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PROJECT SUPPORT
Thanks for your feedback on projects! To provide 
additional project support:
• TAs have been assigned as project mentors – we will release 

the list on Ed tonight
• Transparent grading rubric for final project – we will release 

by end of Friday (3/10)
• Project OH: Serina’s OH (Thu 10am-12pm) and Hamed’s OH 

(Fri 10am-12pm) are now dedicated to project questions
• If you can’t make their OH, you can still post on Ed or contact 

your TA mentor!
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Graphs 
A graph G = (A, S) is a set V of n nodes connected by 
edges. Each node has scalar attributes, e.g. atom type for 
molecules.

§ A: an 𝑛×𝑛 adjacency matrix.
§ S ∈ 𝑅!×#: scalar features.
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Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large 
graphs." Advances in neural information processing systems 30 (2017).
Joshi, Chaitanya K., et al. "On the expressive power of geometric graph neural networks."



Message Passing Neural Nets
§ Node features are updated from iteration t to 

t+1 via learnable permutation invariant 
neighborhood aggregate AGG and update 
UPD:
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Graph Neural Networks
§ Message passing updates node features 

using local aggregation
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Normal Graph Neural Networks
§ Advanced GNN layers make pooling over 

node features, which are then used to 
make a graph-level prediction.
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Molecular Graphs
§ Molecules can be represented as a graph 𝐺 with node 

features 𝑠$ and edge features 𝑎$%.
§ Node features: atom type, atom charges…
§ Edge features: valence bond type…
§ However, sometimes, we also know the 3D positions 𝑥!, 

which is actually more informative
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Simm, Gregor NC, and José Miguel Hernández-Lobato. "A generative 
model for molecular distance geometry." ICML 2020



More Geometric Graphs
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Geometric Graphs
§ A geometric graph G = (A, S, X) is a graph where each 

node is embedded in d-dimensional Euclidean space:

§ A: an 𝑛×𝑛 adjacency matrix.
§ S ∈ 𝑅!×#: scalar features.
§ X ∈ 𝑅!×&: tensor features, e.g., coordinates.
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Broad Impact on Sciences
§ Supervised Learning: Prediction

§ Properties prediction
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Broad Impact on Sciences
§ Supervised Learning: Structured Prediction

§ Molecular Simulation
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Broad Impact on Sciences
§ Generative Models

§ Drug or material design
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What’s the obstacle?
§ To describe geometric graphs 

we use coordinate systems
§ (1) and (2) use different coordinate 

systems to describe the same
molecular geometry.

§ We can describe the transform 
between coordinate systems 
with symmetries of Euclidean 
space 
§ 3D rotations, translations

Minkai Xu, Stanford University 17

(1)

(2)

Thomas, Nathaniel, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai 
Kohlhoff, and Patrick Riley. "Tensor field networks: Rotation-and translation-
equivariant neural networks for 3d point clouds."



Physical Symmetry Groups
§ To describe geometric graphs 

we use coordinate systems
§ (1) and (2) use different coordinate 

systems to describe the same
molecular geometry.

§ We can describe the transform 
between coordinate systems 
with symmetries of Euclidean 
space 
§ 3D rotations, translations

§ However, output of traditional 
GNNs given (1) and (2) as 
completely different!
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(1)

(2)



Symmetry of Inputs
§ However, output of traditional 

GNNs given (1) and (2) as 
completely different!

§ We want our GNNs can see (1) 
and (2) as the same system 
though described differently...

§ i.e., we want design Geometric 
GNNs aware of symmetry!

Minkai Xu, Stanford University 19

(1)

(2)



Symmetry of Outputs
§ Beyond input space, output can also be 

tensors
§ Example: simulation (force prediction)

§ Given a molecule and a rotated copy, predicted 
forces should be the same up to rotation

§ (i.e., Predicted forces are equivariant to rotation)

Minkai Xu, Stanford University 20



Equivariance
§ Formal definition of Equivariance: 

a function 𝐹: 𝑋 → 𝑌 is equivariant if for a 
transformation 𝜌 it satisfies:

§ Example: 𝜌', 𝜌( are same rotation transformation

Minkai Xu, Stanford University 21

𝐹 ∘ 𝜌" 𝑥 = 𝜌# ∘ 𝐹(𝑥)



Illustration: 3D Rotation Equivariance
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𝐹 ∘ 𝜌 𝑥 = 𝜌 ∘ 𝐹 𝑥
The equation says that applying 
the 𝜌 on the input has the same 
effect as applying it to the 
output.

𝜌

𝜌

𝐹 𝐹

A GIF illustrating the rotation equivariance of atomic forces. 
Two red arrows stand for forces acting on atoms, which rotate together with the 
molecule.

Visual explanation of the 
equivariance

Shi, Chence, et al. "Learning gradient fields for molecular conformation 
generation." International Conference on Machine Learning. PMLR, 2021.



Invariance
§ Definition of Invariance: 

a function 𝐹: 𝑋 → 𝑌 is 
invariant if for a 
transformation 𝜌 it 
satisfies:

§ Note: invariance is a special case 
of equivariance where 𝜌" is 
defined as no transformation.

Minkai Xu, Stanford University 23

𝐹 ∘ 𝜌" 𝑥 = 𝐹(𝑥)
✓Yes, Prof. Leskovec.

✓Still Prof. Leskovec!

After roto-translation…

𝐹 ∘ 𝜌" 𝑥 = 𝜌# ∘ 𝐹(𝑥)



Invariance & Equivariance
§ For geometric graphs, we consider 3D Special 

Euclidean (SE(3)) symmetries, e.g.:
§ structure x -> energy E : invariant scalars
§ structure x -> force v: equivariant tensors

rotation equivariant and translation invariant

Minkai Xu, Stanford University 24

(1)

(2)



Invariance & Equivariance
§ The analogy in image domain...

§ Classification: invariant label
§ Segmentation: equivariant pixel coordinates

Minkai Xu, Stanford University 25

https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf



Summarization

Minkai Xu, Stanford University 26

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit. 
Morbi ultricies, justo ac 
viverra euismod, justo odio 
eleifend dolor, a imperdiet 
quam nibh finibus mauris. 
Morbi lobortis a lorem id 
dapibus. Interdum et 
malesuada fames...

Text

Recurrent
The meaning of a 
current word 
depends on what 
came before.

Images

Convolutional
Pixels closer 
together are more 
important to each 
other.

Graph

Graph
Data on nodes 
interacts via edges

Geometric 
Graph in 3D

Data type

Type of
neural 
network

Spatial translation 
symmetry 

Time translation 
symmetry 

Permutation
symmetry 

Euclidean
Geometric data 
“means” the same thing 
even when we use 
different coordinate 
systems
Euclidean
symmetry 

Neural networks are specially designed for different data types 
in order to make use of special features (symmetries) of the data.
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Handle Symmetry
§ For ML models without 

handling symmetry:
expensive data 
augmentation
create more training data by 
augmenting original data to include 
all possible symmetries (rotations)

§ Alternative: design 
Geometric GNNs!

Minkai Xu, Stanford University 28

training without rotational symmetry

training with symmetry



Advantage
§ You can substantially shrink the space of 

functions you need to optimize over.
§ This means you need less data to constrain 

your function.

All learnable functions

All learnable 
functions 
constrained 
by your data.

Functions you actually 
wanted to learn.

All learnable 
geometirc 
functions

Minkai Xu, Stanford University 29



Geometric GNNs
Two classes of Geometric GNNs:
§ Invariant GNNs for learning invariant scalar features
§ Equivariant GNNs for learning equivariant tensor features. 

Minkai Xu, Stanford University 30

Invariant functions vs. Equivariant functions

(1)

(2)



Molecular Dynamics Simulations
§ For simulating the stable structure of 

molecular geometries: computationally 
costly quantum mechanical calculations
§ Energy 𝐸 𝑟), . . . , 𝑟!
§ Forces 

Minkai Xu, Stanford University 31

𝑟: atomic	coordinates



Molecular Dynamics Simulations
§ Usage: forces can be used to optimize the 

structure by 𝑋% + 𝑭 → 𝑋%&' (simulation)

Minkai Xu, Stanford University 32

𝐹: forces acting on all atoms 
for optimizing the structures



For ML Models…
§ Problem Definition
§ Inputs: 

molecular graphs with atom types 𝑋 = 𝑥) , . . . , 𝑥!
∈ 𝑅& and positions 𝑅 = 𝑟), . . . , 𝑟! ∈ 𝑅*

§ Predict: 
the molecular total energy 𝐸(𝑟), . . . , 𝑟!) (invariant)
forces F = (𝑓), . . . , 𝑓!) acting on each atom (equivariant).
§ Forces are partial derivatives of energy function.

Minkai Xu, Stanford University 33



Invariant GNNs: SchNet
§ SchNet updates the node 

embeddings at the 𝑙+, layer 
by message passing layers

§ A weight matrix 𝑊 is determined 
by the relative position from 
neighbor atoms 𝑗 to 𝑖

§ This kernel matrix 𝑊:ℝ!
→ ℝ"×" then controls interaction 
from neighbor atoms by 𝑥$ ⋅ 𝑊

§ All the neighbor messages are 
aggregated by ∑$ 𝑥$ ⋅ 𝑊

Minkai Xu, Stanford University 34

Schütt, Kristof T., et al. "Schnet–a deep learning architecture for molecules 
and materials." The Journal of Chemical Physics 148.24 (2018): 241722.

𝑟%$ → 𝑊

𝑟%$ → 𝑊
𝑟%$ → 𝑊

𝑥!:	node	embeddings	at	l	layer
𝑟: atomic	coordinates



Invariant GNNs: SchNet
§ SchNet updates the node 

embeddings at the 𝑙+, layer 
by message passing layers
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Schütt, Kristof T., et al. "Schnet–a deep learning architecture for molecules 
and materials." The Journal of Chemical Physics 148.24 (2018): 241722.

𝑟%$ → 𝑊

𝑟%$ → 𝑊
𝑟%$ → 𝑊

𝑥!:	node	embeddings	at	l	layer
𝑟: atomic	coordinates



Invariant GNNs: SchNet
§ SchNet makes 𝑊 invariant 

by scalarizing relative 
positions 𝑟$% with relative 
distances 𝑑$% = 𝑟$% :
§ 𝑟%$ are invariant to rotations 

and translations 
§ => each message passing layer 

weight 𝑊 is invariant

Minkai Xu, Stanford University 36

𝑑%$ → 𝑊

𝑑%$ → 𝑊
𝑑%$ → 𝑊

𝑥!:	node	embeddings	at	l	layer
𝑟: atomic	coordinates



invariant GNNs: SchNet
§ SchNet makes 𝑊 invariant 

by scalarizing relative 
positions 𝑟$% with relative 
distances 𝑑$% = 𝑟$% :
§ 𝑟%$ are invariant to rotations 

and translations 
§ => each message passing layer 

weight 𝑊 is invariant
§ => aggregated node 

embeddings ∑$ 𝑥$ ⋅ 𝑊 is invariant
§ => therefore, node embeddings 

are invariant!

Minkai Xu, Stanford University 37

𝑑%$ → 𝑊

𝑑%$ → 𝑊
𝑑%$ → 𝑊

𝑥!:	node	embeddings	at	l	layer
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invariant GNNs: SchNet
§ SchNet makes 𝑊 invariant 

by scalarizing relative 
positions 𝑟$% with relative 
distances 𝑑$% = 𝑟$% :
§ Implementation details:

Since 𝑑%$ is 1-dimensional, we 
need to expand to higher (300) 
dimension (better for training)

§ Radial Basis Functions (RBF):

𝜇& are chosen every 0.1𝐴 within 
0𝐴 ≤ 𝜇& ≤ 30𝐴 and 𝛾 = 10𝐴

Minkai Xu, Stanford University 38

𝑑%$ → 𝑊

𝑑%$ → 𝑊
𝑑%$ → 𝑊

𝑥!:	node	embeddings	at	l	layer
𝑟: atomic	coordinates



invariant GNNs: SchNet
§ RBF:
§ Dense: MLPs
§ Softplus: activation functions

Minkai Xu, Stanford University 39

𝑥!:	node	embeddings	at	l	layer
𝑟: atomic	coordinates

𝑑%$ → 𝑊

𝑑%$ → 𝑊
𝑑%$ → 𝑊



invariant GNNs: SchNet
§ cfconv module: aggregate 

atomic pairwise message 
passings

§ Aggregated messages are 
then used for updating 
node embeddings through 
interaction module
§ Atom-wise layers

Typical feedforward MLPs

§ Residual connections

Minkai Xu, Stanford University 40

𝑊: weights in NNs
𝑏: bias in NNs
𝑣: update of 𝑥



invariant GNNs: SchNet
§ Stack multiple interaction and atom-wise layers
§ Predict single scalar value for each atom
§ Sum all scalars together as energy prediction

Minkai Xu, Stanford University 41



invariant GNNs: SchNet
§ Forces can be computed 

by calculating gradient 
of the energy output w.r.t 
coordinates input

§ Training objective (least 
square errors between 
predicted energy 𝐸 and 
forces 𝐹 and ground 
truth)

Minkai Xu, Stanford University 42



Improved SchNet: DimeNet
§ Chemically, potential energy can 

be modeled as sum of four parts

§ SchNet only depends on atom types 
and pairwise distance, ignore many 
information like angles and torsions

§ DimeNet resolves this problem by
§ Do message interaction based on 

① distance between atoms 
② angle between bonds 
(both of which are invariant to 
translation and rotation!)

Minkai Xu, Stanford University 43

𝑟%$ → 𝑊

𝑟%$ → 𝑊
𝑟%$ → 𝑊

Gasteiger, Johannes, Janek Groß, and Stephan Günnemann. 
"Directional message passing for molecular graphs." ICLR (2020).



Expressiveness
§ Distances/Angles are incomplete descriptors 

for uniquely identifying geometric structure.

§ This pair of geometric graphs cannot be 
distinguished by identical scalar quantities.

§ But they can be distinguished based on 
directional or geometric information

Minkai Xu, Stanford University 44



Limitations of invariant GNNs
§ Why not limit yourself to invariant functions? 
§ You have to guarantee that your input features already 

contain any necessary equivariant interactions.

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR

Minkai Xu, Stanford University 45



Equivariant GNNs: PaiNN
§ PaiNN still take learnable 

weights 𝑊 conditioned on the 
relative distance 𝑟$% to control 
message passing

§ However, differently, in PaiNN
each node has two features 
(both scalar features 𝑠$ and 
vector features 𝑣$)

Minkai Xu, Stanford University 46

Schütt, Kristof, Oliver Unke, and Michael Gastegger. "Equivariant message passing for the prediction of 
tensorial properties and molecular spectra." International Conference on Machine Learning. PMLR, 2021.
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Equivariant GNNs: PaiNN
§ The two features 

(scalar features 𝑠$ and vector 
features 𝑣$) are
§ initialed by: 

atom embeddings and 0 tensors
§ updated by: residual updates

Minkai Xu, Stanford University 47

𝑠, Δ𝑠: scalar 
features and 
its updates

𝑣, Δ𝑣: tensor 
features and 
its updates

𝜙,𝑊: networks

𝑠! = 𝑠! + Δ𝑠!
𝑣! = 𝑣! + Δ𝑣!



Equivariant GNNs: PaiNN
§ scalar features 𝑠$ update 

for atom 𝑖:

§ 𝜙;,𝑊; are neural networks

§ Similar to SchNet
§ invariant weights 𝑊; by 𝑟<=
§ => invariant messages 𝜙;
§ => passing invariant messages 𝜙; ⋅ 𝑊;
§ => invariant sum Agg over messages

Minkai Xu, Stanford University 48

𝑑%$ → 𝑊

𝑑%$ → 𝑊
𝑑%$ → 𝑊



Equivariant GNNs: PaiNN
§ vector features 𝑣$ update:

§ 𝜙,𝑊 are all neural networks

§ Different to SchNet
§ invariant weights 𝑊; by 𝑟<=
§ => invariant messages 𝜙;
§ => passing tensor messages 𝜙; ⋅ 𝑊; ⋅ 𝑟!#
§ => weighted sum of relative directions 𝑟!#, 

thus keeping the equivariant properties!

Minkai Xu, Stanford University 49

𝑑"# → 𝑊

𝑑"# → 𝑊
𝑑"# → 𝑊

𝑑"# → 𝑊

𝑑"# → 𝑊
𝑑"# → 𝑊



Equivariant GNNs: PaiNN
§ By stacking multiple PaiNN layers…
§ vector features 𝑣$ after final layer are tensor features 

equivariant w.r.t to input coordinates
§ are therefore can be directly used as force prediction

Minkai Xu, Stanford University 50

Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. "E(n) equivariant graph 
neural networks." International conference on machine learning. PMLR, 2021.



Summary of Geometric GNNs
§ Geometric GNNs need to capture sufficient 

information of geometries
§ SchNet (and DimeNet) achieve invariance by 

only learning over scalarized invariant features 
(distances, angles, …)

§ PaiNN designs both scalar and tensor features, 
where the tensor features are equivariant with 
input coordinates

§ Applications: equivariant output can be used 
as force prediction for molecular simulation

Minkai Xu, Stanford University 51



Outline
§ Geometric Graphs
§ Geometric Graph NNs

§ Invariant GNNs
§ Equivariant GNNs

§ Geometric Generative Models
§ Geometric Diffusion Models
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Broad Applications
§ Accelerate scientific simulation

§ Molecule/Protein Design
§ Biomolecule structure prediction
§ Protein-molecule interaction
§ Molecular simulation

Minkai Xu, Stanford University 53

https://generatebiomedicines.com/chroma



Molecular Conformation 
Generation

§ Generate stable conformations from molecular graph
§ Molecular graph 𝓖: 2D atom-bond graph
§ Conformation 𝑪: atomic 3D coordinates
§ One molecule can have multiple possible conformations, 

which follows a distribution conditioned on temperature 𝑇

Minkai Xu, Stanford University 54

𝓖
𝑪 ∝ exp(−𝐸 𝑪 /𝑇)

Boltzmann distribution

𝑝 𝑪 𝒢



Challenges
§ Generative models learns the data distribution
§ Similar to the learning algorithm, generation process 

should also capture the physical symmetry groups, i.e., 
equivariant to roto-translation

Minkai Xu, Stanford University 55

𝑪 ∝ exp(−𝐸 𝑪 /𝑇)

Boltzmann distribution



Background: Diffusion Models
§ Define forward diffusion process to destroy 

data into different noisy-level samples
§ Learn reverse models to generate by denoising

Minkai Xu, Stanford University 56

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models. 
" Advances in Neural Information Processing Systems 33 (2020): 6840-6851.



Background: Diffusion Models

§ Training:
§ Sample random noise 𝜖
§ Destroy the data by 𝑥@ = 𝜇@𝑥 + 𝜎@𝜖 at every 𝑡

§ 𝜇@, 𝜎@ , 𝑡 are pre defined
§ Learn models 𝑓A(𝑥@, 𝑡) to predict the noise 𝜖

§ Sampling:
§ Sample 𝑥B ∼ 𝑁(0, 𝐼) from Gaussian random noise
§ Generate 𝑥 by repeatedly predicting and subtracting the noise
§ Recover clean data

Minkai Xu, Stanford University 57

𝑡:	timestep
𝜇: means to shrink data
σ: variance as noise level

higher 𝑡 -> smaller 𝜇 and 
larger σ

𝜇$ = 1, 𝜎$ = 0
𝜇% = 0, 𝜎% = 1



Background: Diffusion Models
§ Then the learned reverse model can be used to 

generate data by progressively denoising

Minkai Xu, Stanford University 58

Song, Yang, and Stefano Ermon. "Generative modeling by estimating gradients of the 
data distribution." Advances in neural information processing systems 32 (2019).



Background: Diffusion Models

Minkai Xu, Stanford University 59

Song, Yang, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 
"Score-based generative modeling through stochastic differential equations." ICLR (2021) Best Paper



Geometric Diffusion
§ We bring the idea into molecule generation!
§ Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. 

"GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation." 
In International Conference on Learning Representations. 2021.

§ Top 50 most cited AI papers in 2022 

Minkai Xu, Stanford University 60

https://www.zeta-alpha.com/post/must-read-the-100-most-cited-ai-papers-in-
2022



Geometric Diffusion
§ GeoDiff (Geometric Diffusion)

§ Diffusion process gradually perturb the molecular geometry 
until the conformation is destroyed. 

§ Symmetrically, we want to learn the reverse generative 
process to progressively refined a random noisy geometry

Minkai Xu, Stanford University 61

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. 
"GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation." 
In International Conference on Learning Representations. 2021.



Geometric Diffusion

§ Diffusion process gradually perturb the molecular geometry 
until the conformation is destroyed. 

§ Symmetrically, we want to learn the reverse generative 
process to progressively refined a random noisy geometry

§ Wait! This is kind of similar to molecular simulation!

Minkai Xu, Stanford University 62

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. 
"GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation." 
In International Conference on Learning Representations. 2021.



Geometric Diffusion
§ To optimize structures to better states:

§ Simulation: learns to predict force
§ Diffusion models: learns to predict noise

Minkai Xu, Stanford University 63



Geometric Diffusion
§ Insight! 

Similar to force, denoising 
direction should be 
equivariant with the 
molecular coordinates!

§ Solution:
Parameterizing the 
denoising network with 
equivariant GNN J

Minkai Xu, Stanford University 64



Illustration: 3D Rotation Equivariance

Minkai Xu, Stanford University 65

𝐹 ∘ 𝜌 𝑥 = 𝜌 ∘ 𝐹 𝑥
The equation says that applying 
the 𝜌 on the input has the same 
effect as applying it to the 
output.

𝜌

𝜌

𝐹 𝐹

A GIF illustrating the rotation equivariance of atomic forces. 
Two red arrows stand for forces acting on atoms, which rotate together with the 
molecule.

Visual explanation of the 
equivariance



GeoDiff: Sampling
§ Sampling by an equivariant denoising procedure:

Minkai Xu, Stanford University 66



Most Recent Progress

§ Illuminating protein space with a 
programmable generative model
John Ingraham, Max Baranov, Zak 
Costello, Vincent Frappier, et al

§ Broadly applicable and accurate 
protein design by integrating 
structure prediction networks 
and diffusion generative models
Joseph L Watson, David Juergens, 
Nathaniel R Bennett, Brian L Trippe, 
Jason Yim, Helen E Eisenach, 
Woody Ahern, et al

Minkai Xu, Stanford University 67



Summary of Geometric Generative Models

§ Geometric generative models should also capture the 
roto-translational symmetries

§ GeoDiff build the connection between molecular 
simulations and molecular diffusion generations

§ GeoDiff learns equivariant GNNs to conduct an 
equivariant denoising diffusion process

§ Broad impact for real world drug discovery challenges 
(drug design, protein design, drug-protein interaction)

Minkai Xu, Stanford University 68



Summary
§ Geometric Graphs
§ Geometric Graph NNs

§ Invariant GNNs
§ Equivariant GNNs

§ Geometric Generative Models
§ Geometric Diffusion Models

Minkai Xu, Stanford University 69



Future Directions
§ More expressive geometric GNNs
§ More principled geometric generative models
§ More impactful downstream applications

Minkai Xu, Stanford University 70
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Thank you!
And any question?


