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Abstract

Algorithmic tools for searching and mining the
web are becoming increasingly sophisticated
and vital. In this context, algorithms which
use and exploit structural information about
the web perform better than generic methods
in both efficiency and reliability.

We present an extensive characterization of
the graph structure of the web, with a view to
enabling high-performance applications that
make use of this structure. In particular, we
show that the web emerges as the outcome of
a number of essentially independent stochas-
tic processes that evolve at various scales. A
striking consequence of this scale invariance is
that the structure of the web is “fractal” — co-
hesive sub-regions display the same character-
istics as the web at large. An understanding of
this underlying fractal nature is therefore ap-
plicable to designing data services across mul-
tiple domains and scales.

We describe potential applications of this line
of research to optimized algorithm design for
web-scale data analysis.

1 Introduction

As the the size of the web grows exponentially, data
services on the web are becoming increasingly complex
and challenging tasks. These include both basic ser-
vices such as searching and finding related pages, and
advanced applications such as web-scale data mining,
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community extraction, constructions of indices, tax-
onomies, and vertical portals. Applications are begin-
ning to emerge that are required to operate at various
points on the “petabyte curve” — billions of web pages
that each have megabytes of data, tens of millions of
users in a peer-to-peer setting each with several giga-
bytes of data, etc. The upshot of the rate and diversity
of this growth is that data service applications for col-
lections of hyperlinked documents need to be efficient
and effective at several scales of operation. As we will
show, a form of “scale invariance” exists on the web
that allows simplification of this multi-scale data ser-
vice design problem.

The first natural approach to the wide range of anal-
ysis problems emerging in this new domain is to de-
velop a general query language to the web. There have
been a number of proposals along these lines [34, 6, 43].
Further, various advanced mining operations have
been developed in this model using a web-specific
query language like those described above, or a tra-
ditional database encapsulating some domain knowl-
edge into table layout and careful construction of SQL
programs [18, 42, §].

However, these applications are particularly suc-
cessful precisely when they take advantage of the spe-
cial structure of the document collections and the
hyperlink references among them. An early exam-
ple of this phenomenon in the marketplace is the
paradigm shift witnessed in search applications —
ranking schemes for web pages that were based on
link analysis [26, 12] proved to be vastly superior to
the more traditional text-based ones.

The success of these specialized approaches nat-
urally led researchers to seek a finer understanding
of the hyperlinked structure of the web. Broadly,
there are two (very related) lines of research that have
emerged. The first one is more theoretical and is con-
cerned with proposing stochastic models that explain
the hyperlink structure of the web [27, 7, 1]. The sec-
ond line of research [13, 7, 3, 28] is more empirical;
new experiments are conducted that either validate or
refine existing models.



There are several driving applications that moti-
vate (and are motivated by) a better understanding
of the neighborhood structure on the web. In partic-
ular, the “second generation” of data service applica-
tions on the web — including advanced search appli-
cations [16, 17, 10], browsing and information foraging
[14, 39, 15, 40, 19], community extraction [28], taxon-
omy construction [30, 29] — have all taken tremendous
advantage of knowledge about the hyperlink structure
of the web. As just one example, let us mention the
community extraction algorithm of [28]. In this algo-
rithm, a characterization of degree sequences within
web-page neighborhoods allowed the development and
analysis of efficient pruning algorithms for a subgraph
enumeration problem that is in general intractable.

Even more recently, new algorithms have been de-
veloped to benefit from structural information about
the web. Arasu et al. [5] have shown how to take
advantage of the macroscopic “bow-tie” structure of
the web [13] to design an efficient algorithmic parti-
tioning method for certain eigenvector computations;
these are the key to the successful search algorithms
of [26, 12], and to popular database indexing methods
such as latent semantic indexing [20, 36]. Adler and
Mitzenmacher [4] have shown how the random graph
characterizations of the web given in [27] can be used
to compress the web graph.

1.1 Owur results

In this paper, we present a much more refined char-
acterization of the structure of the web. Specifically,
we present evidence that the web emerges as the out-
come of a number of essentially independent stochastic
processes that evolve at various scales, all roughly fol-
lowing the model of [27]. A striking consequence of
this is that the web is a “fractal” — each thematically
unified region displays the same characteristics as the
web at large. This implies the following;:

To design efficient algorithms for data services at
various scales on the web (vertical portals pertaining
to a theme, corporate intranets, etc.), it is sufficient
(and perhaps necessary) to understand the structure
that emerges from one fairly simple stochastic process.

We believe that this is a significant step in web algo-
rithmics. For example, it shows that the sophisticated
algorithms of [5, 4] are only the beginning, and the
prospects are, in fact, much wider. We fully expect
future data applications on the web to leverage this
understanding.

Our characterization is based on two findings we
report in this paper. Our first finding is an experi-
mental result. We show that self-similarity holds for
many different parameters, and also for many different
approaches to defining varying scales of analysis. Our
second finding is an interpretation of the experimental
data. We show that, at various different scales, cohe-

sive collections of web pages (for instances, pages on
a site, or pages about a topic) mirror the structure of
the web at large. Furthermore, if the web is decom-
posed into these cohesive collections, for a wide range
of definitions of “cohesive,” the resulting collections
are tightly and robustly connected via a navigational
backbone that affords strong connectivity between the
collections. This backbone not only ties together the
collections of pages, but also ties together the many
different and overlapping decompositions into cohesive
collections, suggesting that committing to a single tax-
onomic breakdown of the web is neither necessary nor
desirable. We now describe these two findings in more
detail.

First, self-similarity in the web is pervasive and ro-
bust — it applies to a number of essentially indepen-
dent measurements and regardless of the particular
method used to extract a slice of the web. Second,
we present a graph-theoretic interpretation of the first
set of observations, which leads to a natural hierarchi-
cal characterization of the structure of the web inter-
preted as a graph. In our characterization, collections
of web pages that share a common attribute (for in-
stance, all the pages on a site, or all the pages about a
particular topic) are structurally similar to the whole
web. Furthermore, there is a navigational backbone
to the web that provides tight and robust connections
between these focused collections of pages.

1. Experimental findings.

Our first finding, that self-similarity in the web is per-
vasive and appears in many unrelated contexts, is an
experimental result. We explore a number of graph-
theoretic and syntactic parameters. The set of param-
eters we consider is the following: indegree and out-
degree distributions; strongly- and weakly- connected
component sizes; bow-tie structure and community
structure on the web graph; and population statis-
tics for trees representing the URL namespace. We
define these parameters formally below. We also con-
sider a number of methods for decomposing the web
into interesting subgraphs. The set of subgraphs we
consider is the following: a large internet crawl; vari-
ous subgraphs consisting of about 10% of the sites in
the original crawl; 100 websites from the crawl each
containing at least 10,000 pages; ten graphs, each con-
sisting of every page containing a set of keywords (in
which the ten keyword sets represent five broad top-
ics and five sub-topics of the broad topics); a set of
pages containing geographical references (e.g., phone
numbers, zip codes, city names, etc.) to locations in
the western United States; a graph representing the
connectivity of web sites (rather than web pages); and
a crawl of the IBM intranet.

We then consider each of the parameters described
above, first for the entire collection, and then for each
decomposition of the web into sub-collections. Self-



similarity is manifest in the resulting measurements
in two flavors. First, when we fix a collection or sub-
collection and focus on the distribution of any parame-
ter (such as the number of hyperlinks, number of con-
nected components, etc.), we observe a Zipfian self-
similarity within the pageset.! Namely, for any param-
eter x with distribution X, there is a constant ¢ such
that for all + > 0 and a > 1, X(at) = a°X(t).2 Sec-
ond, the phenomena (whether distributional or struc-
tural) that are manifest within a sub-collection are
also observed (with essentially the same constants) in
the entire collection, and more generally, in all sub-
collections at all scales — from local websites to the
web as a whole.

2. Interpretations.

Our second finding is an interpretation of the experi-
mental data. As mentioned above, the sub-collections
we study are created to be cohesive clusters, rather
than simply random sets of web pages. We will re-
fer to them as thematically unified clusters, or simply
TUCs. Each TUC has structure similar to the web as a
whole. In particular, it has a Zipfian distribution over
the parameters we study, strong navigability proper-
ties, and significant community and bow-tie structure
(in a sense to be made explicit below).

Furthermore, we observe unexpectedly that the cen-
tral regions of different TUCs are tightly and robustly
connected together. These tight and robust inter-
cluster linking patterns provide a navigational back-
bone for the web. By analogy, consider the problem
of navigating from one physical address to another. A
user might take a cab to the airport, take a flight to
the appropriate destination city, and take a cab to the
destination address. Analogously, navigation between
TUCs is accomplished by traveling to the central core
of a TUC, following the navigational backbone to the
central core of the destination TUC, and finally navi-
gating within the destination TUC to the correct page.
We show that the self-similarity of the web graph, and
its local and global structure, are alternate and equiv-
alent ways of viewing this phenomenon.

1.2 Related prior work

Zipf-Pareto-Yule and Power laws.

Distributions with an inverse polynomial tail have
been observed in a number of contexts. The earli-
est observations are due to Pareto [38] in the context
of economic models. Subsequently, these statistical
behaviors have been observed in the context of liter-
ary vocabulary [45], sociological models [46], and even

1For more about the connection between Zipfian distribu-
tions and self-similarity, see Section 2.2 and [31].

2For example, the fraction of web pages that have k hyper-
inlinks is proportional to k2.

oligonucleotide sequences [33], among others. Our fo-
cus is on the closely related power law distributions,
defined on the positive integers, with the probability
of the value i being proportional to i~* for a small
positive number k. Perhaps the first rigorous effort to
define and analyze a model for power law distributions
is due to Herbert Simon [41].

Recent work [30, 7] suggests that both the in- and
the outdegrees of nodes on the web graph have power
laws. The difference in scope in these two experiments
is noteworthy. The first [30] examines a web crawl
from 1997 due to Alexa, Inc., with a total of over
40 million nodes. The second [7] examines web pages
from the University of Notre Dame domain *.nd.edu
as well as a portion of the web reachable from 3 other
URLs. This collection of findings already leads us to
suspect the fractal-like structure of the web.

Graph-theoretic methods.

Much recent work has addressed the web as a graph
and applied algorithmic methods from graph theory
in addressing a slew of search, retrieval, and mining
problems on the web. The efficacy of these meth-
ods was already evident even in early local expansion
techniques [14]. Since then, increasingly sophisticated
techniques have been used; the incorporation of graph-
theoretical methods with both classical and new meth-
ods that examine both context and content, and richer
browsing paradigms have enhanced and validated the
study and use of such methods. Following Botafogo
and Shneiderman [14], the view that connected and
strongly-connected components represent meaningful
entities has become widely accepted.

Power laws and browsing behavior.

The power law phenomenon is not restricted to the
web graph. For instance, [21] report very similar ob-
servations about the physical topology of the inter-
net. Moreover, the power law characterizes not only
the structure and organization of information and re-
sources on the web, but also the way people use the
web. Two lines of work are of particular interest to us
here. (1) Web page access statistics, which can be eas-
ily obtained from server logs (but for caching effects)
[22, 25, 2]. (2) User behavior, as measured by the
number of times users at a single site access particular
pages also enjoy power laws, as verified by instrument-
ing and inspecting logs from web caches, proxies, and
clients [9, 32].

There is no direct evidence that browsing behav-
ior and linkage statistics on the web graph are re-
lated in any fundamental way. However, making the
assumption that linkage statistics directly determine
the statistics of browsing has several interesting con-
sequences. The Google search algorithm, for instance,
is an example of this. Indeed, the view of PageRank
put forth in [12] is that it puts a probability value on
how easy (or difficult) it is to find particular pages
by a browsing-like activity. Moreover, it is generally



true (for instance, in the case of random graphs) that
this probability value is closely related to the indegree
of the page. In addition there is recent theoretical
evidence [27, 41] suggesting that this relationship is
deeper. In particular, if one assumes that the ease of
finding a page is proportional to its graph-theoretic
indegree, and that otherwise the process of evolution
of the web as a graph is a random one, then power
law distributions are a direct consequence. The re-
sulting models, known as copying models for generat-
ing random graphs seem to correctly predict several
other properties of the web graph as well.

2 Preliminaries

In this section we formalize our view of the web as a
graph; here we ignore the text and other content in
pages, focusing instead on the links between pages. In
the terminology of graph theory [23], we refer to pages
as nodes, and to links as arcs. In this framework, the
web is a large graph containing over a billion nodes,
and a few billion arcs.

2.1 Graphs and terminology

A directed graph consists of a set of nodes, denoted V'
and a set of arcs, denoted E. Each arc is an ordered
pair of nodes (u,v) representing a directed connection
from u to v. The outdegree of a node u is the number
of distinct arcs (u,v1),..., (u,vg) (i-e., the number of
links from u), and the indegree is the number of dis-
tinct arcs (vi,u), ..., (vg,u) (i-e., the number of links
to u). A path from node u to node v is a sequence of
arcs (u,uy), (u1,u2),..., (ug,v). One can follow such
a sequence of arcs to “walk” through the graph from
u to v. Note that a path from u to v does not imply a
path from v to u. The distance from u to v is one more
than the smallest &k for which such a path exists. If no
path exists, the distance from u to v is defined to be in-
finity. If (u,v) is an arc, then the distance from u to v
is 1. Given a graph (V, E) and a subset V' of the node
set v, the node-induced subgraph (V',E") of (V, E) is
defined by taking E' to be {(u,v) € E | u,v € V'},
i.e., the node-induced subgraph corresponding to some
subset V' of the nodes contains only arcs that lie en-
tirely within V.

Given a directed graph, a strongly connected com-
ponent of this graph is a set of nodes such that for
any pair of nodes u and v in the set there is a path
from u to v. In general, a directed graph may have
one or many strong components. Any graph can be
partitioned into a disjoint union of strong components.
Given two strongly connected components, Cy and Cs,
either there is a path from C; to C5 or a path from
Csto Cy or neither, but not both. Let us denote the
largest strongly component by SCC. Then, all other
components can be classified with respect to the SCC
in terms of whether they can reach, be reached from,
or are independent of, the SCC. Following [13], we

denote these components IN, OUT, and OTHER re-
spectively. The SCC, flanked by the IN and OUT,
figuratively forms a “bow-tie.”

A weakly connected component of a graph is a set of
nodes such that for any pair of nodes u and v in the set,
there is a path from u to v if we disregard the directions
of the arcs. Similar to strongly connected components,
the graph can be partitioned into a disjoint union of
weakly connected components. We denote the largest
weakly connected component by (WCC).

2.2 Zipf distributions and power laws

The power law distribution with parameter a > 1 is
a distribution over the positive integers. Let X be a
power law distributed random variable with parameter
a. Then, the probability that X = i is proportional to
1~ *. The Zipf distribution is an interesting variant on
the power law. The Zipf distribution is a defined over
any categorical-valued attribute (for instance, words
of the English language). In the Zipf distribution, the
probability of the i-th most likely attribute value is
proportional to ¢~?. Thus, the main distinction be-
tween these is in the nature of the domain from which
the random variable takes its values. A classic general
technique for computing the parameter a characteriz-
ing the power law is due to Hill [24]. We will use Hill’s
estimator as the quantitative measure of self-similarity.

While a variety of socio-economic phenomena have
been observed to obey Zipf’s law, there is only a hand-
ful of stochastic models for these phenomena of which
satisfying Zipf’s law is a consequence. Simon [41] was
perhaps the first to propose a class of stochastic pro-
cesses whose distribution functions follow the Zipf law
[31]. Recently, new models have been proposed for
modeling the evolution of the web graph [27]. These
models predict that several interesting parameters of
the web graph obey the Zipf law.

3 Experimental setup
3.1 Random subsets and TUCs

Since the average degree of the web graph is small, one
should expect subgraphs induced by (even fairly large)
random subsets of the nodes to be almost empty. Con-
sider for instance a random sample of 1 million web
pages (say out of a possible 1 billion pages). Con-
sider now an arbitrary arc, say (a,b). The proba-
bility that both endpoints of the arc are chosen in
the random sample is about 1 in a million (1/1000
*1/1000). Thus, the total expected number of arcs in
the induced subgraph of these million nodes is about
8000, assuming an average degree of 8 for the web as
a whole. Thus, it would be unreasonable to expect
random subgraphs of the web to contain any graph-
theoretic structure. However, if the subgraphs chosen
are not random, the situation could be (and is) differ-
ent. In order to highlight this dichotomy, we introduce



the notion of a thematically unified cluster (TUC). A
TUC is a cluster of webpages that share a common
trait. In all instances we consider, these thematically
unified clusters share a fairly syntactic trait. However,
we do not wish to restrict our definition only to such
instances. For instance, one could consider linkage-
based concepts [43, 39] as well. We now detail several
instances of TUCs.

(1) By content: The premise that web content on
any particular topic is also “local” in a graph-theoretic
context has motivated some interesting earlier work
[26, 30]. Thus, one should expect web pages that share
subject matter to be more densely linked than random
subsets of the web. If so, these graphs should display
interesting morphological structure. Moreover, it is
reasonable to expect this structure to represent inter-
esting ways of further segmenting the topic.

The most naive method for judging content correla-
tion is to simply look at a collection of webpages which
share a small set of common keywords. To this end,
we have generated 10 slices of the web, denoted hence-
forth as KEYwWORD], ..., KEYWORD10. To determine
whether a page belongs to a keyword set, we simply
look for the keyword in the body of the document af-
ter simple pre-processing (removing tags, javascript,
transform to lower case, etc.). The particular keyword
sets we consider are shown in Tables 3 and 4 below.
The terms in the first table correspond to mesoscopic
subsets and the corresponding terms in the second ta-
ble are microscopic subsets of the earlier ones.

(2) By location: Websites and intranets are logi-
cally consistent ways of partitioning the web. Thus,
they are obvious candidates for TUCs. We look at in-
tranets and particular websites to see what structures
are represented at this level. We are interested in what
features, if any, distinguish these two cases from each
other and indeed from the web at large. Our observa-
tions here would help determine what special process-
ing, if any, would be relevant in the context of an in-
tranet. To this end, we have created TUCs consisting
of the IBM intranet, denoted INTRANET henceforth,
and 100 websites denoted SUBDOMAINI, ..., SUBDO-
MAIN100, each containing at least 10K pages.

(3) By geographic location: Geography is becoming
increasingly evident in the web, with the growth in
the number of local and small businesses represented
on the web (restaurants, shows, housing information,
and other local services) as well as local information
websites such as sidewalk.com. We expect the recur-
rence of similar information structures at this level.
We hope to understand more detail about overlay-
ing geospatial information on top of the web. We
have created a subset of the web based on geographic
cues, denoted GEO henceforth. The subset contains
pages that have geographical references (addresses,
telephone numbers, and ZIP codes) to locations in the

western United States. This was constructed through
the use of databases for latitude—longitude information
for telephone number area codes, prefixes, and postal
zipcodes. Any page that contained a zipcode or tele-
phone number was included if the reference was within
a region bounded by Denver (Colorado) on the east
and Nilolski (Alaska) on the west, Vancouver (British
Columbia) on the north, and Brownsville (Texas) on
the south.

To complete our study, we also define some addi-
tional graphs derived from the web. Strictly speaking,
these are not TUCs. However, they can be derived
from the web in a fairly straightforward manner. As
it turns out, some of our most interesting observations
about the web relates to the interplay between struc-
ture at the level of the TUCs and structure at the
following levels. We define them now:

(4) Random collections of websites: We look at
all the nodes that belong in a random collection of
websites. We do this in order to understand the fine
grained structure of the SCC, which is the navigational
backbone of the web. Unlike random subgraphs of the
web, random collections of websites exhibit interesting
behaviors. First, the local arcs within a website ensure
that there is fairly tight connectivity within each web-
site. This allows the small number of additional inter-
site arcs to be far more useful than would be the case in
a random subgraph. We have generated 7 such disjoint
subsets. We denote these STREAML, ..., STREAMT.

(5) Hostgraph: The hostgraph contains a sin-
gle node corresponding to each website (for instance
www.ibm.comis represented by a single node), and has
an arc between two nodes, whenever there is a page in
the first website that points to a page in the second.
The hostgraph is not a subgraph of the web graph, but
it can be derived from it in a fairly straightforward
manner, and more importantly, is relevant to under-
standing the structure of linkage at levels higher than
that of a web page. In the following discussion, this
graph is denoted by HOSTGRAPH.

3.2 Parameters studied

We study the following parameters:

(1) Indegree distributions: Recall that the indegree
of a node is the number of arcs whose destination
is that node. We consider the distribution of inde-
gree over all nodes in a particular graph, and consider
properties of that distribution. A sequence of papers
[7, 3, 28, 13] has provided convincing evidence that
indegree distributions follow the power law, and that
the parameter a (called indegree exponent) is reliably
around 2.1 (with little variation). We study the inde-
gree distributions for the TUCs and the random col-
lections.



(2) Outdegree distributions: Outdegree distribu-
tions seem to not follow the power law at small values.
However, larger values do seem to follow such a distri-
bution, resulting in a “drooping head” of the log-log
plot as observed in earlier work. A good characteriza-
tion of outdegrees for the web graph has not yet been
offered, especially one that would satisfactorily explain
the drooping head.

(3) Connected component sizes: (cf. Section 2) We
consider the size of the largest strongly-connected com-
ponent, the second-largest, third-largest and so forth
as a distribution, for each graph of interest. We con-
sider similar statistics for the sizes of weakly-connected
components. Specifically, we will show that they obey
power laws at all scales, and study the exponents of
the power law (called SCC/WCC exponent). We also
report the ratio of the size of the largest strongly-
connected component to the size of the largest weakly-
connected component. For the significance of these
parameters, we refer the reader to [13], and note that
the location of a web page in the connected component
decomposition crucially determines the reachability of
this page (often related to its popularity).

(4) Bipartite cores: Bipartite cores are graph-
theoretic signatures of community structure on the
web. A K;; bipartite core is a set of i + j pages
such that each of ¢ pages contains a hyperlink to all of
the remaining j pages. We pick representative values
of i and j, and focus on Kj7’s, which are sets of 5
“fan” nodes, each of which points to the same set of
7 “center” nodes. Since computing the exact number
of K5 7’s is a complex subgraph enumeration problem
that is intractable using known techniques, we instead
estimate the number of node-disjoint K5 r’s for each
graph of interest. To perform this estimation, we use
the techniques of [28, 29]. The number of commu-
nities (cores) is an estimate of community structure
with the TUC. The K57 factor is the relative size of
the community to the size of the nodes that partici-
pate in K5 7’s in it. The higher the factor, the less one
can view the TUC as a single well defined community.

(5) URL compressibility and namespace utilization:
The URL namespace can be viewed as a tree, with the
root node being represented by the null string. Each
node of the tree corresponds to a URL prefix (say
www.foo.com) with all URLs that share that prefix,
(e.g, www.foo.com/bar and www.foo.com/rab) being
in the subtree subtended at that node. For each sub-
graph and each value d of the depth, we study the fol-
lowing distribution: for each s, the number of depth-d
nodes whose subtrees have s nodes. We will see that
these follow the power law. Following conventional
source coding theory, it follows that this skew in the
population distributions of the URL namespace can
be used to design improved compression algorithms
for URLs. The details of this analysis are beyond the
scope of the present paper.

3.3 Experimental infrastructure

We performed these experiments on a small cluster of
Linux machines with about 1TB of disk space. We
created a number of data sets from two original sets of
pages. The first set consists of about 500K pages from
the IBM intranet. We treat this data as a single entity,
mainly for purposes of comparison with the external
web. The second set consists of 60M pages from the
web at large, crawled in Oct. 2000. These 60M pages
represent approximately 750GB of content. The crawl-
ing algorithm obeyed all politeness rules, crawling no
site more often than once per second. Therefore, while
we had collected 750GB of content (crawling about
1.3M sites) no more than 12K pages had been crawled
from any one site.

4 Results and interpretation

Our results are shown in the following tables and fig-
ures. Though we have an enormous amount of data,
we try to present as little as possible, while convey-
ing the main thoughts. All the graphs here refer to
node-induced subgraphs and the arcs refer to the arcs
in the induced subgraph. Our tables show the param-
eters in terms of the graphs while our figures show the
consistency of the parameters across different graphs,
indicating a fractal nature.

Table 1 shows all the parameters for the STREAM1
through STREAM7. The additional parameter, expan-
sion factor, refers to the fraction of hyperlinks that
point to nodes in the same collection to the total num-
ber of hyperlinks. As we can see, the numbers are
quite consistent with earlier work. For instance, the
indegree exponent is -2.1, the SCC exponent is around
-2.15, and the WCC exponent is around -2.3. As we
can see, the ratios of IN, OUT, SCC with respect to
WCC are also consistent with earlier work.

Table 2 shows the results for the three special
graphs: INTRANET, HOSTGRAPH, and GEO. The ex-
pansion factor for the INTRANET is 2.158 while the
indegree exponent is very different from that of other
graphs. The WCC exponent for HOSTGRAPH is not
meaningful since there is a single component that is
99.4% of the entire graph.

Table 3 shows the results for single keyword queries.
The graphs in the category are in few hundreds of
thousands. Table 4 shows the results for double key-
word graphs. The graphs in this category are in few
tens of thousands. A specific interesting case is the
large K5 factor for the keyword MATH, which prob-
ably arises since pages containing the term MATH is
probably not a TUC since it is far too general.

Table 5 shows the averaged results for the 100 sites
SUBDOMAIN], ..., SUBDOMAIN100.

Next, we point out the consistency of the param-
eters across various graphs. For ease of presentation,



we picked a small set of TUCs and plotted the distri-
bution of indegree, outdegree, SCC, WCC on a log-
log scale (see Figures in Appendix). Figure 1 shows
the indegree and outdegree distributions for five of
the TUCs. As we see, the shape of plots are strik-
ingly alike. As observed in earlier studies, a droop-
ing initial segment is observed in the case of outde-
gree. Figure 2 shows the component distributions for
the graphs. Again, the similarity of shapes is strik-
ing. The URL tree sizes also show remarkable self-
similarity that exists both across graphs and within
each graph across different depths (see full version at
http://www.almaden.ibm.com/cs/k53/frac.ps).

4.1 Discussion

We now mention four interesting observations based
on the experimental results. Following [13] (see also
Section 2), we say that a slice of the web graph has
the bow-tie structure if the SCC, IN, and OUT, each
accounts for a large constant fraction of the nodes in
the slice.

(1) Almost all nodes (82%) of the HOSTGRAPH are
contained in a giant SCC (Table 2). This is not sur-
prising, since one would expect most websites to have
at least one page that belongs to the SCC.

(2) The (microscopic) local graphs of SUBDOMAINT,
..., SUBDOMAIN100, look surprisingly like the web
graph (see Table 5. Each has an SCC flanked by IN
and OUT sets that, for the most part, have sizes pro-
portional to their size on the web as a whole, about
40% for the SCC, for instance. Large websites seemed
to have a more clearly defined bow-tie structure than
the smaller, less developed ones.

(3) Keyword based TUCs corresponding to KEY-
WORDI, ..., KEYWORD10 (see Tables 3 and 4) exhibit
similar phenomena; the differences often owe to the
extent to which a community has a well-established
presence on the web. For example, it appears from
our results that the GOLF is a well-established web
community, while RESTAURANT is a newer developing
community on the web. While the mathematics com-
munity had a clearly defined bow-tie structure, the less
developed geometry community lacked one.

(4) Considering STREAM], ..., STREAMY7, we find
the surprising fact (Table 1) that the union of a ran-
dom collection of TUCs contains a large SCC. This
shows that the SCC of the web is very resilient to
node deletion and does not depend on the existence of
large taxonomies (such as yahoo.com) for its connec-
tivity. Indeed, as we remarked earlier, each of these
streams contain very few arcs which are not entirely
local to the website. However, the bow-tie structure
of each website allows the few intersite arcs to be far
more valuable than one would expect.

4.2 Analysis and summary

The foregoing observation about the SCC of the
streams, while surprising, is actually a direct conse-
quence of the following theorem about random arcs in
graphs with large strongly connected components.

Theorem 1. Consider the union of n/k graphs on k
nodes each, where each graph has a strongly connected
component of size ak. Suppose we add dn arcs whose
heads and tails are uniformly distributed among the
n nodes, then provided that d is at least of the order
1/(ak), with high probability, we will have a strongly
connected component of size of the order of an on the
n-node union of the n/k graphs.

The proof of Theorem 1 is fairly straightforward. On
the web, n is about 1 billion, &, the size of each TUC,
is about 1 million (in reality, there are more than 1K
TUCs that overlap, which only makes the connectivity
stronger), and a is about 1/4. Theorem 1 suggests that
the addition of a mere few thousand arcs scattered
uniformly throughout the billion nodes will result in
very strong connectivity properties of the web graph!

Indeed, the evolving copying models for the web
graph proposed in [27] incorporates a uniformly ran-
dom component together with a copying stochastic
process. Our observation above is, in fact, lends
considerable support to the legitimacy of this model.
These observations, together with Theorem 1, imply a
very interesting detailed structure for the SCC of the
webgraph.

The web comprises several thematically unified
clusters (TUCs). The common theme within a TUC
is one of many diverse possibilities. Each TUC has
a bow-tie structure that consists of a large strongly
connected component (SCC). The SCCs correspond-
ing to the TUCs are integrated, via the navigational
backbone, into a global SCC for the entire web. The
extent to which each TUC exhibits the bow-tie struc-
ture and the extent to which its SCC is integrated into
the web as a whole indicate how well-established the
corresponding community is.

An illustration of this characterization of the web is
shown in Figure 3.

5 Conclusions

In this paper, we have examined the structure of the
web in greater detail than earlier efforts. The primary
contribution is two-fold. First, the web exhibits self-
similarity in several senses, at several scales. The self-
similarity is pervasive, in that it holds for a number of
parameters. It is also robust, in that it holds irrespec-
tive of which particular method is used to carve out
small subgraphs of the web. Second, these smaller the-
matically unified subgraphs are organized into the web
graph in an interesting manner. In particular, the local
strongly connected components are integrated into the
global SCC. The connectivity of the global SCC is very



Nodes Arcs Expansion Indeg. Outdegz. SCC WCC WCC SCC/ 1IN/ OUT/ Kszr
x10%  x108 factor exp. exp. exp. exp. x105 WCC WCC WCC factor
6.55 46.8 2.06 -2.07 -2.12 -2.16  -2.32 4.69 0.24 0.23 0.23 47.2
6.47 45.7 2.06 -2.08 -2.24 -2.14  -2.28 4.60 0.23 0.19 0.24 50.1
6.38 48.1 2.05 -2.06 -2.15 -2.15  -2.24 4.47 0.24 0.20 0.23 49.5
6.84 50.0 2.04 -2.12 -2.30 -2.14 -2.27 4.86 0.23 0.21 0.23 43.5
6.83 48.2 2.06 -2.08 -2.27 -2.11  -2.29 4.90 0.24 0.20 0.23 454
6.77 49.3 2.01 -2.10 -2.32 -2.11 -2.25 4.78 0.23 0.20 0.24 45.3
6.23 43.5 2.03 -2.13 -2.19 -2.15 -2.27 4.31 0.22 0.19 0.23 46.9

Table 1: Results for STREAM1 through STREAMT.
Subgraph | Nodes Arcs Indeg. SCC WCC WCC SCC/ IN/ OUT/ Ksq
x10®  x10®°  exp. exp. exp. x10® WCC WCC WCC factor
INTRANET 285.5 1910.7 -2.31 -2.53 -2.83 207.7 0.20 0.48 0.17 56.13
HOSTGRAPH | 663.7 1127.9 -2.34  -2.81 659.9 0.82 0.04 0.13 72.64
GEO 410.7 14779 -2.51 -2.69 -2.27 2.1 0.87 0.03 0.10 139.9
Table 2: Results for graphs: INTRANET, HOSTGRAPH, and GEO.

Subgraph Nodes Arcs Indeg. SCC WCC WCC SCC/ Kspy

x10° x10? exp. exp.  exp. x10*  WCC factor

BASEBALL 336.5 34444 -2.09 -2.16 -2.30 33.2 0.12 55.85

GOLF 696.8 8512.8 -2.06 -2.06 -2.18 47.3 0.15 44.48

MATH 831.7 3787.8 -2.85 -2.66 -2.73 50.2 0.28 148.7

Mpr3 497.3  7233.2 -2.20  -239  -2.20 47.6 0.28 57.18

RESTAURANT | 623.0 3592.5 -2.33 -2.47 -2.28 7.96 0.31 115.2

Table 3: Results for single keyword query graphs KEYWORD1 through KEYWORDS.

Subgraph Nodes Arcs WCC SCC/ Ksr

x10®  x10® x10®° WOCC factor

BASEBALL YANKEES 24.0 320.0 3813 0.73 45.82
GoLF TIGER WoODS 14.9 62.8 1501 0.20 83.02
MATH GEOMETRY 44.0 86.9 1903 0.27 407.52
Mp3 NAPSTER 27.1 321.4 1775 0.36 35.19
RESTAURANT SUSHI 74 23.7 167 0.72 132.14

Table 4: Results for double keyword query graphs KEYWORD6 through KEYWORD10.

Nodes Arcs WCC SCC/ Ksp
x102 x103 x10®>  WCC factor
7.17 108.42 7.08 0.42 22.97

Table 5: Averaged results for SUBDOMAIN1 through SUBDOMAIN100.




resilient to random and large scale deletion of websites.
This indicates a great degree of fault-tolerance on the
web, in that there are several alternate paths between
nodes in the SCC.

While our understanding of the web as a graph is
greater now than ever before, there are many lacunae
in our current understanding of the graph-theoretic
structure of the web. One of the principal holes deals
with developing stochastic models for the evolution of
the web graph (extending [27]) that are rich enough to
explain the fractal behavior of the web in such amaz-
ingly diverse ways and contexts.

Acknowledgments

Thanks to Raymie Stata and Janet Wiener (Compaq
SRC) for some of the code. The second author thanks
Xin Guo for her encouragement to this project.

References

[1] W. Aiello, F. Chung, and L. Lu. A random graph
model for massive graphs. Proc. 32nd STOC, pp. 171-
180, 2000.

[2] L. Adamic and B. Huberman. The nature of markets
on the world wide web. Quarterly J. of Economic
Commerce, 1(1):5-12, 2000.

[3] L. Adamic and B. Huberman. Scaling behavior on
the world wide web. Technical comment on [7].

[4] M. Adler and M. Mitzenmacher. Towards compressing
web graphs. Proc. IEEE Data Compression Confer-
ence, 2001, To appear.

[5] A. Arasu, A. Tomkins, and J. Tomlin. Pagerank com-
putation and the structure of the web: Experiments
and algorithms. Manuscript, 2001.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.
Wiener. The Lorel query language for semistructured
data. Intl. J. on Digit. Libr., 1(1):68-88, 1997.

[7] A. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(509), 1999.

[8] G. Arocena, A. Mendelzon, and G. Mihaila.
Applications of a web query language. Proc.
6th WWW/Computer Networks, 29(8-13):1305-1315,
1997.

[9] P. Barford, A. Bestavros, A. Bradley, and M. E. Crov-
ella. Changes in web client access patterns: Charac-
teristics and caching implications. World Wide Web,
Special Issue on Characterization and Performance
Evaluation, 2:15-28, 1999.

[10] K. Bharat and M. Henzinger. Improved algorithms for
topic distillation in hyperlinked environments. Proc.
21st SIGIR, pp. 104-111, 1998.

[11] B. Bollobas. Random Graphs. Academic Press, 1985.

[12] S. Brin and L. Page. The anatomy of a large
scale hypertextual web search engine. Proc. 7ih
WWW/Computer Networks, 30(1-7):107-117, 1998.

[13] A. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, S. Rajagopalan, R. Stata, A. Tomkins, and J.
Wiener. Graph Structure in the web. Proc. 9th
WWW/Computer Networks, 33(1-6):309-320, 2000.

[14] R. A. Botafogo and B. Shneiderman. Identifying ag-
gregates in hypertext structures. Proc. 3rd Hypertext,
pp. 63-74, 1991.

[15] J. Carriere and R. Kazman. WebQuery: Searching
and visualizing the web through connectivity. Proc.
6th WWW, 29(8-13):1257-1267, 1997.

[16] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P.
Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and as-
sociated text. Proc. 7th WWW/Computer Networks,
30(1-7):65-74, 1998.

[17] S. Chakrabarti, B. Dom, D. Gibson, S. Ravi Kumar,
P. Raghavan, S. Rajagopalan, and A. Tomkins. Ex-
periments in topic distillation. SIGIR Workshop on
Hypertext Information Retrieval on the Web, 1998.

[18] S. Chakrabarti, M. van den Berg, and B. Dom. Fo-
cused crawling: A new approach to topic-specific web
resource discovery. Proc. 8th WWW/Computer Net-
works, 31(11-16):1623-1640, 1999.

[19] S. Chakrabarti, D. Gibson, and K. McCurley. Surf-
ing the web backwards. Proc. 8th WWW/Computer
Networks, 31(11-16):1679-1693, 1999.

[20] S. Deerwester, S. Dumais, G. Furnas, T. Landauer,
and R. Harshman. Indexing by latent semantic anal-
ysis. J. ASIS, 41(6):391-407, 1990.

[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power law relationships of the internet topology. Proc.
ACM SIGCOMM, 251-262, 1999.

[22] S. Glassman. A caching relay for the world wide web.
Proc. 1st WWW/Computer Networks, 27(2):165-173,
1994.

[23] F. Harary. Graph Theory. Addison Wesley, 1975.

[24] B. Hill. A simple approach to inference about the tail
of a distribution. Ann. of Stat., 3(5):1163-1174, 1975.

[25] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose.
Strong regularities in world wide web surfing. Science,
280:95-97, 1998.

[26] J. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604-632, 2000.

[27] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivaku-
mar, A. Tomkins, and E. Upfal. Stochastic models for
the web graph. Proc. 41st FOCS, pp. 57-65, 2000.

[28] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. Trawling the web for cyber communi-
ties. Proc 8th WWW/Computer Networks, 31(11-
16):1481-1493, 1999.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. Extracting large scale knowledge bases from
the web. Proc. VLDB, pp. 639-650, 1999.

[30] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. On semi-automated taxonomy construction.
Proc. 4th WebDB, 2001.

[31] http://linkage.rockefeller.edu/wli/zipf/.

[32] R. M. Lukose and B. Huberman. Surfing as a real
option. Proc. 1st Intl. Conf. Information and Compu-
tation Economies, 1998.

[33] C. Martindale and A. K. Konopka. Oligonucleotide
frequencies in DNA follow a Yule distribution. Com-
puter & Chemistry, 20(1):35-38, 1996.

[34] A. Mendelzon, G. Mihaila, and T. Milo. Querying
the world wide web. J. Digital Libraries, 1(1): 68-88,
1997.

[35] A. Mendelzon and P. Wood. Finding regular sim-
ple paths in graph databases. SIAM J. Comp.,
24(6):1235-1258, 1995.



1e+07

T
‘StreamLindegree’
Golf indegree
‘Geo.western.indegree’
‘IBM.intranet.indegree’
1e+06 F + 4

O% %+

K

100000 ¥ i ]
s

10000 |

1000

1V s Ll mim m o mas E
1 10 100 1000 10000 100000

1le+06

T
Stream1.outdegree’
Golf.outdegree
‘Geo.western.outdegree’
IBM.intranet.outdegree’

tig
100000 ¢ Fry, |
i,

oxx+

10000

1000

100

1 10 100 1000

Figure 1: Indegree and outdegree distributions for
STREAM1, GOLF, GEO, INTRANET, SUBDOMAINI.

[36] C. Papadimitriou, P. Raghavan, H. Tamaki, and S.
Vempala. Latent semantic indexing: A probabilistic
analysis. JCSS, 61(2):217-235, 2000.

[37] E. M. Palmer. Graphical Evolution. John Wiley, 1985.

[38] V. Pareto. Cours d’economie politique. Rouge, Lau-
sanne et Paris, 1897.

[39] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s
ear: Extracting usable structures from the web. Proc.
ACM SIGCHI, pp. 118-125, 1996.

[40] J. Pitkow and P. Pirolli. Life, death, and lawfulness
on the electronic frontier. Proc. ACM SIGCHI, pp.
383-390, 1997.

[41] H. A. Simon. On a class of skew distribution functions.
Biometrika, 42:425-440, 1955.

[42] E. Spertus and L. Stein. A hyperlink-based recom-
mender system written in Squeal. CIKM Workshop
on Web Information and Data Management, 1998.

[43] E. Spertus. ParaSite: Mining structural information
on the web. Proc. 6th WWW/Computer Networks,
29(8-13):1205-1215, 1997.

[44] H. D. White and K. W. McCain. Bibliometrics. Ann.
Rev. Info. Sci. and Technology, pp. 119-186, 1989.

[45] G. U. Yule. Statistical Study of Literary Vocabulary.
Cambridge University Press, 1944.

[46] G. K. Zipf. Human Behavior and the Principle of
Least Effort. Addison-Wesley, 1949.

1le+07

T

'Stream1.scc’
Golf.scc

'Geo.western.scc’

‘IBM.intranet.scc’
1le+06 |

oxx+

100000 g+ E|

10000 + E|
+

1000

1 10 100 1000 10000

1le+07

T

'Stream1.wcc'
Golf.wec!

'Geo.western.wcc'

'IBM.intranet.wcc’
1le+06 |

oxx+

100000 E|

10000 - F4 B

1000

1000 10000

Figure 2: SCC and WCC distributions for STREAMI,
GOLF, GEO, INTRANET, SUBDOMAIN].

Figure 3: TUCs connected by the navigational back-
bone inside the SCC of the web graph.



