
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Homework 1 will be released after class
• Next Thursday (10/07): Colab 1 due, Colab 2 out

o Do Colab 0! It has almost everything you need to
complete Colab 1.

• Office hours: we’ve added Zoom links to our OH
calendar.
o See http://web.stanford.edu/class/cs224w/oh.html for

OH calendar, Zoom links, and QueueStatus link.

ANNOUNCEMENTS
• Colab 3 due Thursday (2/23)
• Upcoming: Group OH for HW3 (due 3/2)

• Serina + Tina OH: Tomorrow Wednesday 2/22, 2-3pm
• Recording will be posted
• Format has been re-designed based on your feedback

(TA's will go more in depth on how to think through
the problems)

http://web.stanford.edu/class/cs224w/oh.html

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Homework 1 will be released after class
• Next Thursday (10/07): Colab 1 due, Colab 2 out

o Do Colab 0! It has almost everything you need to
complete Colab 1.

• Office hours: we’ve added Zoom links to our OH
calendar.
o See http://web.stanford.edu/class/cs224w/oh.html for

OH calendar, Zoom links, and QueueStatus link.

ANNOUNCEMENTS
• Thank you for the feedback!

• Overall positive

• Areas for improvement

• Office hours structure

• Homework

• We plan to re-design OH

• HW3 is lighter-weight

https://tinyurl.com/graphs-feedback

http://web.stanford.edu/class/cs224w/oh.html
https://tinyurl.com/graphs-feedback

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Information Explosion in the era of Internet

▪ 10K+ movies in Netflix

▪ 12M products in Amazon

▪ 70M+ music tracks in Spotify

▪ 10B+ videos on YouTube

▪ 200B+ pins (images) in Pinterest

 Personalized recommendation (i.e., suggesting
a small number of interesting items for each
user) is critical for users to effectively explore
the content of their interest.

52/21/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Recommender system can
be naturally modeled as a
bipartite graph

▪ A graph with two node types:
users and items.

▪ Edges connect users and items

▪ Indicates user-item interaction
(e.g., click, purchase, review etc.)

▪ Often associated with timestamp
(timing of the interaction).

2/21/2023 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

 Given

▪ Past user-item interactions

 Task

▪ Predict new items each user will
interact in the future.

▪ Can be cast as link prediction
problem.

▪ Predict new user-item interaction
edges given the past edges.

▪ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need to get
a real-valued score 𝑓(𝑢, 𝑣).

2/21/2023 7Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

?

?

?
?

 Problem: Cannot evaluate 𝑓 𝑢, 𝑣 for every
user 𝑢 – item 𝑣 pair.

 Solution: 2-stage process:

▪ Candidate generation (cheap, fast)

▪ Ranking (slow, accurate)

2/21/2023 8Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embeddings of

millions of items

Search
Recommendations

User query
embedding

K-NN engine

1000 candidate
items

Score/rank items
via 𝑓 𝑢, 𝑣

Return top-10 items

by score 𝑓 𝑢, 𝑣

Example 𝑓 𝑢, 𝑣 :
𝑓 𝑢, 𝑣 = 𝑧𝑢 ⋅ 𝑧𝑣

 For each user, we recommend 𝐾 items.

▪ For recommendation to be effective, 𝑲 needs to
be much smaller than the total number of items
(up to billions)

▪ 𝐾 is typically in the order of 10—100.

 The goal is to include as many positive items
as possible in the top-𝐾 recommended items.

▪ Positive items = Items that the user will interact
with in the future.

 Evaluation metric: Recall@𝐾 (defined next)

2/21/2023 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 For each user 𝒖,

▪ Let 𝑃𝑢 be a set of positive items the user will interact
in the future.

▪ Let 𝑅𝑢 be a set of items recommended by the model.

▪ In top-𝐾 recommendation, |𝑅𝑢| = 𝐾.

▪ Items that the user has already interacted are excluded.

2/21/2023 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃𝑢 𝑅𝑢

Recommended

items
Positive items

 Recall@𝑲 for user 𝒖 is 𝑷𝒖 ∩ 𝑹𝒖 / 𝑷𝒖 .

▪ Higher value indicates more positive items are
recommended in top-𝐾 for user 𝑢.

 The final Recall@𝐾 is computed by averaging
the recall values across all users.

2/21/2023 11Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃𝑢 𝑅𝑢
Recommended

items
Positive items 𝑃𝑢 ∩ 𝑅𝑢

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Notation:

▪ 𝑼: A set of all users

▪ 𝑽: A set of all items

▪ 𝑬: A set of observed user-item interactions

▪𝑬 = 𝑢, 𝑣 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, 𝑢 interacted with 𝑣}

2/21/2023 13Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 To get the top-𝐾 items,
we need a score function
for user-item interaction:

▪ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need
to get a real-valued scalar
score(𝑢, 𝑣).

▪ 𝑲 items with the largest
scores for a given user 𝑢
(excluding already-
interacted items) are then
recommended.

2/21/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User 𝑼 Item 𝑽

𝑢

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

score 𝑢,𝑣0
= 2.0

3.0

4.0

−2.3

0.7

Already-

interacted
item

For 𝐾 = 2, recommended items

for user 𝑢 would be 𝑣1, 𝑣3 .

 We consider embedding-
based models for scoring user-
item interactions.

▪ For each user 𝑢 ∈ 𝑼, let 𝒖 ∈ ℝ𝐷

be its 𝐷-dimensional embedding.

▪ For each item 𝑣 ∈ 𝑽, let 𝒗 ∈ ℝ𝐷

be its 𝐷-dimensional embedding.

▪ Let 𝑓𝜃 ⋅,⋅ : ℝ𝐷 × ℝ𝐷 → ℝ be a
parametrized function.

▪ Then, score 𝑢, 𝑣 ≡ 𝑓𝜃 𝒖, 𝒗

2/21/2023 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User 𝑼 Item 𝑽

𝑓𝜃 𝒖,𝒗

𝑢

𝑣

𝒖

𝒗

 Embedding-based models have three kinds of
parameters:

▪ An encoder to generate user embeddings 𝒖 𝑢∈𝑈

▪ An encoder to generate item embeddings 𝒗 𝑣∈𝑉

▪ Score function 𝑓𝜃 ⋅,⋅

 Training objective: Optimize the model
parameters to achieve high recall@𝐾 on seen
(i.e., training) user-item interactions

▪ We hope this objective would lead to high
recall@𝐾 on unseen (i.e., test) interactions.

2/21/2023 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 The original training objective (recall@𝐾) is
not differentiable.

▪ Cannot apply efficient gradient-based optimization.

 Two surrogate loss functions are widely-used
to enable efficient gradient-based
optimization.

▪ Binary loss

▪ Bayesian Personalized Ranking (BPR) loss

 Surrogate losses are differentiable and should
align well with the original training objective.

2/21/2023 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Define positive/negative edges

▪ A set of positive edges 𝑬 (i.e., observed/training
user-item interactions)

▪ A set of negative edges 𝑬𝐧𝐞𝐠 = 𝑢, 𝑣 𝑢, 𝑣 ∉

𝐸, 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽}

 Define sigmoid function

▪ Maps real-valued scores into binary likelihood
scores, i.e., in the range of [0,1].

2/21/2023 18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Binary loss: Binary classification of
positive/negative edges using 𝜎(𝑓𝜃 𝒖,𝒗):

−
1

|𝑬|
෍

𝑢,𝑣 ∈𝑬

log 𝜎(𝑓𝜃 𝒖, 𝒗) −
1

|𝑬𝐧𝐞𝐠|
෍

𝑢,𝑣 ∈𝑬𝐧𝐞𝐠

log 1 − 𝜎(𝑓𝜃 𝒖, 𝒗)

 Binary loss pushes the scores of positive edges
higher than those of negative edges.

▪ This aligns with the training recall metric since
positive edges need to be recalled.

2/21/2023 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

During training, these terms can be approximated

using mini-batch of positive/negative edges

 Issue: In the binary loss, the scores of ALL
positive edges are pushed higher than those
of ALL negative edges.

 This would unnecessarily penalize model
predictions even if the training recall metric is
perfect.

 Why? (example in the next slide)

2/21/2023 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Let’s consider the simplest case:
▪ Two users, two items

▪ Metric: Recall@1.

▪ A model assigns the score for every
user-item pair (as shown in the right).

 Training Recall@1 is 1.0 (perfect
score), because 𝑣0 (resp. 𝑣1) is
correctly recommended to 𝑢0
(resp. 𝑢1).

 However, the binary loss would
still penalize the model prediction
because the negative 𝑢1 , 𝑣0
edge gets the higher score than
the positive edge 𝑢0 , 𝑣0 .

2/21/2023 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

1.0

-1.0

2.0

4.0

𝑢0

𝑢1

𝑣0

𝑣1

Positive edge

Negative edge

 Key insight: The binary loss is non-personalized
in the sense that the positive/negative edges
are considered across ALL users at once.

 However, the recall metric is inherently
personalized (defined for each user).

▪ The non-personalized binary loss is overly-stringent
for the personalized recall metric.

2/21/2023 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Lesson learned: Surrogate loss
function should be defined in
a personalized manner.

▪ For each user, we want the
scores of positive items to be
higher than those of the
negative items

▪ We do not care about the score
ordering across users.

 Bayesian Personalized
Ranking (BPR) loss achieves
this!2/21/2023 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

1.0

-1.0

2.0

4.0

𝑢0

𝑢1

𝑣0

𝑣1

Observed

interaction

Unobserved

interaction

 Bayesian Personalized Ranking (BPR) loss is a
personalized surrogate loss that aligns better
with the recall@K metric.

 For each user 𝑢∗ ∈ 𝑼, define the rooted
positive/negative edges as

▪ Positive edges rooted at 𝑢∗

▪ 𝑬 𝑢∗ ≡ 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝑬}

▪ Negative edges rooted at 𝑢∗

▪ 𝑬𝐧𝐞𝐠 𝑢
∗ ≡ 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝑬𝐧𝐞𝐠}

2/21/2023 24Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

𝑢∗

Note: The term “Bayesian” is not essential to the loss definition. The original paper

[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts

as a parameter regularization), which we omit here.

 Training objective: For each user 𝑢∗, we want the
scores of rooted positive edges 𝑬 𝑢∗ to be higher
than those of rooted negative edges 𝑬𝐧𝐞𝐠 𝑢∗ .

▪ Aligns with the personalized nature of the recall metric.

 BPR Loss for user 𝒖∗:

 Final BPR Loss:
1

|𝑼|
σ𝑢∗∈𝑼 Loss(𝑢

∗)

2/21/2023 25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Loss(𝑢∗) =
1

𝐸(𝑢∗) ⋅ |𝑬𝐧𝐞𝐠(𝑢∗)|
෍

(𝑢∗ ,𝑣pos)∈𝑬(𝑢
∗)

෍

𝑢∗ ,𝑣neg ∈𝑬𝐧𝐞𝐠(𝑢
∗)

−log 𝜎 𝑓𝜃 𝒖∗,𝒗pos − 𝑓𝜃 𝒖∗,𝒗neg

Encouraged to be positive for each user

=positive edge score is higher than negative edge score

Can be approximated using a mini-batch

 Mini-batch training for the BPR
loss:

▪ In each mini-batch, we sample a
subset of users 𝑼mini ⊂ 𝑼.

▪ For each user 𝑢∗ ∈ 𝑼mini , we sample
one positive item 𝑣pos and a set of

sampled negative items 𝑉neg = 𝑣neg .

▪ The mini-batch loss is computed as

2/21/2023 26Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

𝑢∗
𝑣pos

𝑣neg

𝑣neg

Average over users

in the mini-batch

1

|𝑼mini|
෍

𝑢∗∈𝑼mini

1

|𝑽neg|
෍

𝑣neg∈𝑽neg

−log 𝜎 𝑓𝜃 𝑢∗, 𝒗pos − 𝑓𝜃 𝑢∗, 𝒗neg

 We have introduced
▪ Recall@𝐾 as a metric for personalized

recommendation

▪ Embedding-based models
▪ Three kinds of parameters to learn
▪ user encoder to generate user embeddings

▪ item encoder to generate item embeddings

▪ score function to predict the user-item interaction likelihood.

▪ Surrogate loss functions to achieve the high recall
metric.

 Embedding-based models have achieved SoTA
in recommender systems.
▪ Why do they work so well?

2/21/2023 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Underlying idea:
Collaborative filtering

▪ Recommend items for a
user by collecting
preferences of many
other similar users.

▪ Similar users tend to
prefer similar items.

 Key question: How to
capture similarity
between users/items?

2/21/2023 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Items

interacted

by both

users 𝑢
and 𝑢’

𝑢

𝑢′
Similar

users

Likely edge

 Embedding-based models can capture
similarity of users/items!

▪ Low-dimensional embeddings cannot simply
memorize all user-item interaction data.

▪ Embeddings are forced to capture similarity
between users/items to fit the data.

▪ This allows the models to make effective prediction
on unseen user-item interactions.

2/21/2023 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 In this lecture, we teach two representative
GNN approaches for recommender systems.

 (1) Neural Graph Collab. Filtering (NGCF)
 (2) LightGCN [He et al. 2020]

▪ Improve the conventional collaborative filtering
models (i.e., shallow encoders) by explicitly modeling
graph structure using GNNs.

▪ Assumes no user/item features.
 PinSAGE [Ying et al. 2018]

▪ Use GNNs to generate high-quality embeddings by
simultaneously capturing rich node attributes (e.g.,
images) and the graph structure.

2/21/2023 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Wang et al.
2019]

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Conventional collaborative
filtering model is based on
shallow encoders:

▪ No user/item features.

▪ Use shallow encoders for users
and items:

▪ For every 𝑢 ∈ 𝑼 and 𝑣 ∈ 𝑽, we
prepare shallow learnable
embeddings 𝒖,𝒗 ∈ ℝ𝐷 .

▪ Score function for user 𝑢 and
item 𝑣 is 𝑓𝜃 𝒖, 𝒗 ≡ 𝒛𝒖

𝑇𝒛𝒗.

2/21/2023 32Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Learnable shallow

user/item embeddings

 The model itself does not explicitly capture
graph structure

▪ The graph structure is only implicitly captured in
the training objective.

 Only the first-order graph structure (i.e.,
edges) is captured in the training objective.

▪ High-order graph structure (e.g., 𝐾-hop paths
between two nodes) is not explicitly captured.

2/21/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 We want a model that…

▪ explicitly captures graph structure (beyond
implicitly through the training objective)

▪ captures high-order graph structure (beyond the
first-order edge connectivity structure)

 GNNs are a natural approach to achieve both!

▪ Neural Graph Collaborative Filtering (NGCF) [Wang et

al. 2019]

▪ LightGCN [He et al. 2020]

▪ A simplified and improved version of NGCF

2/21/2023 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Neural Graph Collaborative Filtering (NGCF)
explicitly incorporates high-order graph structure
when generating user/item embeddings.

 Key idea: Use a GNN to generate graph-aware
user/item embeddings.

2/21/2023 35Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Initial shallow embeddings

(not graph-aware)

User
Item

Use a GNN to propagate

embeddings

User
Item

NGCF’s graph-aware

embeddings

 Given: User-item bipartite graph.
 NGCF framework:

▪ Prepare shallow learnable embedding
for each node.

▪ Use multi-layer GNNs to propagate
embeddings along the bipartite graph.
▪ High-order graph structure is captured.

▪ Final embeddings are explicitly graph-
aware!

 Two kinds of learnable params are
jointly learned:

▪ Shallow user/item embeddings

▪ GNN’s parameters
2/21/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Shallow user/item

embeddings (learnable)

GNN

 Set the shallow
learnable embeddings as
the initial node features:

▪ For every user 𝑢 ∈ 𝑼, set

𝒉𝑢
(0)

as the user’s shallow
embedding.

▪ For every item 𝑣 ∈ 𝑽, set

𝒉𝑣
(0)

as the item’s shallow
embedding.

2/21/2023 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Learnable shallow

user/item embeddings

 Iteratively update node
embeddings using
neighboring embeddings.

2/21/2023 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Updated user

embeddings Updated item

embeddings

𝒉𝑣
(𝑘+1)

= COMBINE 𝒉𝑣
(𝑘)
, AGGR 𝒉𝑢

𝑘

𝑢∈𝑁(𝑣)

𝒉𝑢
(𝑘+1)

= COMBINE 𝒉𝑢
(𝑘)
, AGGR 𝒉𝑣

𝑘

𝑣∈𝑁(𝑢)

Different architecture choices are possible for
AGGR and COMBINE.
• AGGR(⋅) can be MEAN ⋅
• COMBINE(𝒙,𝒚) can be

ReLU Linear(Concat(𝒙,𝒚))

High-order graph structure is captured

through iterative neighbor aggregation.

 After 𝐾 rounds of neighbor
aggregation, we get the final

user/item embeddings

and .
 For all 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we set

 Score function is the inner
product

score 𝑢, 𝑣 = 𝒖𝑇𝒗

2/21/2023 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

Item

Final user/item

embeddings (graph-aware)

 Conventional collaborative filtering uses
shallow user/item embeddings.

▪ The embeddings do not explicitly model graph
structure.

▪ The training objective does not model high-order
graph structure.

 NGCF uses a GNN to propagate the shallow
embeddings.

▪ The embeddings are explicitly aware of high-
order graph structure.

2/21/2023 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Recall: NGCF jointly learns two kinds of
parameters:
▪ Shallow user/item embeddings

▪ GNN’s parameters

 Observation: Shallow learnable embeddings are
already quite expressive.
▪ They are learned for every (user/item) node.

▪ Most of the parameter counts are in shallow embeddings
when 𝑁 (#nodes) ≫ 𝐷 (embedding dimensionality)

▪ Shallow embeddings: 𝑂(𝑁𝐷).

▪ GNN: 𝑂(𝐷2).

▪ The GNN parameters may not be so essential for
performance.2/21/2023 42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Can we simplify the GNN used in NGCF (e.g.,
remove its learnable parameters)?

▪ Answer: Yes!

▪ Bonus: Simplification improves the
recommendation performance!

 Overview of the idea:

▪ Adjacency matrix for a bipartite graph

▪ Matrix formulation of GCN

▪ Simplification of GCN by removing non-linearity

▪ Related: SGC for scalable GNN [Wu et al. 2019]

2/21/2023 43Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Adjacency matrix of a (undirected) bipartite graph.
 Shallow embedding matrix.

2/21/2023 44Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Embedding

matrix 𝑬

Shallow embedding

User

User

Item

Item

Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹𝑇

𝑹𝑢𝑣 = 1 if

user 𝑢
interacts

with item 𝑣 ,

𝑹𝑢𝑣 = 0
otherwise.

User

emb.

Item

emb.

 Recall: The diffusion matrix of
C&S.

 Let 𝑫 be the degree matrix of 𝑨.
 Define the normalized adjacency

matrix ෩𝑨 as
෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 Let 𝑬(𝑘) be the embedding matrix
at 𝑘-th layer.

 Each layer of GCN’s aggregation
can be written in a matrix form:

𝑬(𝑘+1) = ReLU ෩𝑨𝑬(𝑘)𝑾(𝑘)
2/21/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Matrix of node

embeddings 𝑬(𝑘)

Each row stores
node embedding

Neighbor aggregation Learnable linear transformation

Note: Different from the

original GCN, self-
connection is omitted here.

 Simplify GCN by removing ReLU non-linearity:

𝑬(𝑘+1) = ෩𝑨𝑬(𝑘)𝑾(𝑘)

 The final node embedding matrix is given as
𝑬(𝐾) = ෩𝑨 𝑬(𝐾−1)𝑾(𝐾−1)

= ෩𝑨 ෩𝑨𝑬(𝐾−2)𝑾(𝐾−2) 𝑾(𝐾−1)

2/21/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

= ෩𝑨 ෩𝑨 ⋯ ෩𝑨𝑬(0)𝑾(0) ⋯ 𝑾(𝐾−2) 𝑾(𝐾−1)

= ෩𝑨𝐾 𝑬 𝑾(0)⋯𝑾(𝐾−1)

Set 𝑬 as input

embedding 𝑬(0)

Original idea from
SGC [Wu et al. 2019]

 Removing ReLU significantly simplifies GCN!

𝑬(𝐾) = ෩𝑨𝐾 𝑬𝑾

 Algorithm: Apply 𝑬 ← ෩𝑨 𝑬 for 𝐾 times.
▪ Each matrix multiplication diffuses the current embeddings

to their one-hop neighbors.

▪ Note: ෩𝑨𝐾 is dense and never gets materialized. Instead, the
above iterative matrix-vector product is used to compute
෩𝑨𝐾 𝑬.

2/21/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

𝑾 ≡𝑾(0)⋯𝑾(𝐾−1)

Diffusing node embeddings

along the graph

(similar to C&S that diffuses soft

labels along the graph)

 We can consider multi-scale diffusion
𝛼0𝐸

(0) +𝛼1𝐸
(1) + 𝛼2𝐸

(2) +⋯ +𝛼𝐾𝐸
(𝐾)

▪ The above includes embeddings diffused at
multiple hop scales.

▪ 𝛼0𝐸
(0) = 𝛼0෩𝑨

0𝐸(0) acts as a self-connection (that
is omitted in the definition ෩𝑨)

▪ The coefficients, 𝛼0 , … , 𝛼𝐾, are hyper-parameters.

 For simplicity, LightGCN uses the uniform

coefficient, i.e., for .

2/21/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Given:

▪ Adjacency matrix A

▪ Initial learnable embedding matrix 𝑬

2/21/2023 49Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embedding

matrix 𝑬

User

User

Item

Item

Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹𝑇

User

emb

Item

emb

Normalize 𝟎

𝟎

Normalized Adj. matrix ෩𝑨
(self-loop omitted)

Iteratively diffuse embedding matrix 𝑬 using ෩𝑨

2/21/2023 50Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embedding

matrix 𝑬(𝒌)

(𝑬(𝟎) is set to 𝑬)

User

emb

Item

emb

𝟎

𝟎

Normalized Adj. matrix ෩𝑨
(self-loop omitted)

⋅←

Embedding

matrix 𝑬(𝒌+𝟏)

User

emb

Item

emb

For 𝑘 = 0…𝐾 − 1,

 Average the embedding matrices at
different scales.

2/21/2023 51Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑬(0)

User

emb

Item

emb

←

Embedding

matrix 𝑬final

User

emb

Item

emb

𝑬(1) 𝑬(𝐾)

User

emb

Item

emb

+ +⋯+

User

emb

Item

emb

 Score function:

▪ Use user/item vectors from 𝑬final to score user-
item interaction

2/21/2023 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User

emb

Item

emb

Used as

embedding

𝒖 for 𝑢 ∈ 𝑼

Used as

embedding

𝒗 for 𝑣 ∈ 𝑽

𝑢

𝑣

𝒛𝒖

𝒛𝒗

Score

function

𝒛𝒖
𝑇𝒛𝒗

Embedding

matrix 𝑬final

 Question: Why does the simple diffusion
propagation work well?

 Answer: The diffusion directly encourages the
embeddings of similar users/items to be
similar.

▪ Similar users share many common neighbors
(items) and are expected to have similar future
preferences (interact with similar items).

2/21/2023 53Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 The embedding propagation of LightGCN is
closely related to GCN/C&S.

 Recall: GCN/C&S (neighbor aggregation part)

▪ Self-loop is added in the neighborhood definition.

 LightGCN uses the same equation except that

▪ Self-loop is not added in the neighborhood definition.

▪ Final embedding takes the average of embeddings

from all the layers: 𝒉𝑣 =
1

𝐾+1
σ𝑘=0
𝐾 𝒉𝑣

(𝑘)
.

2/21/2023 54Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node degree

 Both LightGCN and shallow encoders learn a
unique embedding for each user/item.

 The difference is that LightGCN uses the diffused
user/item embeddings for scoring.

 LightGCN performs better than shallow encoders
but are also more computationally expensive due
to the additional diffusion step.

▪ The final embedding of a user/item is obtained
by aggregating embeddings of its multi-hop
neighboring nodes.

2/21/2023 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 LightGCN simplifies NGCF by removing the
learnable parameters of GNNs.

 Learnable parameters are all in the shallow
input node embeddings.

▪ Diffusion propagation only involves matrix-vector
multiplication.

▪ The simplification leads to better empirical
performance than NGCF.

2/21/2023 56Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 P2P recommendation

❑ Unifies visual, textual, and graph information.

❑ The largest industry deployment of a Graph

Convolutional Networks.

❑ Huge Adoption across Pinterest

❑ Works for fresh content and is available in

a few seconds after pin creation

Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

https://arxiv.org/pdf/1806.01973.pdf

Under review as aconference paper at ICLR 2019

sum - multiset

>

mean - distribution max - set

>

Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over amultiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset agiven
aggregator isable to capture: sum captures thefull multiset, mean captures theproportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a1-layer perceptron σ ◦ W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by anon-linear activation function such asaReLU.
Such 1-layer mappings areexamples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X 1 6= X 2 so that for any linear mapping W ,P
x 2 X 1

ReLU (Wx) =
P

x 2 X 2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlikemodels using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x 2 X f (x) with mean or max-pooling as in GCN
and GraphSAGE?Mean and max-pooling aggregatorsarestill well-defined multiset functionsbecause
they arepermutation invariant. But, they arenot injective. Figure 2 ranks the three aggregators by
their representational power, and Figure3 illustratespairsof structures that themean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f (a) is the same across all nodes (for any
function f). When performing neighborhood aggregation, the mean or maximum over f (a) remains
f (a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes thestructures because 2 · f (a) and 3 · f (a) givedifferent values. The sameargument

6

PinSage graph convolutional network:
 Goal: Generate embeddings for nodes in a large-scale

Pinterest graph containing billions of objects
 Key Idea: Borrow information from nearby nodes
▪ E.g., bed rail Pin might look like a garden fence, but gates

and beds are rarely adjacent in the graph

▪ Pin embeddings are essential to various tasks like
recommendation of Pins, classification, ranking
▪ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

60Jure Leskovec (@jure), Stanford University

A

 Graph has tens of billions of nodes and edges

 Further resolves embeddings across the
Pinterest graph

boards

p
in

s

pins

boards ...

Aggregator

...

Agg. Agg. Agg.

 In addition to the GNN model, the PinSAGE
paper introduces several methods to scale the
GNN to a billion-scale recommender system
(e.g., Pinterest).

▪ Shared negative samples across users in a mini-batch

▪ Hard negative samples

▪ Curriculum learning

▪ Mini-batch training of GNNs on a large-graph (to be
covered in the future lecture)

2/21/2023 63Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

64

Task: Recommend related pins to users

Source pin

Learn node embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2 < 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧1 𝑧2

𝑑(𝑧1, 𝑧2)

1+B repin pairs:
▪From Related Pins surface
▪Capture semantic relatedness
▪Goal: Embed such pairs to be “neighbors”

Example positive training pairs (Q,X):

65

 Recall: In BPR loss, for each user 𝑢∗ ∈
𝑼mini, we sample one positive item 𝑣pos
and a set of sampled negative items

𝑽neg = 𝑣neg .

 Using more negative samples per user
improves the recommendation
performance, but is also expensive.

▪ We need to generate |𝑼mini | ⋅ |𝑽neg|

embeddings for negative nodes.

▪ We need to apply |𝑼mini| ⋅ |𝑽neg| GNN

computational graphs (see right), which is
expensive.

2/21/2023 66Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Key idea: We can share the same set of negative

samples 𝑽neg = 𝑣neg across all users 𝑼mini in

the mini-batch.
 This way, we only need to generate |𝑽neg| embeddings

for negative nodes.

▪ This saves the node embedding generation
computation by a factor of |𝑼𝐦𝐢𝐧𝐢|!

▪ Empirically, the performance stays similar to the
non-shared negative sampling scheme.

2/21/2023 67Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Challenge: Industrial recsys needs to make
extremely fine-grained predictions.

▪ #Total items: Up to billions.

▪ #Items to recommend for each user: 10 to 100.

 Issue: The shared negative items are
randomly sampled from all items

▪ Most of them are “easy negatives”, i.e., a model
does not need to be fine-grained to distinguish
them from positive items.

 We need a way to sample “hard negatives” to
force the model to be fine-grained!

2/21/2023 68Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Idea: use harder and harder negative samples
 Include more and more hard negative

samples for each epoch

Source pin Positive Hard negativeEasy negative

 Key insight: It is effective to make the
negative samples gradually harder in the
process of training.

 At 𝑛-th epoch, we add 𝑛 − 1 hard negative
items.

▪ #(Hard negatives) gradually increases in the
process of training.

 The model will gradually learn to make finer-
grained predictions.

2/21/2023 70Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 For each user node, the hard negatives are item
nodes that are close (but not connected) to the
user node in the graph.

 Hard negatives for user 𝑢 ∈ 𝑼 are obtained as
follows:
▪ Compute personalized page rank (PPR) for user 𝑢.

▪ Sort items in the descending order of their PPR scores.

▪ Randomly sample item nodes that are ranked high
but not too high, e.g., 2000th —5000th .
▪ Item nodes that are close but not too close (connected) to

the user node.

 The hard negatives for each user are used in
addition to the shared negatives.

2/21/2023 71Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

(q, p) positive pairs are given but various

methods to sample negatives to form (q, p, n)

● Distance Weighted Sampling (Wu et al., 2017)

- Sample negatives so that query-negative distance

distribution is approx U[0.5, 1.4]

(q, p)

Negatives in
Batch

Sampling (q, p, n)

https://arxiv.org/abs/1706.07567

Pixie

Graph-
SAGE

Query

PinSAGE

Visual only

Pixie

Graph-
SAGE

Query

 PinSAGE uses GNNs to generate high-quality
user/item embeddings that capture both the
rich node attributes and graph structure.

 The PinSAGE model is effectively trained using
sophisticated negative sampling strategies.

 PinSAGE is successfully deployed at Pinterest,
a billion-scale image content recommendation
service.

▪ Uncovered in this lecture: How to scale up GNNs to
large-scale graphs. Will be covered in a later lecture.

2/21/2023 75Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

