582, 279 499,532 41.490 49.207 14.21 0.84

128 736, 109 635,187 746, 979 649,153 45.307 52.391 13.10 0.86
256 942, 314 824,163 957, 385 832,816 48.754 56.081 13.01 0.87

hood 32 30, 184 23,793 32, 279 26,388 14.767 5.552 18.25 2.66
64 48, 580 40,285 50, 910 42,097 17.206 6.695 17.31 2.57

128 73, 857 61,670 76, 913 63,410 19.544 8.078 17.56 2.42
256 112, 224 92,946 114, 197 94,975 21.818 10.050 16.83 2.17

bmw3_2 32 42, 905 32,222 45, 457 34,446 14.068 5.718 24.22 2.46
64 60, 947 49,109 65, 546 51,274 16.512 6.982 21.77 2.36

128 94, 851 73,221 101, 070 77,762 18.881 8.500 23.06 2.22
256 148, 610 114,732 157, 599 118,964 21.160 10.881 24.51 1.94

Average 32 1.000 0.777 1.000 0.776 1.000 0.691 22.36 1.66
64 1.000 0.797 1.000 0.785 1.000 0.697 21.55 1.63

128 1.000 0.807 1.000 0.800 1.000 0.723 20.03 1.55
256 1.000 0.807 1.000 0.800 1.000 0.779 19.98 1.42

620 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

Table 6
Performance of PaToH and kPaToH in partitioning hypergraphs with four partitioning constraints

Data set K Min. cutsize Avg. cutsize Avg. time Improvement

PaToH kPaToH PaToH kPaToH PaToH kPaToH %Cutsize Spdup

dawson5 32 13, 737 8, 037 14, 781 8, 600 1.439 0.768 41.82 1.87
64 19, 318 13, 124 22, 841 13, 909 1.692 1.037 39.11 1.63

128 33, 860 22, 513 36, 084 23, 885 1.941 1.425 33.81 1.36
256 51, 794 38, 509 56, 280 39, 956 2.161 1.917 29.01 1.13

language 32 139, 353 101, 153 141, 895 102, 487 9.580 9.756 27.77 0.98
64 148, 714 113, 760 151, 633 114, 933 10.229 10.014 24.20 1.02

128 156, 375 125, 636 163, 899 127, 946 10.842 10.161 21.94 1.07
256 165, 782 141, 125 175, 689 145, 699 11.365 11.131 17.07 1.02

Lin 32 91, 234 44, 949 98, 966 46, 184 5.019 4.709 53.33 1.07
64 120, 349 62, 380 125, 700 63, 297 5.730 5.431 49.64 1.06

128 152, 362 83, 325 157, 968 84, 282 6.399 6.432 46.65 0.99
256 187, 114 109, 471 192, 952 110, 604 7.031 7.754 42.68 0.91

poisson3Db 32 64, 204 39, 871 72, 387 42, 610 8.029 7.953 41.14 1.01
64 92, 385 58, 116 95, 745 61, 079 8.965 9.080 36.21 0.99

128 124, 979 85, 237 129, 528 88, 489 9.775 10.361 31.68 0.94
256 170, 152 121, 870 175, 514 125, 055 10.496 11.642 28.75 0.90

helm2d03 32 24, 307 13, 639 27, 429 14, 398 6.701 2.907 47.51 2.31
64 37, 354 20, 599 38, 828 21, 319 7.642 3.298 45.09 2.32

128 51, 410 30, 342 53, 462 31, 087 8.541 3.856 41.85 2.21
256 69, 835 44, 079 73, 373 44, 834 9.420 4.782 38.90 1.97

stomach 32 47, 275 26, 410 51, 908 28, 022 6.038 3.378 46.02 1.79
64 65, 598 39, 246 69, 666 40, 304 7.063 4.172 42.15 1.69

128 85, 852 56, 244 89, 528 57, 189 8.092 5.225 36.12 1.55
256 115, 517 80, 401 118, 783 81, 813 9.097 6.830 31.12 1.33

barrier2-1 32 87, 700 57, 078 93, 946 59, 268 8.633 7.066 36.91 1.22
64 113, 469 80, 217 121, 148 83, 535 9.817 8.405 31.05 1.17

128 150, 990 113, 913 159, 412 116, 518 10.841 10.080 26.91 1.08
256 203, 583 161, 848 208, 792 164, 935 11.864 11.711 21.00 1.01

Hamrle3 32 105, 671 38, 587 115, 453 39, 776 20.145 9.071 65.55 2.22
64 139, 438 52, 876 146, 122 55, 972 22.900 10.126 61.70 2.26

128 175, 186 77, 831 181, 742 79, 631 25.409 11.685 56.18 2.17
256 216, 312 110, 674 222, 124 111, 749 27.646 13.905 49.69 1.99

pre2 32 222, 989 88, 430 240, 992 92, 342 21.903 16.071 61.68 1.36
64 280, 190 115, 309 288, 496 128, 862 25.308 18.233 55.33 1.39

128 333, 089 178, 247 349, 267 189, 243 28.463 20.495 45.82 1.39
256 407, 435 237, 041 418, 959 251, 744 31.515 23.375 39.91 1.35

cage13 32 734, 084 370, 648 780, 736 384, 668 34.957 46.229 50.73 0.76
64 881, 612 492, 560 928, 273 505, 252 38.757 50.003 45.57 0.78

128 1, 040, 360 643, 380 1, 073, 786 654, 515 42.286 52.965 39.05 0.80
256 1, 222, 315 824, 847 1, 257, 893 839, 154 45.385 56.801 33.29 0.80

hood 32 46, 844 25, 305 50, 503 27, 537 14.786 5.575 45.47 2.65
64 68, 600 41, 293 74, 043 43, 224 17.212 6.695 41.62 2.57

128 97, 104 63, 427 102, 604 65, 988 19.536 8.063 35.69 2.42
256 140, 910 96, 733 145, 102 98, 625 21.798 10.026 32.03 2.17

bmw3_2 32 56, 881 33, 049 64, 026 35, 743 14.105 5.816 44.17 2.43
64 83, 150 51, 511 89, 492 54, 225 16.518 7.085 39.41 2.33

128 116, 628 76, 555 127, 693 81, 583 18.853 8.888 36.11 2.12
256 177, 088 120, 850 185, 200 125, 376 21.093 11.153 32.30 1.89

Average 32 1.000 0.549 1.000 0.532 1.000 0.716 46.84 1.64
64 1.000 0.585 1.000 0.574 1.000 0.725 42.59 1.60

128 1.000 0.634 1.000 0.624 1.000 0.757 37.65 1.51
256 1.000 0.680 1.000 0.670 1.000 0.817 32.98 1.37

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 621

Table 7
Properties of the hypergraphs used in the experiments on partitioning hypergraphs with fixed vertices

Data set # of vertices # of nets # of pins Avg. net size

BF-32 28, 930 4, 800 688,018 143.34
BF-64 28, 962 9, 600 930,412 96.92
BF-128 29, 026 19, 200 1,335,049 69.53
CC-32 56, 374 4, 800 1,133,858 236.22
CC-64 56, 406 9, 600 1,472,295 153.36
CC-128 56, 470 19, 200 2,094,107 109.07
OP-32 68, 190 4, 800 1,276,595 265.96
OP-64 68, 222 9, 600 1,629,169 169.70
OP-128 68, 286 19, 200 1,924,807 100.25

Table 8
Performance of PaToH and kPaToH in partitioning hypergraphs with fixed vertices

Data set K Min. cutsize Avg. cutsize Avg. time Improvement

PaToH kPaToH PaToH kPaToH PaToH kPaToH %Cutsize Spdup

BF-32 32 9,474 7,507 9,639 7,604 5.394 2.018 21.11 2.67
64 11,343 9,379 11,799 9,623 5.906 2.186 18.44 2.70

128 14,962 12,695 15,212 12,916 6.309 2.373 15.09 2.66

BF-64 32 17,790 13,538 18,625 13,691 5.152 2.088 26.49 2.47
64 21,473 16,583 22,010 16,867 5.726 2.309 23.37 2.48

128 25,548 21,354 26,406 21,652 6.284 2.585 18.00 2.43

BF-128 32 34,522 24,234 35,751 24,568 5.770 2.709 31.28 2.13
64 39,837 28,855 41,521 29,366 6.569 3.003 29.28 2.19

128 47,448 36,180 48,652 36,589 7.006 3.298 24.79 2.12

CC-32 32 9,534 8,438 9,668 8,619 4.865 2.248 10.85 2.16
64 12,608 10,931 12,927 11,123 5.547 2.472 13.96 2.24

128 17,635 14,796 17,873 14,956 6.172 2.771 16.32 2.23

CC-64 32 17,466 15,349 17,952 15,512 4.623 2.671 13.59 1.73
64 21,397 19,161 21,740 19,316 5.344 3.040 11.15 1.76

128 28,088 24,685 28,729 25,010 6.012 3.282 12.94 1.83

CC-128 32 33,201 28,803 34,298 28,986 5.407 3.677 15.49 1.47
64 40,036 34,947 40,677 35,225 6.233 4.218 13.40 1.48

128 49,454 43,960 50,315 44,321 6.965 4.556 11.91 1.53

OP-32 32 8,717 6,953 8,935 7,042 18.714 6.159 21.18 3.04
64 10,367 8,530 10,804 8,622 19.485 6.372 20.19 3.06

128 13,155 11,135 13,463 11,313 21.275 6.697 15.97 3.18

OP-64 32 15,693 12,507 16,402 12,668 17.462 6.010 22.76 2.91
64 18,823 15,028 19,399 15,178 19.317 6.291 21.76 3.07

128 22,972 18,745 23,404 19,238 20.020 6.757 17.80 2.96

OP-128 32 30,418 22,440 31,076 22,717 13.119 5.073 26.90 2.59
64 34,735 25,876 35,157 26,505 14.981 5.425 24.61 2.76

128 39,643 31,807 40,642 32,133 16.047 5.971 20.94 2.69

Average 32 1.000 0.802 1.000 0.789 1.000 0.448 21.07 2.35
64 1.000 0.814 1.000 0.804 1.000 0.437 19.57 2.42

128 1.000 0.835 1.000 0.829 1.000 0.437 17.09 2.40

In Table 9, we report performance results in terms of the cut-
size on a subset of the hypergraphs selected from Table 1. In
each hypergraph, we randomly fix F=128, 256, 512 vertices to
K=128, 256, 512 parts in a round-robin fashion and partition

the hypergraph using both PaToH and kPaToH. For kPaToH, we
explore the percent improvement due to bipartite graph match-
ing (BGM) and hence try it both with and without BGM. In
Table 9, “kPaToH w/ BGM” corresponds to an implementation

622 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

Table 9
Performance of kPaToH with and without bipartite graph matching (BGM) in partitioning hypergraphs with a randomly selected number (F) of fixed vertices

Data set F K Avg. cutsize %Improvement %Share of BGM in
the improvement

PaToH kPaToH kPaToH kPaToH kPaToH
w/o BGM w/ BGM w/o BGM w/ BGM

dawson5 256 128 26,227 23,010 20,992 12.26 19.96 38.56
256 36,828 33,651 30,285 8.63 17.77 51.44
512 56,948 49,299 45,409 13.43 20.26 33.71

512 128 33,075 28,005 25,345 15.33 23.37 34.42
256 43,058 38,715 34,038 10.09 20.95 51.85
512 62,390 54,470 47,475 12.69 23.91 46.90

1024 128 46,633 37,819 34,654 18.90 25.69 26.42
256 56,410 48,648 43,244 13.76 23.34 41.04
512 73,354 64,288 55,273 12.36 24.65 49.86

Lin 256 128 91,505 82,284 81,888 10.08 10.51 4.12
256 118,981 107,683 106,572 9.50 10.43 8.95
512 155,004 140,019 138,752 9.67 10.48 7.79

512 128 94,202 84,155 83,421 10.67 11.44 6.80
256 120,629 109,462 108,008 9.26 10.46 11.53
512 155,286 141,911 139,816 8.61 9.96 13.55

1024 128 99,117 87,418 86,626 11.80 12.60 6.34
256 124,302 112,920 111,368 9.16 10.41 12.00
512 158,567 145,222 142,332 8.42 10.24 17.80

poisson3Db 256 128 96,136 89,682 86,009 6.71 10.53 36.27
256 132,245 123,777 118,546 6.40 10.36 38.19
512 184,110 168,285 162,525 8.60 11.72 26.69

512 128 104,717 96,503 92,188 7.84 11.96 34.44
256 140,800 130,267 124,592 7.48 11.51 35.02
512 191,542 174,627 164,621 8.83 14.05 37.17

1024 128 126,271 109,786 104,960 13.06 16.88 22.65
256 158,922 144,133 135,716 9.31 14.60 36.27
512 208,279 188,168 175,242 9.66 15.86 39.13

barrier2-1 256 128 115,348 108,922 105,160 5.57 8.83 36.93
256 154,860 144,915 139,278 6.42 10.06 36.18
512 212,822 194,371 187,355 8.67 11.97 27.55

512 128 126,627 116,548 112,418 7.96 11.22 29.07
256 166,085 153,156 145,217 7.78 12.56 38.04
512 221,905 202,422 189,665 8.78 14.53 39.57

1024 128 151,989 133,302 127,497 12.29 16.11 23.70
256 188,254 169,670 159,889 9.87 15.07 34.48
512 243,276 218,533 202,652 10.17 16.70 39.09

hood 256 128 84,003 70,391 64,793 16.20 22.87 29.14
256 112,839 99,714 90,857 11.63 19.48 40.29
512 159,561 142,146 131,641 10.91 17.50 37.62

512 128 107,231 82,145 75,616 23.39 29.48 20.65
256 133,568 111,861 100,191 16.25 24.99 34.96
512 175,277 154,121 136,864 12.07 21.92 44.93

1024 128 149,171 106,871 99,501 28.36 33.30 14.84
256 172,577 136,753 122,510 20.76 29.01 28.45
512 212,997 179,269 156,507 15.83 26.52 40.29

bmw3_2 256 128 89,754 78,213 72,883 12.86 18.80 31.59
256 121,386 112,222 103,552 7.55 14.69 48.61
512 174,406 161,878 152,451 7.18 12.59 42.94

512 128 110,871 90,326 83,413 18.53 24.77 25.18
256 141,551 125,157 113,760 11.58 19.63 41.01
512 189,793 174,442 156,349 8.09 17.62 54.10

1024 128 150,756 115,426 107,445 23.43 28.73 18.43
256 178,616 149,789 136,220 16.14 23.74 32.01
512 223,685 200,207 176,784 10.50 20.97 49.94

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 623

Table 10
Averages of the results provided in Table 9 over F and K

Averages over F Averages over K

F %Improvement % Share of BGM in the improvement K % Improvement % Share of BGM in the improvement

kPaToH kPaToH kPaToH kPaToH
w/o BGM w/ BGM w/o BGM w/ BGM

256 9.57 14.38 32.03 128 14.18 18.73 24.42
512 11.40 17.46 33.29 256 10.64 16.61 34.46

1024 14.10 20.24 29.60 512 10.25 16.75 36.03

of the approach described in Section 4, whereas “kPaToH w/o
BGM” corresponds to an implementation in which the fixed ver-
tex sets are arbitrarily matched with the ordinary vertex parts.

Basically, kPaToH provides superior results over PaToH in
partitioning hypergraphs with fixed vertices due to (i) K-way
refinement and (ii) BGM performed during the the initial par-
titioning phase. We provide Table 9 to illustrate the share of
these two factors in the overall cutsize improvement. Accord-
ing to Table 9, the share of BGM in the total cutsize improve-
ment is quite variable, ranging between 4.12% and 54.10%. In
general, better results are achieved by BGM for hypergraphs
having large net sizes. It is hard to make a judgment about the
behavior with increasing F and K values. This is due to the
fact that many other factors affect the performance of BGM.
Among these factors, the performance is dependent on the con-
nectivity of the regular and fixed vertices, distribution of fixed
vertices on the parts, the ratio of F to the number of regular
vertices, and the ratio of F to K . These are hard to assess (also
see [1] for comments on the bipartitioning case). The averages
over F and K values are provided in Table 10.

6. Conclusion

We argued that the hypergraph partitioning with multiple
constraints and fixed vertices problems should be tackled with
a direct K-way refinement approach. In order to support our
claim, we presented a careful implementation of a multi-level
direct K-way refinement algorithm. We discussed extensions
of this algorithm for partitioning hypergraphs with multiple
constraints and fixed vertices. Extension to the multi-constraint
case adopts standard hypergraph partitioning techniques. In or-
der to extend the algorithm to the fixed vertex case, we proposed
specialized coarsening and initial partitioning with a novel for-
mulation that uses bipartite graph matching. The experiments
conducted on benchmark data sets indicate that the proposed
algorithm is quite fast and effective in minimizing the cutsize
compared to the state-of-the-art hypergraph partitioning tool
PaToH. Especially, in the multi-constraint and fixed vertices
domain, the obtained results are quite promising in terms of
both execution time and solution quality. On average, the cut-
size improvement of kPaToH over PaToH is around 20% and
40% at the 2-constraint and 4-constraint cases, respectively.
Similarly, in partitioning hypergraphs with fixed vertices, kPa-
ToH outperforms PaToH by up to 33% in cutsize as it runs 2.3
times faster on average.

References

[1] C.J. Alpert, A.E. Caldwell, A.B. Kahng, I.L. Markov, Hypergraph
partitioning with fixed vertices, IEEE Trans. Comput.-Aided Design 19
(2) (2000) 267–272.

[2] C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a
survey, VLSI J. 19 (1–2) (1995) 1–81.

[3] C. Ashcraft, Compressed graphs and the minimum degree algorithm,
SIAM J. Sci. Comput. 16 (6) (1995) 1404–1411.

[4] C. Aykanat, A. Pinar, Ü.V. Çatalyürek, Permuting sparse rectangular
matrices into block-diagonal form, SIAM J. Sci. Comput. 25 (6) (2004)
1860–1879.

[5] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company,
Amsterdam, 1973.

[6] R.H. Bisseling, J. Byrka, S. Cerav-Erbas, N. Gvozdenovic, M. Lorenz,
R. Pendavingh, C. Reeves, M. Roger, A. Verhoeven, Partitioning a call
graph, in: Second International Workshop on Combinatorial Scientific
Computing, 2005.

[7] R.H. Bisseling, I. Flesch, Mondriaan sparse matrix partitioning for
attacking cryptosystems by a parallel block Lanczos algorithm: a case
study, Parallel Comput. 32 (7) (2006) 551–567.

[8] T.N. Bui, C. Jones, A heuristic for reducing fill in sparse matrix
factorization, in: Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, 1993, pp. 445–452.

[9] A. Caldwell, A. Kahng, I. Markov, Improved algorithms for hypergraph
bipartitioning, in: Proceedings of the IEEE ACM Asia and South Pacific
Design Automation Conference, 2000, pp. 661–666.

[10] B.B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping
models for image-space-parallel direct volume rendering of unstructured
grids, IEEE Trans. Parallel Distributed Systems 18 (1) (2007) 3–16.

[11] C. Chang, T.M. Kurc, A. Sussman, Ü.V. Çatalyürek, J.H. Saltz,
A hypergraph-based workload partitioning strategy for parallel data
aggregation, in: SIAM Conference on Parallel Processing for Scientific
Computing, 2001.

[12] G. Chartrand, O.R. Oellermann, Applied and Algorithmic Graph Theory,
McGraw-Hill, New York, 1993.

[13] C. Clifton, R. Cooley, J. Rennie, TopCat: data mining for topic
identification in a text corpus, IEEE Trans. Knowledge Data Eng. 16
(8) (2004) 949–964.

[14] Ü.V. Çatalyürek, ISPD98 benchmark 〈http://bmi.osu.edu/∼umit/PaToH/
ispd98.html〉.

[15] Ü.V. Çatalyürek, C. Aykanat, Decomposing irregularly sparse matrices
for parallel matrix–vector multiplication, Lecture Notes in Computer
Science, vol. 1117, 1996, pp. 75–86.

[16] Ü.V. Çatalyürek, C. Aykanat, PaToH: partitioning tool for hypergraphs,
Technical Report, Department of Computer Engineering, Bilkent
University, 1999.

[17] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomp-
osition for parallel sparse-matrix vector multiplication, IEEE Trans.
Parallel Distributed Systems 10 (7) (1999) 673–693.

[18] Ü.V. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D de-
composition of sparse matrices, in: Proceedings of the 15th International
Parallel and Distributed Processing Symposium, 2001, p. 118.

http://bmi.osu.edu/umit/PaToH/ispd98.html
http://bmi.osu.edu/umit/PaToH/ispd98.html

624 C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625

[19] Ü.V. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for
coarse-grain decomposition, in: Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, 2001, p. 28.

[20] A. Dasdan, C. Aykanat, Two novel multiway circuit partitioning
algorithms using relaxed locking, IEEE Trans. Comput.-Aided Design
Integrated Circuits Systems 16 (2) (1997) 169–178.

[21] T. Davis, University of Florida Sparse Matrix Collection 〈http://www.
cise.ufl.edu/research/sparse/matrices〉, NA Digest 97 (23) (June 7, 1997).

[22] E. Demir, C. Aykanat, B.B. Cambazoglu, Clustering spatial networks for
aggregate query processing: a hypergraph approach, Inform. Systems, in
press.

[23] E. Demir, C. Aykanat, B.B. Cambazoglu, A link-based storage scheme
for efficient aggregate query processing on clustered road networks,
Technical Report, BU-CE-0707, Department of Computer Engineering,
Bilkent University, 2007.

[24] K.D. Devine, E.G. Boman, R.T. Heaphy, R. Bisseling, Ü.V. Çatalyürek,
Parallel hypergraph partitioning for scientific computing, in: Proceedings
of the IEEE International Parallel and Distributed Processing Symposium,
2006.

[25] K.D. Devine, E.G. Boman, R.T. Heaphy, B. Hendrickson, C. Vaughan,
Zoltan data management services for parallel dynamic applications,
Comput. Sci. Eng. 4 (2) (2002) 90–97.

[26] N.J. Dingle, P.G. Harrison, W.J. Knottenbelt, Uniformization and
hypergraph partitioning for the distributed computation of response time
densities in very large Markov models, J. Parallel Distributed Comput.
64 (8) (2004) 908–920.

[27] I.S. Duff, S. Riyavong, M.B. van Gijzen, Parallel preconditioners
based on partitioning sparse matrices, Technical Report, TR/PA/04/114,
CERFACS, 2004.

[28] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving
network partitions, in: Proceedings of the 19th ACM/IEEE Design
Automation Conference, 1982, pp. 175–181.

[29] M.K. Goldberg, M. Burnstein, Heuristic improvement technique for
bisection of VLSI networks, in: Proceedings of the IEEE International
Conference on Computer Design, 1983, pp. 122–125.

[30] B. Hendrickson, R. Leland, The Chaco user’s guide: version
2.0, Technical Report, SAND94-2692, Sandia National Laboratories,
1994.

[31] B. Hendrickson, E. Rothberg, Improving the run time and quality of
nested dissection ordering, SIAM J. Sci. Comput. 20 (2) (1998)
468–489.

[32] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph
partitioning: applications in VLSI domain, IEEE Trans. Very Large Scale
Integration Systems 7 (1) (1999) 69–79.

[33] G. Karypis, V. Kumar, hMETIS: a hypergraph partitioning package,
Technical Report, Department of Computer Science, University of
Minnesota, 1998.

[34] G. Karypis, V. Kumar, MeTiS: a software package for partitioning
unstructured graphs, partitioning meshes and computing fill-reducing
orderings of sparse matrices, Technical Report, Department of Computer
Science, University of Minnesota, 1998.

[35] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph
par-titioning, in: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, 1998, pp. 1–13.

[36] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, VLSI
Design 11 (3) (2000) 285–300.

[37] K. Kaya, C. Aykanat, Iterative-improvement-based heuristics for adaptive
scheduling of tasks sharing files on heterogeneous master–slave environ-
ments, IEEE Trans. Parallel Distributed Systems 17 (8) (2006)
883–896.

[38] K. Kaya, B. Ucar, C. Aykanat, Heuristics for scheduling file-sharing
tasks on heterogeneous systems with distributed repositories, J. Parallel
Distributed Comput. 67 (3) (2007) 271–285.

[39] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning
graphs, Bell System Technical J. 49 (1970) 291–307.

[40] G. Khanna, N. Vydyanathan, T.M. Kurc, Ü.V. Çatalyürek, P. Wyckoff,
J. Saltz, P. Sadayappan, A hypergraph partitioning based approach for
scheduling of tasks with batch-shared IO, in: Proceedings of Cluster
Computing and Grid, 2005.

[41] M. Koyuturk, C. Aykanat, Iterative-improvement-based declustering
heuristics for multi-disk databases, Inform. Systems 30 (1) (2005)
47–70.

[42] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
Wiley-Teubner, Chichester, 1990.

[43] D.R. Liu, M.Y. Wu, A hypergraph based approach to declustering
problems, Distributed Parallel Databases 10 (3) (2001) 269–288.

[44] M.M. Ozdal, C. Aykanat, Hypergraph models and algorithms for data-
pattern-based clustering, Data Mining Knowledge Discovery 9 (1) (2004)
29–57.

[45] D.G. Schweikert, B.W. Kernighan, A proper model for the partitioning
of electrical circuits, in: Proceedings of the 9th Workshop on Design
Automation, 1972, pp. 57–62.

[46] S. Shekhar, C.-T. Lu, S. Chawla, S. Ravada, Efficient join-index-based
spatial-join processing: a clustering approach, IEEE Trans. Knowledge
Data Eng. 14 (6) (2002) 1400–1421.

[47] H.D. Simon, S.-H. Teng, How good is recursive bisection?, SIAM J.
Sci. Comput. 18 (5) (1997) 1436–1445.

[48] A. Trifunovic, W.J. Knottenbelt, Parkway2.0: a parallel multilevel
hypergraph partitioning tool, in: Proceedings of the International
Symposium on Computer and Information Sciences, 2004, pp. 789–800.

[49] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost metrics
in partitioning sparse rectangular matrices for parallel matrix–vector
multiplies, SIAM J. Sci. Comput. 25 (6) (2004) 1837–1859.

[50] B. Uçar, C. Aykanat, Revisiting hypergraph models for sparse matrix
partitioning, SIAM Rev. 49 (4) (2007) 543–732.

[51] B. Uçar, C. Aykanat, Partitioning sparse matrices for parallel
preconditioned iterative methods, SIAM J. Sci. Comput. 29 (4) (2007)
1683–1709.

[52] B. Uçar, C. Aykanat, M.C. Pınar, T. Malas, Parallel image restoration
using surrogate constraints methods, J. Parallel Distributed Comput. 67
(2) (2007) 186–204.

[53] B. Vastenhouw, R.H. Bisseling, A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication, SIAM Rev. 47
(1) (2005) 67–95.

[54] C. Walshaw, M. Cross, K. McManus, Multiphase mesh partitioning,
Appl. Math. Modelling 25 (2000) 123–140.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Ankara, Turkey, both in electrical engineering,
and the PhD degree from Ohio State University,
Columbus, in electrical and computer engineer-
ing. He was a Fulbright scholar during his PhD
studies. He worked at the Intel Supercomputer
Systems Division, Beaverton, Oregon, as a
research associate. Since 1989, he has been
affiliated with the Department of Computer
Engineering, Bilkent University, Ankara, Turkey,
where he is currently a professor. His research
interests mainly include parallel computing,

parallel scientific computing and its combinatorial aspects, parallel computer
graphics applications, parallel data mining, graph and hypergraph partitioning,
load balancing, neural network algorithms, high performance information re-
trieval systems, parallel and distributed web crawling, parallel and distributed
databases, and grid computing. He has (co)authored over 40 technical papers
published in academic journals indexed in SCI. He is the recipient of the
1995 Young Investigator Award of The Scientific and Technological Research
Council of Turkey. He is a member of the ACM and the IEEE Computer So-
ciety. He has been recently appointed as a member of IFIP Working Group
10.3 (Concurrent Systems).

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

C. Aykanat et al. / J. Parallel Distrib. Comput. 68 (2008) 609–625 625

Berkant Barla Cambazoglu received his BS,
MS, and PhD degrees all in computer engineer-
ing from the Computer Engineering Department
of Bilkent University in 1997, 2000, and 2006,
respectively. He has worked in several research
projects funded by the Scientific and Technolog-
ical Research Council of Turkey, the European
Union Sixth Framework Program, and the Na-
tional Cancer Institute. He is currently working
as a postdoctoral researcher at the Biomedi-
cal Informatics Department of the Ohio State
University. His research interests include high

performance computing, scientific visualization, information retrieval, data
mining, and grid middleware.

Bora Ucar received the PhD degree (2005) in
computer engineering from Bilkent University,
Ankara, Turkey. He is currently working at the
Parallel Algorithms Project, CERFACS, France.
His research interests are combinatorial scien-
tific computing, parallel and high performance
computing, and sparse matrix computations.

