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ANNOUNCEMENTS
• Homework 1 will be released after class
• Next Thursday (10/07): Colab 1 due, Colab 2 out

o Do Colab 0! It has almost everything you need to 
complete Colab 1.

• Office hours: we’ve added Zoom links to our OH 
calendar. 
o See http://web.stanford.edu/class/cs224w/oh.html for 

OH calendar, Zoom links, and QueueStatus link.

ANNOUNCEMENTS
• Colab 3 due Thursday (2/23)
• Upcoming: Group OH for HW3 (due 3/2)

• Serina + Tina OH: Tomorrow Wednesday 2/22, 2-3pm
• Recording will be posted
• Format has been re-designed based on your feedback

(TA's will go more in depth on how to think through 
the problems)

http://web.stanford.edu/class/cs224w/oh.html
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ANNOUNCEMENTS
• Homework 1 will be released after class
• Next Thursday (10/07): Colab 1 due, Colab 2 out

o Do Colab 0! It has almost everything you need to 
complete Colab 1.

• Office hours: we’ve added Zoom links to our OH 
calendar. 
o See http://web.stanford.edu/class/cs224w/oh.html for 

OH calendar, Zoom links, and QueueStatus link.

ANNOUNCEMENTS
• Thank you for the feedback!

• Overall positive

• Areas for improvement

• Office hours structure

• Homework

• We plan to re-design OH

• HW3 is lighter-weight

https://tinyurl.com/graphs-feedback

http://web.stanford.edu/class/cs224w/oh.html
https://tinyurl.com/graphs-feedback
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 Information Explosion in the era of Internet

▪ 10K+ movies in Netflix

▪ 12M products in Amazon

▪ 70M+ music tracks in Spotify

▪ 10B+ videos on YouTube

▪ 200B+ pins (images) in Pinterest

 Personalized recommendation (i.e., suggesting 
a small number of interesting items for each 
user) is critical for users to effectively explore 
the content of their interest.
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 Recommender system can 
be naturally modeled as a 
bipartite graph

▪ A graph with two node types: 
users and items.

▪ Edges connect users and items

▪ Indicates user-item interaction 
(e.g., click, purchase, review etc.)

▪ Often associated with timestamp 
(timing of the interaction).
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 Given

▪ Past user-item interactions

 Task

▪ Predict new items each user will 
interact in the future.

▪ Can be cast as link prediction 
problem.

▪ Predict new user-item interaction 
edges given the past edges.

▪ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need to get 
a real-valued score 𝑓(𝑢, 𝑣).
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 Problem: Cannot evaluate 𝑓 𝑢, 𝑣 for every 
user 𝑢 – item 𝑣 pair.

 Solution: 2-stage process:

▪ Candidate generation (cheap, fast)

▪ Ranking (slow, accurate)
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embedding

K-NN engine
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items

Score/rank items 
via 𝑓 𝑢, 𝑣

Return top-10 items 

by score 𝑓 𝑢, 𝑣

Example 𝑓 𝑢, 𝑣 : 
𝑓 𝑢, 𝑣 = 𝑧𝑢 ⋅ 𝑧𝑣



 For each user, we recommend 𝐾 items.

▪ For recommendation to be effective, 𝑲 needs to 
be much smaller than the total number of items 
(up to billions)

▪ 𝐾 is typically in the order of 10—100.

 The goal is to include as many positive items 
as possible in the top-𝐾 recommended items.

▪ Positive items = Items that the user will interact 
with in the future.

 Evaluation metric: Recall@𝐾 (defined next)
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 For each user 𝒖, 

▪ Let 𝑃𝑢 be a set of positive items the user will interact 
in the future.

▪ Let 𝑅𝑢 be a set of items recommended by the model.

▪ In top-𝐾 recommendation, |𝑅𝑢| = 𝐾.

▪ Items that the user has already interacted are excluded.
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 Recall@𝑲 for user 𝒖 is 𝑷𝒖 ∩ 𝑹𝒖 / 𝑷𝒖 .

▪ Higher value indicates more positive items are 
recommended in top-𝐾 for user 𝑢.

 The final Recall@𝐾 is computed by averaging 
the recall values across all users.

2/21/2023 11Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃𝑢 𝑅𝑢
Recommended 

items
Positive items 𝑃𝑢 ∩ 𝑅𝑢



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



 Notation:

▪ 𝑼: A set of all users

▪ 𝑽: A set of all items

▪ 𝑬: A set of observed user-item interactions

▪𝑬 = 𝑢, 𝑣 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, 𝑢 interacted with 𝑣}
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 To get the top-𝐾 items, 
we need a score function 
for user-item interaction:

▪ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need
to get a real-valued scalar 
score(𝑢, 𝑣).

▪ 𝑲 items with the largest 
scores for a given user 𝑢
(excluding already-
interacted items) are then 
recommended.
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 We consider embedding-
based models for scoring user-
item interactions.

▪ For each user 𝑢 ∈ 𝑼, let 𝒖 ∈ ℝ𝐷

be its 𝐷-dimensional embedding.

▪ For each item 𝑣 ∈ 𝑽, let 𝒗 ∈ ℝ𝐷

be its 𝐷-dimensional embedding. 

▪ Let 𝑓𝜃 ⋅,⋅ : ℝ𝐷 × ℝ𝐷 → ℝ be a 
parametrized function.

▪ Then, score 𝑢, 𝑣 ≡ 𝑓𝜃 𝒖, 𝒗
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 Embedding-based models have three kinds of 
parameters:

▪ An encoder to generate user embeddings 𝒖 𝑢∈𝑈

▪ An encoder to generate item embeddings 𝒗 𝑣∈𝑉

▪ Score function 𝑓𝜃 ⋅,⋅

 Training objective: Optimize the model 
parameters to achieve high recall@𝐾 on seen 
(i.e., training) user-item interactions

▪ We hope this objective would lead to high 
recall@𝐾 on unseen (i.e., test) interactions.
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 The original training objective (recall@𝐾) is 
not differentiable.

▪ Cannot apply efficient gradient-based optimization.

 Two surrogate loss functions are widely-used 
to enable efficient gradient-based 
optimization.

▪ Binary loss

▪ Bayesian Personalized Ranking (BPR) loss

 Surrogate losses are differentiable and should 
align well with the original training objective.
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 Define positive/negative edges

▪ A set of positive edges 𝑬 (i.e., observed/training 
user-item interactions)

▪ A set of negative edges 𝑬𝐧𝐞𝐠 = 𝑢, 𝑣 𝑢, 𝑣 ∉

𝐸, 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽}

 Define sigmoid function 

▪ Maps real-valued scores into binary likelihood 
scores, i.e., in the range of [0,1].
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 Binary loss: Binary classification of 
positive/negative edges using 𝜎(𝑓𝜃 𝒖,𝒗 ):

−
1

|𝑬|
෍

𝑢,𝑣 ∈𝑬

log 𝜎(𝑓𝜃 𝒖, 𝒗 ) −
1

|𝑬𝐧𝐞𝐠|
෍

𝑢,𝑣 ∈𝑬𝐧𝐞𝐠

log 1 − 𝜎(𝑓𝜃 𝒖, 𝒗 )

 Binary loss pushes the scores of positive edges 
higher than those of negative edges.

▪ This aligns with the training recall metric since 
positive edges need to be recalled.
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During training, these terms can be approximated 

using mini-batch of positive/negative edges 



 Issue: In the binary loss, the scores of ALL
positive edges are pushed higher than those 
of ALL negative edges.

 This would unnecessarily penalize model 
predictions even if the training recall metric is 
perfect.

 Why? (example in the next slide)
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 Let’s consider the simplest case:
▪ Two users, two items

▪ Metric: Recall@1.

▪ A model assigns the score for every 
user-item pair (as shown in the right).

 Training Recall@1 is 1.0 (perfect 
score), because 𝑣0 (resp. 𝑣1) is 
correctly recommended to 𝑢0
(resp. 𝑢1).

 However, the binary loss would 
still penalize the model prediction
because the negative 𝑢1 , 𝑣0
edge gets the higher score than 
the positive edge 𝑢0 , 𝑣0 .
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 Key insight: The binary loss is non-personalized
in the sense that the positive/negative edges 
are considered across ALL users at once.

 However, the recall metric is inherently 
personalized (defined for each user). 

▪ The non-personalized binary loss is overly-stringent 
for the personalized recall metric.
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 Lesson learned: Surrogate loss 
function should be defined in 
a personalized manner.

▪ For each user, we want the 
scores of positive items to be 
higher than those of the 
negative items

▪ We do not care about the score 
ordering across users.

 Bayesian Personalized 
Ranking (BPR) loss achieves 
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 Bayesian Personalized Ranking (BPR) loss is a 
personalized surrogate loss that aligns better 
with the recall@K metric.

 For each user 𝑢∗ ∈ 𝑼, define the rooted 
positive/negative edges as

▪ Positive edges rooted at 𝑢∗

▪ 𝑬 𝑢∗ ≡ 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝑬}

▪ Negative edges rooted at 𝑢∗

▪ 𝑬𝐧𝐞𝐠 𝑢
∗ ≡ 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝑬𝐧𝐞𝐠}
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Note: The term “Bayesian” is not essential to the loss definition. The original paper 

[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts 

as a parameter regularization), which we omit here.



 Training objective: For each user 𝑢∗, we want the 
scores of rooted positive edges 𝑬 𝑢∗ to be higher 
than those of rooted negative edges 𝑬𝐧𝐞𝐠 𝑢∗ .

▪ Aligns with the personalized nature of the recall metric.

 BPR Loss for user 𝒖∗: 

 Final BPR Loss: 
1

|𝑼|
σ𝑢∗∈𝑼 Loss(𝑢

∗)
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Loss(𝑢∗) =
1

𝐸(𝑢∗) ⋅ |𝑬𝐧𝐞𝐠(𝑢∗)|
෍

(𝑢∗ ,𝑣pos)∈𝑬(𝑢
∗)

෍

𝑢∗ ,𝑣neg ∈𝑬𝐧𝐞𝐠(𝑢
∗)

−log 𝜎 𝑓𝜃 𝒖∗,𝒗pos − 𝑓𝜃 𝒖∗,𝒗neg

Encouraged to be positive for each user

=positive edge score is higher than negative edge score

Can be approximated using a mini-batch



 Mini-batch training for the BPR 
loss:

▪ In each mini-batch, we sample a 
subset of users 𝑼mini ⊂ 𝑼.

▪ For each user 𝑢∗ ∈ 𝑼mini , we sample 
one positive item 𝑣pos and a set of 

sampled negative items 𝑉neg = 𝑣neg .

▪ The mini-batch loss is computed as
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෍

𝑣neg∈𝑽neg

−log 𝜎 𝑓𝜃 𝑢∗, 𝒗pos − 𝑓𝜃 𝑢∗, 𝒗neg



 We have introduced 
▪ Recall@𝐾 as a metric for personalized 

recommendation

▪ Embedding-based models
▪ Three kinds of parameters to learn
▪ user encoder to generate user embeddings

▪ item encoder to generate item embeddings

▪ score function to predict the user-item interaction likelihood.

▪ Surrogate loss functions to achieve the high recall 
metric.

 Embedding-based models have achieved SoTA
in recommender systems. 
▪ Why do they work so well?
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 Underlying idea: 
Collaborative filtering

▪ Recommend items for a 
user by collecting 
preferences of many 
other similar users.

▪ Similar users tend to 
prefer similar items.

 Key question: How to 
capture similarity 
between users/items?
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 Embedding-based models can capture 
similarity of users/items!

▪ Low-dimensional embeddings cannot simply 
memorize all user-item interaction data.

▪ Embeddings are forced to capture similarity 
between users/items to fit the data.

▪ This allows the models to make effective prediction 
on unseen user-item interactions.
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 In this lecture, we teach two representative 
GNN approaches for recommender systems.

 (1) Neural Graph Collab. Filtering (NGCF)
 (2) LightGCN [He et al. 2020]

▪ Improve the conventional collaborative filtering 
models (i.e., shallow encoders) by explicitly modeling 
graph structure using GNNs.

▪ Assumes no user/item features.
 PinSAGE [Ying et al. 2018]

▪ Use GNNs to generate high-quality embeddings by 
simultaneously capturing rich node attributes (e.g., 
images) and the graph structure.
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 Conventional collaborative 
filtering model is based on 
shallow encoders:

▪ No user/item features.

▪ Use shallow encoders for users 
and items:

▪ For every 𝑢 ∈ 𝑼 and 𝑣 ∈ 𝑽, we 
prepare shallow learnable 
embeddings 𝒖,𝒗 ∈ ℝ𝐷 .

▪ Score function for user 𝑢 and 
item 𝑣 is 𝑓𝜃 𝒖, 𝒗 ≡ 𝒛𝒖

𝑇𝒛𝒗.
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 The model itself does not explicitly capture 
graph structure

▪ The graph structure is only implicitly captured in 
the training objective.

 Only the first-order graph structure (i.e., 
edges) is captured in the training objective.

▪ High-order graph structure (e.g., 𝐾-hop paths 
between two nodes) is not explicitly captured.
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 We want a model that…

▪ explicitly captures graph structure (beyond 
implicitly through the training objective)

▪ captures high-order graph structure (beyond the 
first-order edge connectivity structure)

 GNNs are a natural approach to achieve both!

▪ Neural Graph Collaborative Filtering (NGCF) [Wang et 

al. 2019]

▪ LightGCN [He et al. 2020]

▪ A simplified and improved version of NGCF
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 Neural Graph Collaborative Filtering (NGCF) 
explicitly incorporates high-order graph structure 
when generating user/item embeddings.

 Key idea: Use a GNN to generate graph-aware 
user/item embeddings.
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 Given: User-item bipartite graph.
 NGCF framework:

▪ Prepare shallow learnable embedding 
for each node.

▪ Use multi-layer GNNs to propagate 
embeddings along the bipartite graph.
▪ High-order graph structure is captured.

▪ Final embeddings are explicitly graph-
aware!

 Two kinds of learnable params are 
jointly learned:

▪ Shallow user/item embeddings

▪ GNN’s parameters
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 Set the shallow 
learnable embeddings as 
the initial node features:

▪ For every user 𝑢 ∈ 𝑼, set 

𝒉𝑢
(0)

as the user’s shallow 
embedding.

▪ For every item 𝑣 ∈ 𝑽, set 

𝒉𝑣
(0)

as the item’s shallow 
embedding.
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 Iteratively update node 
embeddings using 
neighboring embeddings.
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Different architecture choices are possible for 
AGGR and COMBINE. 
• AGGR(⋅) can be MEAN ⋅
• COMBINE(𝒙,𝒚) can be 

ReLU Linear(Concat(𝒙,𝒚))

High-order graph structure is captured 

through iterative neighbor aggregation.



 After 𝐾 rounds of neighbor 
aggregation, we get the final 

user/item embeddings

and .
 For all 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we set

 Score function is the inner 
product

score 𝑢, 𝑣 = 𝒖𝑇𝒗
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 Conventional collaborative filtering uses 
shallow user/item embeddings.

▪ The embeddings do not explicitly model graph 
structure.

▪ The training objective does not model high-order 
graph structure.

 NGCF uses a GNN to propagate the shallow 
embeddings.

▪ The embeddings are explicitly aware of high-
order graph structure.
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 Recall: NGCF jointly learns two kinds of 
parameters:
▪ Shallow user/item embeddings

▪ GNN’s parameters

 Observation: Shallow learnable embeddings are 
already quite expressive.
▪ They are learned for every (user/item) node.

▪ Most of the parameter counts are in shallow embeddings 
when 𝑁 (#nodes) ≫ 𝐷 (embedding dimensionality)

▪ Shallow embeddings: 𝑂(𝑁𝐷).

▪ GNN: 𝑂(𝐷2).

▪ The GNN parameters may not be so essential for 
performance.2/21/2023 42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



 Can we simplify the GNN used in NGCF (e.g., 
remove its learnable parameters)?

▪ Answer: Yes! 

▪ Bonus: Simplification improves the 
recommendation performance!

 Overview of the idea:

▪ Adjacency matrix for a bipartite graph

▪ Matrix formulation of GCN

▪ Simplification of GCN by removing non-linearity

▪ Related: SGC for scalable GNN [Wu et al. 2019]
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 Adjacency matrix of a (undirected) bipartite graph.
 Shallow embedding matrix.
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 Recall: The diffusion matrix of 
C&S.

 Let 𝑫 be the degree matrix of 𝑨.
 Define the normalized adjacency 

matrix ෩𝑨 as
෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 Let 𝑬(𝑘) be the embedding matrix 
at 𝑘-th layer.

 Each layer of GCN’s aggregation 
can be written in a matrix form:

𝑬(𝑘+1) = ReLU ෩𝑨𝑬(𝑘)𝑾(𝑘)
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Matrix of node 

embeddings 𝑬(𝑘)

Each row stores 
node embedding

Neighbor aggregation Learnable linear transformation

Note: Different from the 

original GCN, self-
connection is omitted here.



 Simplify GCN by removing ReLU non-linearity:

𝑬(𝑘+1) = ෩𝑨𝑬(𝑘)𝑾(𝑘)

 The final node embedding matrix is given as
𝑬(𝐾) = ෩𝑨 𝑬(𝐾−1)𝑾(𝐾−1)

= ෩𝑨 ෩𝑨𝑬(𝐾−2)𝑾(𝐾−2) 𝑾(𝐾−1)
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= ෩𝑨 ෩𝑨 ⋯ ෩𝑨𝑬(0)𝑾(0) ⋯ 𝑾(𝐾−2) 𝑾(𝐾−1)

= ෩𝑨𝐾 𝑬 𝑾(0)⋯𝑾(𝐾−1)

Set 𝑬 as input 

embedding 𝑬(0)

Original idea from 
SGC [Wu et al. 2019]



 Removing ReLU significantly simplifies GCN!

𝑬(𝐾) = ෩𝑨𝐾 𝑬𝑾

 Algorithm: Apply 𝑬 ← ෩𝑨 𝑬 for 𝐾 times.
▪ Each matrix multiplication diffuses the current embeddings 

to their one-hop neighbors.

▪ Note: ෩𝑨𝐾 is dense and never gets materialized. Instead, the 
above iterative matrix-vector product is used to compute 
෩𝑨𝐾 𝑬.
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𝑾 ≡𝑾(0)⋯𝑾(𝐾−1)

Diffusing node embeddings 

along the graph

(similar to C&S that diffuses soft 

labels along the graph)



 We can consider multi-scale diffusion
𝛼0𝐸

(0) +𝛼1𝐸
(1) + 𝛼2𝐸

(2) +⋯ +𝛼𝐾𝐸
(𝐾)

▪ The above includes embeddings diffused at 
multiple hop scales.

▪ 𝛼0𝐸
(0) = 𝛼0෩𝑨

0𝐸(0) acts as a self-connection (that 
is omitted in the definition ෩𝑨)

▪ The coefficients, 𝛼0 , … , 𝛼𝐾, are hyper-parameters.

 For simplicity, LightGCN uses the uniform 

coefficient, i.e., for .
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 Given: 

▪ Adjacency matrix A

▪ Initial learnable embedding matrix 𝑬
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Embedding 

matrix 𝑬

User

User

Item

Item

Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹𝑇

User 

emb

Item 

emb

Normalize 𝟎

𝟎

Normalized Adj. matrix ෩𝑨
(self-loop omitted)



Iteratively diffuse embedding matrix 𝑬 using ෩𝑨
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Embedding 

matrix 𝑬(𝒌)

(𝑬(𝟎) is set to 𝑬)

User 

emb

Item 

emb

𝟎

𝟎

Normalized Adj. matrix ෩𝑨
(self-loop omitted)

⋅←

Embedding 

matrix 𝑬(𝒌+𝟏)

User 

emb

Item 

emb

For 𝑘 = 0…𝐾 − 1,



 Average the embedding matrices at 
different scales.
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𝑬(0)

User 

emb

Item 

emb

←

Embedding 

matrix 𝑬final

User 

emb

Item 

emb

𝑬(1) 𝑬(𝐾)

User 

emb

Item 

emb

+ +⋯+

User 

emb

Item 

emb



 Score function:

▪ Use user/item vectors from 𝑬final to score user-
item interaction
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User 

emb

Item 

emb

Used as 

embedding

𝒖 for 𝑢 ∈ 𝑼

Used as 

embedding

𝒗 for 𝑣 ∈ 𝑽

𝑢

𝑣

𝒛𝒖

𝒛𝒗

Score 

function

𝒛𝒖
𝑇𝒛𝒗

Embedding 

matrix 𝑬final



 Question: Why does the simple diffusion 
propagation work well?

 Answer: The diffusion directly encourages the 
embeddings of similar users/items to be 
similar.

▪ Similar users share many common neighbors 
(items) and are expected to have similar future 
preferences (interact with similar items).

2/21/2023 53Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



 The embedding propagation of LightGCN is 
closely related to GCN/C&S.

 Recall: GCN/C&S (neighbor aggregation part)

▪ Self-loop is added in the neighborhood definition.

 LightGCN uses the same equation except that

▪ Self-loop is not added in the neighborhood definition.

▪ Final embedding takes the average of embeddings 

from all the layers: 𝒉𝑣 =
1

𝐾+1
σ𝑘=0
𝐾 𝒉𝑣

(𝑘)
.
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Node degree



 Both LightGCN and shallow encoders learn a 
unique embedding for each user/item.

 The difference is that LightGCN uses the diffused
user/item embeddings for scoring.

 LightGCN performs better than shallow encoders 
but are also more computationally expensive due 
to the additional diffusion step.

▪ The final embedding of a user/item is obtained 
by aggregating embeddings of its multi-hop 
neighboring nodes.
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 LightGCN simplifies NGCF by removing the 
learnable parameters of GNNs.

 Learnable parameters are all in the shallow 
input node embeddings.

▪ Diffusion propagation only involves matrix-vector 
multiplication.

▪ The simplification leads to better empirical 
performance than NGCF.
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 P2P recommendation



❑ Unifies visual, textual, and graph information.

❑ The largest industry deployment of a Graph 

Convolutional Networks.

❑ Huge Adoption across Pinterest

❑ Works for fresh content and is available in 

a few seconds after pin creation

Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

https://arxiv.org/pdf/1806.01973.pdf


Under review as aconference paper at ICLR 2019

sum - multiset

>

mean - distribution max - set

>

Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over amultiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset agiven
aggregator isable to capture: sum captures thefull multiset, mean captures theproportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a1-layer perceptron σ ◦ W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by anon-linear activation function such asaReLU.
Such 1-layer mappings areexamples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X 1 6= X 2 so that for any linear mapping W ,P
x 2 X 1

ReLU (Wx) =
P

x 2 X 2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlikemodels using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X ) =
P

x 2 X f (x) with mean or max-pooling as in GCN
and GraphSAGE?Mean and max-pooling aggregatorsarestill well-defined multiset functionsbecause
they arepermutation invariant. But, they arenot injective. Figure 2 ranks the three aggregators by
their representational power, and Figure3 illustratespairsof structures that themean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f (a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f (a) remains
f (a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes thestructures because 2 · f (a) and 3 · f (a) givedifferent values. The sameargument

6

PinSage graph convolutional network:
 Goal: Generate embeddings for nodes in a large-scale 

Pinterest graph containing billions of objects
 Key Idea: Borrow information from nearby nodes
▪ E.g., bed rail Pin might look like a garden fence, but gates 

and beds are rarely adjacent in the graph

▪ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, ranking
▪ Services like “Related Pins”, “Search”, “Shopping”, “Ads”
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 Graph has tens of billions of nodes and edges

 Further resolves embeddings across the 
Pinterest graph

boards

p
in

s

pins

boards ...

Aggregator

... ... ...

Agg. Agg. Agg.



 In addition to the GNN model, the PinSAGE
paper introduces several methods to scale the 
GNN to a billion-scale recommender system 
(e.g., Pinterest).

▪ Shared negative samples across users in a mini-batch

▪ Hard negative samples

▪ Curriculum learning

▪ Mini-batch training of GNNs on a large-graph (to be 
covered in the future lecture) 
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Task: Recommend related pins to users

Source pin

Learn node embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2 < 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧1 𝑧2

𝑑(𝑧1, 𝑧2)



1+B repin pairs:
▪From Related Pins surface
▪Capture semantic relatedness
▪Goal: Embed such pairs to be “neighbors”

Example positive training pairs (Q,X):

65



 Recall: In BPR loss, for each user 𝑢∗ ∈
𝑼mini, we sample one positive item 𝑣pos
and a set of sampled negative items 

𝑽neg = 𝑣neg .

 Using more negative samples per user 
improves the recommendation 
performance, but is also expensive.

▪ We need to generate |𝑼mini | ⋅ |𝑽neg|

embeddings for negative nodes.

▪ We need to apply |𝑼mini| ⋅ |𝑽neg| GNN 

computational graphs (see right), which is 
expensive.
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 Key idea: We can share the same set of negative 

samples 𝑽neg = 𝑣neg across all users 𝑼mini in 

the mini-batch.
 This way, we only need to generate |𝑽neg| embeddings 

for negative nodes.

▪ This saves the node embedding generation 
computation by a factor of |𝑼𝐦𝐢𝐧𝐢|!

▪ Empirically, the performance stays similar to the 
non-shared negative sampling scheme.
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 Challenge: Industrial recsys needs to make 
extremely fine-grained predictions.

▪ #Total items: Up to billions.

▪ #Items to recommend for each user: 10 to 100.

 Issue: The shared negative items are 
randomly sampled from all items

▪ Most of them are “easy negatives”, i.e., a model 
does not need to be fine-grained to distinguish 
them from positive items.

 We need a way to sample “hard negatives” to 
force the model to be fine-grained!
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 Idea: use harder and harder negative samples
 Include more and more hard negative 

samples for each epoch 

Source pin Positive Hard negativeEasy negative



 Key insight: It is effective to make the 
negative samples gradually harder in the 
process of training.

 At 𝑛-th epoch, we add 𝑛 − 1 hard negative 
items.

▪ #(Hard negatives) gradually increases in the 
process of training.

 The model will gradually learn to make finer-
grained predictions.
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 For each user node, the hard negatives are item 
nodes that are close (but not connected) to the 
user node in the graph.

 Hard negatives for user 𝑢 ∈ 𝑼 are obtained as 
follows:
▪ Compute personalized page rank (PPR) for user 𝑢.

▪ Sort items in the descending order of their PPR scores.

▪ Randomly sample item nodes that are ranked high 
but not too high, e.g., 2000th —5000th .
▪ Item nodes that are close but not too close (connected) to 

the user node.

 The hard negatives for each user are used in 
addition to the shared negatives.
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(q, p) positive pairs are given but various 

methods to sample negatives to form (q, p, n)

● Distance Weighted Sampling (Wu et al., 2017) 

- Sample negatives so that query-negative distance 

distribution is approx U[0.5, 1.4]

(q, p)

Negatives in 
Batch

Sampling (q, p, n)

https://arxiv.org/abs/1706.07567


Pixie

Graph-
SAGE

Query

PinSAGE

Visual only



Pixie

Graph-
SAGE

Query



 PinSAGE uses GNNs to generate high-quality 
user/item embeddings that capture both the 
rich node attributes and graph structure.

 The PinSAGE model is effectively trained using 
sophisticated negative sampling strategies.

 PinSAGE is successfully deployed at Pinterest, 
a billion-scale image content recommendation 
service.

▪ Uncovered in this lecture: How to scale up GNNs to 
large-scale graphs. Will be covered in a later lecture.
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