Stanford CS224W:
GNNs for
Recommender Systems




ANNOUNCEMENTS

Colab 3 due Thursday (2/23)

Upcoming: Group OH for HW3 (due 3/2)
e Serina + Tina OH: Tomorrow Wednesday 2/22, 2-3pm
e Recording will be posted

 Format has been re-designed based on your feedback
(TA's will go more in depth on how to think through
the problems)

CS224W: Machine
Jure Leskovec, Stanford Unive

http://cs224w.stanford.edu



http://web.stanford.edu/class/cs224w/oh.html

ANNOUNCEMENTS

* Thank you for the feedback! e
e Overall positive )
* Areas for improvement
e Office hours structure
* Homework
 We plan to re-design OH
e HW3 is lighter-weight

g
&

https://tinyurl.com/graphs-feedback

CS224W: Machine Leat
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



http://web.stanford.edu/class/cs224w/oh.html
https://tinyurl.com/graphs-feedback

Stanford CS224W:
Recommender Systemes:
Task and Evaluation




Preliminary of Recommendation

Information Explosion in the era of Internet

10K+ movies in Netflix

12M products in Amazon
70M+ music tracks in Spotify
10B+ videos on YouTube

200B+ pins (images) in Pinterest
Personalized recommendation (i.e., suggesting
a small number of interesting items for each
user) is critical for users to effectively explore

the content of their interest.
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Recommender System as a Graph

Recommender system can Item
User
be naturally modeled as a
bipartite graph
A graph with two node types:
users and items.

Edges connect users and items

Indicates user-item interaction
(e.g., click, purchase, review etc.)

Often associated with timestamp
(timing of the interaction).
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Recommendation Task

Given
Past user-item interactions

Task

Predict new items each user will
interact in the future.

Can be cast as link prediction
problem.

Predict new user-item interaction
edges given the past edges.

Foru € U,v € V, we need to get
a real-valued score [ (u, v).
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Modern Recommender System

Problem: Cannot evaluate f(u, v) for every

useru

—item v pair.
Solution: 2-stage process:

Example f(u, v):
fw,v) =z, -z,

Candidate generation (cheap, fast)

Ranking (slow, accurate)

T
.

Embeddings of
millions of items

~
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Top-K Recommendation

For each user, we recommend K items.

For recommendation to be effective, K needs to
be much smaller than the total number of items
(up to billions)
K is typically in the order of 10— 100.

The goal is to include as many positive items

as possiblein the top-K recommended items.

Positive items = Items that the user will interact
with in the future.

Evaluation metric: Recall @K (defined next)
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Evaluation Metric: Recall@K (1)

For each user u,

Let P, be a set of positive items the user will interact
in the future.

Let R, be a set of items recommended by the model.
In top-K recommendation, |R,| = K.
ltems that the user has already interacted are excluded.

Positive items Recommended

items
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Evaluation Metric: Recall@K (2)

Recall @K foruseruis|P,NR,|/|P,l.

Higher value indicates more positive items are
recommended in top-K for user u.

Recommended

Positive items Pu N Ru o

The final Recall @K is computed by averaging
the recall values across all users.
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Notation

Notation:
U: A set of all users
V: A set of all items

E: A set of observed user-item interactions
E = {(u,v) |u € U,v € V,u interacted with v}
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Score Function

To get the top-K items, Jsert 'tec;n ZO

we need a score function 0 score(;vo)

for user-item interaction: o v,
Foru € U,v € V, we need o 30
to get a real-valued scalar . —2.30 &
score(u, v). 00 v,
K items with the largest O 07
scores for a given user u O v,
(excluding already- o) Aeady,
interacted items) are then O V5 interacted

item
For K = 2, recommended items
for user u would be {v,, v3}.
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Embedding-Based Models

We consider embedding- User U tem V
based models for scoring user- O
item interactions. —

For each user u € U, let u € R?
be its D-dimensional embedding.

O ==
Foreachitem v € V,letv € R” X" _
be its D-dimensional embedding. fe(;;;.‘&

Let f5(-,): RP x RP - R be a == O
parametrized function. O ===

Then,|score(u, v) = fu(u, v)
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Training Objective

Embedding-based models have three kinds of
parameters:
An encoder to generate user embeddings {u},,
An encoder to generate item embeddings {v},ecy

Score function fy(:,*)
Training objective: Optimize the model
parameters to achieve high recall @K on seen
(i.e., training) user-item interactions

We hope this objective would lead to high
recall @K on unseen (i.e., test) interactions.
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Surrogate Loss Functions

The original training objective (recall@K) is
not differentiable.

Cannot apply efficient gradient-based optimization.
Two surrogate loss functions are widely-used
to enable efficient gradient-based
optimization.

Binary loss

Bayesian Personalized Ranking (BPR) loss
Surrogate losses are differentiable and should
align well with the original training objective.
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Binary Loss (1)

Define positive/negative edges
A set of positive edges E (i.e., observed/training
user-item interactions)
A set of negative edges E ., = {(u,v) | (u,v) €
E,ueUvel}

Define sigmoid function o(x) = -

1+exp(—x)

Maps real-valued scores into binary likelihood
scores, i.e., in the range of [0,1]. " —
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Binary Loss (2)

Binary loss: Binary classification of
positive/negative edges using o (fg(u, v)):

_l—; z 1og(a(f9(u,v)))—|E | z log (1 — o (fp(u, v)))
(u,0)€EE 18T (W) EE peg

(. /U J
Y Y

During training, these terms can be approximated
using mini-batch of positive/negative edges

Binary loss pushes the scores of positive edges
higher than those of negative edges.

This aligns with the training recall metric since
positive edges need to be recalled.
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Issue with Binary Loss (1)

2/21

/2023

Issue: In the binary loss, the scores of ALL
positive edges are pushed higher than those
of ALL negative edges.

This would unnecessarily penalize model
predictions even if the training recall metric is

perfect.

Why? (example in the next slide)
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Issue with Binary Loss (2)

Let’s consider the simplest case:
Two users, two items

Metric: Recall@1.

A model assigns the score for every

user-item pair (as shown in the right).
Training Recall@1 is 1.0 (perfect
score), because v, (resp. v4) is
correctly recommended to u,

(resp. uq).

However, the binary loss would
still penalize the model prediction
because the negative (u,v,)
edge gets the higher score than
the positive edge (u Vg).

¢, Stanfo d C5224VV Machine Lea
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—— Positive edge

Negative edge
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Issue with Binary Loss (3)

Key insight: The binary loss is non-personalized
in the sense that the positive/negative edges
are considered across ALL users at once.

However, the recall metric is inherently
personalized (defined for each user).

The non-personalized binary loss is overly-stringent
for the personalized recall metric.
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Desirable Surrogate Loss

Lesson learned: Surrogate loss
function should be defined in
a personalized manner.

For each user, we want the

scores of positive items to be
higher than those of the

negative items

We do not care about the score
ordering across users.

Bayesian Personalized
Ranking (BPR) loss achieves

-1.0
4.0

Observed
Interaction

Unobserved
interaction
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Loss Function: BPR Loss (1)

Bayesian Personalized Ranking (BPR) loss is a
personalized surrogate loss that aligns better
with the recall@K metric.

For each user u™ € U, define the rooted ltem
User 0o

positive/negative edges as

Positive edges rooted at u”
E(w’) ={"v) | W', v) € E}
Negative edges rooted at u”

*\ — * *
Eneg(u ) ={@wv) | (w',v) € Eneg} o
Note: The term “Bayesian” is not essential to the loss definition. The original paper
[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts O ’
as a parameter regularization), which we omit here. O
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Loss Function: BPR Loss (2)

Training objective: For each user u*, we want the
scores of rooted positive edges E(u™) to be higher
than those of rooted negative edges E ., (u").

Aligns with the personalized nature of the recall metric.

BPR Loss for user u™:
Encouraged to be positive for each user
=positive edge score is higher than negative edge score
A

1

E("| - |E ’
| (’LL )l | neg(u )l (u*'vpos)EE(u*)(u*:vneg;Eneg(u*)
\

Loss(u*) =

p \
—log (O’ (fe(u*;vpos) — f@(u*'vneg)))

Y
Can be approximated using a mini-batch

Final BPR Loss: ﬁZu*eu Loss(u™)
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Loss Function: BPR Loss (3)

o o o o ltem
Mini-batch training for the BPR  yser o
loss: o .7

.. vaS

In each mini-batch, we sample a u* @<

subset of users U,ini © U. o'::-"-f-.

For each user u* € U,,ini, Wwe sample 0 Vnee
one positive item 1,5 and a set of o) E .
sampled negative items Vo = {vneg}, . O Vneg

The mini-batch loss is computed as o

1 1

Uninil Z Viegl ZV ~tog 9 (fo(u"vp0s) = fo(u" v1c5)))

mini neg ¥ neg

Average over users
in the mini-batch

2/21/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 26



Summary So Far

We have introduced

Recall@K as a metric for personalized
recommendation

Embedding-based models

Three kinds of parameters to learn
user encoder to generate user embeddings
item encoder to generate item embeddings
score function to predict the user-item interaction likelihood.

Surrogate loss functions to achieve the high recall
metric.

Embedding-based models have achieved SoTA
in recommender systems.

Why do they work so well?
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Why Embedding Models Work?

Underlying idea:

Collaborative filtering
Recommend items for a
user by collecting

preferences of many
other similar users.

Similar users tend to
prefer similar items.

Key question: How to
capture similarity
between users/items?
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O
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O
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Why Embedding Models Work?

Embedding-based models can capture
similarity of users/items!

2/21/2023

Low-dimensional embeddings cannot simply
memorize all user-item interaction data.

Embeddings are forced to capture similarity
between users/items to fit the data.

This allows the models to make effective prediction
on unseen user-item interactions.
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This Lecture: GNNs for Recsys

In this lecture, we teach two representative
GNN approaches for recommender systems.
(1) Neural Graph Collab. Filtering (NGCF) [wangetal.
(2) LightGCN [He et al. 2020] 2019

Improve the conventional collaborative filtering
models (i.e., shallow encoders) by explicitly modeling
graph structure using GNNs.

Assumes no user/item features.
PiNnSAGE [vinget al. 2018]

Use GNNs to generate high-quality embeddings by
simultaneously capturing rich node attributes (e.g.,
images) and the graph structure.
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Stanford CS224W:
Neural Graph
Collaborative Filtering




Conventional Collaborative Filtering

ltem
Conventional collaborative User

filtering model is based on
shallow encoders:

No user/item features.

Use shallow encoders for users
and items:

Foreveryu € Uandv € V, we
prepare shallow learnable
embeddings u,v € RP.

Score function for user u and

: - — T Learnable shallow
item v is f9 (u’ ‘D) = Zy Zy. user/item embeddings
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Limitations of Shallow Encoders

The model itself does not explicitly capture
graph structure

The graph structure is only implicitly captured in
the training objective.

Only the first-order graph structure (i.e.,
edges) is captured in the training objective.

High-order graph structure (e.g., K-hop paths
between two nodes) is not explicitly captured.
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We want a model that...

explicitly captures graph structure (beyond
implicitly through the training objective)
captures high-order graph structure (beyond the
first-order edge connectivity structure)

GNNs are a natural approach to achieve both!

Neural Graph Collaborative Filtering (NGCF) [wang et
al. 2019]

LightGCN [He et al. 2020]
A simplified and improved version of NGCF
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NGCF: Overview

Neural Graph Collaborative Filtering (NGCF)
explicitly incorporates high-order graph structure
when generating user/item embeddings.

Key idea: Use a GNN to generate graph-aware
user/item embeddings.

User tem User tem User Iteni
'l
: ]
: ]
: ]
]
Initial shallow embeddings Use a GNN to propagate NGCF’s graph-aware

(not graph-aware) embeddings embeddings
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NGCF Framework

° . . o It
Given: User-item bipartite graph. User o

NGCF framework:

Prepare shallow learnable embedding GNN
for each node.
Use multi-layer GNNs to propagate
embeddings along the bipartite graph.
High-order graph structure is captured.
Final embeddings are explicitly graph-
aware!
Two kinds of learnable params are

jointly learned:

Shallow user/item embeddings Shallow user/item

GNN’s parameters embeddings (learnable)
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Initial Node Embeddings

ltem

Set the shallow User
learnable embeddings as
the initial node features:

2/21/2023

For every user u € U, set

h;o) as the user’s shallow
embedding.

For everyitemv € V, set

h,(,o) as the item’s shallow
embedding.

Learnable shallow
user/item embeddings
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Neighbor Aggregation

. I
Iteratively update node User e

embeddings using
neighboring embeddings.

(k+1) (k) (k)
h = COMBINE| h ,AGGR( h )
v < v { “ }ueN(v) )

(k+1) (k) (k)
h = COMBINE | h ,AGGR( h )
u ( u { v }vEN(u) ) o

High-order graph structure is captured
through iterative neighbor aggregation.

o

Different architecture choices are possible for
AGGR and COMBINE.
« AGGR(-) can be MEAN(-) Updated user (o)

* COMBINE(x,y) can be embeddings  Updated item
ReLU(Linear(Concat(x,y))) embeddings
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Final Embeddings and Score Function

It
After K rounds of neighbor User -

aggregation, we get the final
user/item embeddings hELK)

I
and h,(,K). l
Forallu € U,v € V, we set |
U « hg{),v — hf)K). l
Score function is the inner
product |
score(u,v) = u'v ]

Final user/item
embeddings (graph-aware)
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NGCF: Summary

Conventional collaborative filtering uses
shallow user/item embeddings.

The embeddings do not explicitly model graph
structure.

The training objective does not model high-order
graph structure.

NGCF uses a GNN to propagate the shallow
embeddings.

The embeddings are explicitly aware of high-
order graph structure.
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Stanford CS224W:
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LightGCN: Motivation (1)

Recall: NGCF jointly learns two kinds of
parameters:

Shallow user/item embeddings

GNN'’s parameters
Observation: Shallow learnable embeddings are
already quite expressive.

They are learned for every (user/item) node.

Most of the parameter counts are in shallow embeddings
when N (#nodes) > D (embedding dimensionality)

Shallow embeddings: O(ND).
GNN: 0(D?).
The GNN parameters may not be so essential for
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LightGCN: Motivation (2)

Can we simplify the GNN used in NGCF (e.g.,
remove its learnable parameters)?

Answer: Yes!

Bonus: Simplification improves the
recommendation performance!

Overview of the idea:
Adjacency matrix for a bipartite graph
Matrix formulation of GCN

Simplification of GCN by removing non-linearity
Related: SGC for scalable GNN [Wu et al. 2019]
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Adjacency and Embedding Matrices

Adjacency matrix of a (undirected) bipartite graph.
Shallow embedding matrix.

: ltem
Adjacency matrix A Embedding g

User ltem matrix k

User R,,=1if User
user u emb.
Interacts
with item v,
R,,=0
ltem otIFlverwise. tem
emb.

\/

Shallow embeddlng
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Matrix Formulation of GCN

Recall: The diffusion matrix of

C&S. Matrix of node
Let D be the degree matrix of A. embeddings E

Define the normalized adjacency

original GCN, self-

matrix z dS connectionis omitted here.
A=D12AD~1/?

Let EX®) be the embedding matrix

at k-th layer. Each row stores

Each layer of GCN’s aggregation node embedding

can be written in|a mat“'lx form:
E(k'l'l) NelgR@Le[g g}ﬁ“‘?)w&l’ﬁ}l le linear transformation

24W: Machin p://cs224w.stanford.edu
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Simplifying GCN (1)

Simplify GCN by removing ReLU non-linearity:
E(k+1) — ’A’E(k) W(k) Original idea from

SGC [Wu et al. 2019]
The final node embedding matrix is given as

EXK) =4 |E(K_1)|W(K_1)
\
— ﬁ(ﬁE(K—Z)lw(K—Z))W(K—l)

= ;,21'(;21'( (;ZI;E((HW(O)) )W(K—Z))W(K—l)'

/ Set E as input
Aedding E© /
= AX E (W© ... w(K-D)
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Simplifying GCN (2)

Removing RelU significantly simplifies GCN!

EX = AKX ElwW

Diffusing node embeddings
along the graph

(similar to C&S that diffuses soft
labels along the graph)

w=wo..wk-1

Algorithm: Apply E <« A E for K times.

2/21/2023

Each matrix multiplication diffuses the current embeddings
to their one-hop neighbors.

Note: AX is dense and never gets materialized. Instead, the
above iterative matrix-vector product is used to compute
AXE.
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Multi-Scale Diffusion

We can consider multi-scale diffusion
aoE(O) + alE(l) -|— azE(Z) _|_ oo +aKE(K)

The above includes embeddings diffused at
multiple hop scales.

aoEO) = a,A°E(® acts as a self-connection (that
is omitted in the definition A)

The coefficients, «y, ..., &k, are hyper-parameters.

For simplicity, LightGCN uses the uniform

- . 1
coefficient, i.e., a; = 0 fork=0,.. K.
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LightGCN: Model Overview (1)

Given:
Adjacency matrix A

Initial learnable embedding matrix E

Adjacency matrix A Normalized Adj. matrix 4 EMbedding
User ltem (self-loop omitted) matrix E

User Normalize O User
l emb
ltem

ltem
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LightGCN: Model Overview (2)

lteratively diffuse embedding matrix E using A

Fork=0..K—1,

Embedding
i . . L~ i (k)
Emb_eddllrclgl Normalized Adj. matrix 4 m%)“_x E
matrix E¢+D (self-loop omitted) (E\") issetto FE)
User User
emb O emb
—
ltem ltem
emb O emb
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LightGCN: Model Overview (3)

Average the embedding matrices at
different scales.

Embedding
matrix Egpa E©) E@D E®)
r N
User User User User
emb 1 emb emb emb
— — + + oo+
K+ 1
ltem ltem Item ltem
emb emb emb emb
\_ J
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LightGCN: Model Overview (4)

Score function:

Use user/item vectors from E ¢, tO score user-
item interaction

Embedding
matrix Efipal

User Used as
emb - embedding -
Uz, uforueu Score

_ function

ltem Used as Z,T;Zv
emb — embedding _

UE vforveV

2/21/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 52



LightGCN: Intuition

Question: Why does the simple diffusion
propagation work well?

Answer: The diffusion directly encourages the
embeddings of similar users/items to be
similar.

Similar users share many common neighbors
(items) and are expected to have similar future
preferences (interact with similar items).
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LightGCN and GCN/C&S

The embedding propagation of LightGCN is

closely related to GCN/C&S.
Recall: GCN/C&S (neighbor aggregation part)
h(k+1) — 1 K h(k)

UEN (V) m\/d” Node degree
Self-loop is added in the neighborhood definition.
LightGCN uses the same equation except that
Self-loop is not added in the neighborhood definition.

Final embedding takes the average of embeddings
from all the layers: h,, = KLHZ’,;O h'
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LightGCN and MF: Comparison

Both LightGCN and shallow encoders learn a
unique embedding for each user/item.

The difference is that LightGCN uses the diffused
user/item embeddings for scoring.

LightGCN performs better than shallow encoders

but are also more computationally expensive due
to the additional diffusion step.

The final embedding of a user/item is obtained
by aggregating embeddings of its multi-hop
neighboring nodes.
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LightGCN: Summary

LightGCN simplifies NGCF by removing the
learnable parameters of GNNs.

Learnable parameters are all in the shallow
input node embeddings.

Diffusion propagation only involves matrix-vector
multiplication.

The simplification leads to better empirical
performance than NGCF.
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P2P recommendation
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PinSAGE: Pin Embedding

Unifies visual, textual, and graph information.

The largest industry deployment of a Graph
Convolutional Networks.

Huge Adoption across Pinterest

Works for fresh content and is available in
a few seconds after pin creation

Graph Convolutional Neural Networks for Web-Scale Recommender Systems



https://arxiv.org/pdf/1806.01973.pdf

Application: Pinterest

PinSage graph convolutional network:
Goal: Generate embeddings for nodes in a large-scale
Pinterest graph containing billions of objects
Key Idea: Borrow information from nearby nodes

E.g., bed rail Pin might look like a garden fence, but gates

Pin embeddings are essential to various tasks like
recommendation of Pins, classification, ranking
Services like “Related Pins”, “Search”, “Shopping”, “Ads”
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Harnessing Pins and Boards
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PINSAGE:Graph Neural Network

Graph has tens of billions of nodes and edges

Further resolves embeddings across the
Pinterest graph
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PInSAGE: Methods for Scaling Up

In addition to the GNN model, the PinSAGE
paper introduces several methods to scale the
GNN to a billion-scale recommender system
(e.g., Pinterest).

Shared negative samples across users in a mini-batch

Hard negative samples

Curriculum learning

Mini-batch training of GNNs on a large-graph (to be
covered in the future lecture)
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PINSAGE Model
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Training Data

1+B repin pairs:
From Related Pins surface

Capture semantic relatedness
Goal: Embed such pairs to be “neighbors”

Example positive training pairs (Q,X):




Shared Negative Samples (1)

Recall: In BPR loss, for each user u™ €
U .ini, We sample one positive item v

pos
and a set of sampled negative items

Vieg = {Vneg}-
Using more negative samples per user

improves the recommendation

performance, but is also expensive. :: .4
We need to generate |Upyipi| - [Vyegl et
embeddings for negative nodes. .

We need to apply |Upinil * [Vheg| GNN .
computational graphs (see right), which is N »

expensive.
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Shared Negative Samples (2)

Key idea: We can share the same set of negative
samples Vyeo = {Vneq} across all users U s in

the mini-batch.
This way, we only need to generate [Vheg| embeddings
for negative nodes.

This saves the node embedding generation
computation by a factor of |U,inil!

Empirically, the performance stays similar to the
non-shared negative sampling scheme.
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Hard Negatives (1)

Challenge: Industrial recsys needs to make
extremely fine-grained predictions.

#Total items: Up to billions.

#ltems to recommend for each user: 10 to 100.
Issue: The shared negative items are
randomly sampled from all items

Most of them are “easy negatives”, i.e., a model

does not need to be fine-grained to distinguish
them from positive items.

We need a way to sample “hard negatives” to
force the model to be fine-grained!
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PInSAGE: Curriculum Learning

Idea: use harder and harder negative samples
Include more and more hard negative
samples for each epoch

Sour&é pin Positive Easy negative Hard negative



Curriculum Learning

Key insight: It is effective to make the
negative samples gradually harder in the
process of training.

At n-th epoch, we add n — 1 hard negative
items.

#(Hard negatives) gradually increases in the
process of training.

The model will gradually learn to make finer-
grained predictions.

2/21/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu



Hard Negatives (2)

For each user node, t
nodes that are close (
user node in the grap

ne hard negatives are item
out not connected) to the

.

Hard negatives for user u € U are obtained as

follows:
Compute personalized

page rank (PPR) for user wu.

Sort items in the descending order of their PPR scores.

Randomly sample item nodes that are ranked high
but not too high, e.g., 2000th —5000t" .

ltem nodes that are close but not too close (connected) to

the user node.

The hard negatives for each user are used in
addition to the shared negatives.
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PInSAGE: Negative Sampling

(g, p) positive pairs are given but various

methods to sample negatives to form (g, p, n)
e Distance Weighted Sampling (Wu et al., 2017)

- Sample negatives so that query-negative distance
distribution is approx U[0.5, 1.4]

(9, p)

Negatives in
Batch

AN

e

Sampling ——»

(g, p, n)

14 — )
O\, A Uniform sampling
\
0.8 | Q Hard negative mining
i ‘ @o\ [T]Semi-hard negative mining
0.6 ‘ u\ { Distance weighted sampling
0.4 ‘ Q.
0.2 | %\%,%a'"
0! —04
0 0.5 1 1.5 2

Distance between examples

(b) Sample distribution for different strategies.


https://arxiv.org/abs/1706.07567

Fine-Grained Object Similarity

Visual only
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PINSAGE: Summary

PinSAGE uses GNNs to generate high-quality
user/item embeddings that capture both the
rich node attributes and graph structure.

The PInSAGE model is effectively trained using
sophisticated negative sampling strategies.
PinSAGE is successfully deployed at Pinterest,
a billion-scaleimage content recommendation
service.

Uncovered in this lecture: How to scale up GNNs to
large-scale graphs. Will be covered in a later lecture.
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