Stanford CS224W:
Fast Neural Subgraph
Matching and Counting




ANNOUNCEMENTS

 Homework 3 out
* Homework 2 due on Saturday
* Thanks for attending recitation session! We will hold
another one for Homework 3
* Recordings are available on Canvas
* Grading

* Homework 1 grades released
* Colab 2 & project proposal grades to be released soon.
Stay tuned!

CS224W: Machine Le
Jure Leskovec, Stanford University

http://cs224w.stanford.edu




Subgraphs

Subgraphs are the building blocks of
networks:

They have the power to characterize and
discriminate networks
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Building Blocks of Networks

. . Carboxyl
In many domains, recurring structural components group = Acidic
determine the function or behavior of the graph
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Plan for Today

Subgraphs and motifs @
Defining Subgraphs and Motifs
Determining Motif Significance

Neural Subgraph Representations

Mining Frequent Motifs
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Stanford CS224W:
Subgraphs and Motifs




Definition: Subgraph (1)

Two ways to formalize "network building blocks"
Given graph G = (V, E):

Def 1. Node-induced subgraph: Take subset of
the nodes and all edges induced by the nodes:
G' = (V',E") is a node induced subgraph iff

V'ecv
E'={(u,v) €EE|uveV}
G' is the subgraph of G induced by V'

Alternate terminology: "induced subgraph"
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Definition: Subgraph (2)

Two ways to formalize "network building blocks"
Given graph G = (V, E):

Def 2. Edge-induced subgraph: Take subset of
the edges and all corresponding nodes
G' = (V',E") is an edge induced subgraph iff
E'CE
V'={v € V| (v,u) € E' for some u}

Alternate terminology: "non-induced subgraph" or
just "subgraph”
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Definition: Subgraph (3)

Two ways to formalize "network building blocks™

The best definition depends on the domain!
Examples:

Chemistry: Node-induced (functional groups)

Knowledge graphs: Often edge-induced (focus is on
edges representing logical relations)
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Definition: Subgraph (4)

The preceding definitions define subgraphs when
V'€ Vand E' € E,i.e. nodes and edges are taken
from the original graph G.

What if V' and E' come from a totally different
graph? Example:

We would like to say that G4 is “contained in” G,
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Graph Isomorphism

Graph isomorphism problem: Check whether two
graphs are identical:
G,=(V,E)) and G, = (V,, E,) are isomorphic if
there exists a bijection f: V,; = V,such that (u,v) €
E, iff (f(u),f(v)) €EE,

f is called the isomorphism:

Isomorph|cl E i I:INot |somorph|c§

We do not know if graph isomorphism is NP-hard,
nor is any polynomial algorithm found for solving
graph isomorphism.
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Subgraph Isomorphism

G, is subgraph-isomorphicto G4 if some
subgraph of G, is isomorphicto G,

We also commonly say G, is a subgraph of G,

We can use either the node-induced or edge-induced
definition of subgraph

This problem is NP-hard
A X
fig v

cC Z

A-B-C matches with X-Y-Z: There is a subgraph
Isomorphism between G1 and G2.
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Case Example of Subgraphs (1)

All non-isomorphic, connected, undirected
graphs of size 4
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Case Example of Subgraphs (2)

All non-isomorphic, connected, directed
graphs of size 3

PP SO P
PRI RN R
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Network Motifs

Network motifs: “recurring, significant
patterns of interconnections”

How to define a network motif:

2/16/2023

Pattern: Small (node-induced) subgraph

Recurring: Found many times, i.e., with high
frequency How to define frequency?

Significant: More frequent than expected, i.e., in
randomly generated graphs?

How to define random graphs?
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Motifs: Induced Subgraphs

Induced subgraph
of interest B
(aka Motif): | )

1

II M om
[ wets] >
M =id
EwiE #i
D D e
[ vox] ry o]
Hrg1
T — L
Hx Flh 2 Yapi

I M op1 o /
No match! =

(notinduced)

Match!

(induced)
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Why Do We Need Motifs?

Motifs: /Cl@
Help us understand how graphs work O
Help us make predictions based on presence L. |
or lack of presence in a graph dataset @

Examp|e5: Feed-forward loop

Feed-forward loops: Found in networks of
neurons, where they neutralize “biological noise

Parallel loops: Found in food webs
Single-input modules: Found in gene control Q O

networks (J
@6@'@ Single-input module pae| loop
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Subgraph Frequency (1)

Let G, be a small graph and G be a target graph

dataset.

Graph-level Subgraph Frequency Definition
Frequency of G in G: number of unique subsets of
nodes V; of G for which the subgraph of G+
induced by the nodes V7 is isomorphic to G

Go: Star Subgraph

K

Frequency: (120)

Frequency: 2
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Subgraph Frequency (2)

Let G, be a small graph, v be a node in G, (the
“anchor”) and G be a target graph dataset.
Node-level Subgraph Frequency Definition:

The number of nodes u in G for which some
subgraph of G is isomorphic to G, and the
isomorphism maps node uto v

Let (G, v) be called a node-anchored subgraph
Robust to outliers Gr G: Star subgraph

G

5 —> Anchorv ——> Anchor

Frequency: 1
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Subgraph Frequency (3)

What if the dataset contains multiple graphes,
and we want to compute frequency of
subgraphs in the dataset?

Solution: Treat the dataset as a giant graph G
with disconnected components corresponding
to individual graphs.

o O
PN
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Defining Motif Significance

To define significance, we need to have a
null-model (i.e., point of comparison).

Key idea: Subgraphs that occur in a real
network much more often than in a random
network have functional significance.

real network randomized networks

Milo et. al., Science 2002
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Defining Random Graphs

Erd6s—Rényi (ER) random graphs:
G, p: undirected graph on n nodes where each
edge (u, v) appears i.i.d. with probability p
How to generate the graph: Create n nodes, for each
pair of nodes (u, v) flip a biased coin with bias p

Generated graph is a result of a random process:

Three random graphs drawn from Gs ¢ ¢

2/16/2023 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, cs 224w.stanford.edu




New Model: Configuration Model

Goal: Generate a random graph with a
given degree sequence Ky, k,, ... Ky

Useful as a “null” model of networks:

We can compare the real network G2l and a “random”

G4 \which has the same degree sequence as G ¢3!
Configuration model:

o—|

X |::> TR |:|'> |~ ]
B 60— NERE

Randomly pair up
"mini”-nodes

Nodes with spokes Resulting graph

We ignore double edges and self-loops when creating the final graph
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Alternative for Spokes: Switching

Start from a given graph G isa constant parameter
Repeat the switching step Q - |E'| times:

Select a pair of edges A=>B, C=>D at random A C
Exchange the endpoints to give A>D, C=>B L
Exchange edges only if no multiple edges 1
or self-edges are generated .
Av
Result: A randomly rewired graph: 5 =

Same node degrees, randomly rewired edges

() is chosen large enough (e.g., Q = 100) for the
process to converge
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Motif Significance Overview

2/1

6/2023

Intuition: Motifs are overrepresented in a
network when compared to random graphs:
Step 1: Count motifs in the given graph (G ¢?!)
Step 2: Generate random graphs with similar
statistics (e.g. number of nodes, edges, degree
sequence), and count motifs in the random
graphs

Step 3: Use statistical measures to evaluate
how significant is each motif

Use Z-score



Z-score for Statistical Significance

Z; captures statistical significance of motif i:
Zi — (Nireal_Nirand)/std(Nirand)
NFealis #(motif i) in graph G2
Nirand is average #(motifs i) in random graph instances
Network significance profile (SP):

—
SPi — Zl/ z ZJZ

\ J

SP is a vector of normalized Z-scores

The dimension depends on number of motifs considered

SP emphasizes relative significance of subgraphs:
Important for comparison of networks of different sizes
Generally, larger graphs display higher Z-scores
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Significance Profile

For each subgraph:
z-score metric is capable of classifying the subgraph
“significance”:
Negative values indicate under-representation
Positive values indicate over-representation

We create a network significance profile:
A feature vector with values for all subgraph types

Next: Compare profiles of different graphs with random
graphs:

Regulatory network (gene regulation)

Neuronal network (synaptic connections)

World Wide Web (hyperlinks between pages)

Social network (friendships)

Language networks (word adjacency)
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Example Significance Profile

Gene regulation Network significance profile
networks 8 08 .
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subgraphs

v7v

Milo et al., Science 2004

Networks from the same domain have similar significance profiles
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Summary: Detecting Motifs

Count subgraphs i in G2

Count subgraphsi in random graphs

Null model: Each G™"¢ has the same #(nodes),
#(edges) and degree distribution as G'®?!

G rand.

Assign Z-score to motif i:
Zi — (Nireal_Nirand)/std(Nirand)

High Z-score: Subgraph i
is a network motif of G
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Variations on the Motif Concept

Original Network

Extensions: 54 3 =
Directed and undirected OO(I}
4 5 3-Subgraph

Colored and uncolored

Temporal and static motifs OO‘ | Ii

{0,4,5} {3,4,5}

Va riations on the concept: Occurrence Not an occurrence!
Blogs
Different frequency concepts : Conservative
Liberal

Different significance metrics

Under-Representation (anti-motifs) mm n n

Motif C Motif D Motif E Motif F

1 Owerrepresentation of C E is overrepresented
D Iffe re nt n u I I m O d eIS much larger than D F is underrepresented

2/16/2023 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, cs 224w.stanford.edu 30



Summary: Motifs

Subgraphs and motifs are the building blocks
of graphs

Subgraph isomorphism and counting are NP-hard

Understanding which motifs are frequent or
significantin a dataset gives insight into the
unique characteristics of that domain

Use random graphs as null model to evaluate
the significance of motif via Z-score
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Stanford CS224W:
Neural Subgraph Matching




Plan for Today

Neural Subgraph Representations @

Mining Frequent Motifs
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Subgraph Matching

Given:
Large target graph (can be disconnected)
Query graph (connected)
Decide:
Is a query graph a subgraph in the target graph?

Query Target

A subgraph?

=

Node colors indicate the correct mapping of the nodes
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Isomorphism as an ML Task

2/1

6/20

Large target graph (can be disconnected)
Query graph (has to be connected)
Use GNN to predict subgraph isomorphism:

Query Target

A subgraph? H

Intuition: Exploit the geometric shape of
embedding space to capture the properties of
subgraphisomorphism




Task Setup

Consider a binary prediction: Return True if
query is isomorphicto a subgraph of the
target graph, else return False

Finding node correspondences between Q and T is another challenging
problem, which will not be covered in this lecture.
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Overview of the Approach

\. ’
Decompose into neighborhoods @ ; ) ;
/ \ Embed

Embed neighborhoods

No. Yes. Predict subgraph Yes.
relation
anford.edu

222222222



Architecture for Subgraphs (1)

(1) We are going to work with node-anchored
definitions:

Query Embedding of @

Z %?nchor )

Embedding of >

J
ﬁnchor I

Target
Graph

True / False
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Architecture for Subgraphs (2)

(2) We are going to work with node-anchored
neighborhoods:

Query 1st hop edge

%nchor \ 5

2"d hop edge

ﬁnchor ég

Target Neighborhoods
Graph around anchors
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Architecture for Subgraphs (3)

Use GNN to obtain representations of u and v
Predict if node u’s neighborhood is
isomorphic to node v’s neighborhood:

Query 1st hop edge Embedding of @

nchor \ \
<\ GNN

2nd h d
op edge Embedding of > True/ False

GNN )
Anchor

Target Neighborhoods How to use embeddings
around anchors to make predictions?
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Recall node-level frequency definition:

The number of nodes u in G+ for which some
subgraph of Gt is isomorphic to G and the
Isomorphism maps u to v

We can compute embeddings for u and v using
GNN

Use embeddings to decide if neighborhood of u is
isomorphic to subgraph of neighborhood of v

We not only predict if there exists a mapping, but
also a identify corresponding nodes (1 and v)!
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Decomposing G into Neighborhoods

For each node in G7:
Obtain a k-hop neighborhood around the anchor
Can be performed using breadth-first search (BFS)

The depth k is a hyper-parameter (e.g. 3)
Larger depth results in more expensive model

Same procedure appliesto G, to obtain the
neighborhoods

We embed the neighborhoods using a GNN

By computing the embeddings for the anchor nodes
in their respective neighborhoods
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Order Embedding Space

Map graph A to a point z, into a high-
dimensional (e.g. 64-dim) embedding space,
such that z, is non-negative in all dimensions

Capture partial ordering (transitivity):
We use = < ® to denote that the embedding

of = islessthan or equalto = in all of its

coordinates Embedding space
If “<m mmthen " n t

Intuition: subgraph is to the
lower-left of its supergraph (in 2D) .
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Subgraph Order Embedding Space

Neighborhood

o, |
W I Anchor node t Order Embedding

space
Example Query 1 A
Gy ]
— GNN ®
Anchor 4
>
0

Example Query 2

o,
Anchor

By comparing the embedding, we findthat@ <mMbut ® 5 l |
Indicating that only query 1 is a subgraph of the neighborhood of ¢
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Why Order Embedding Space?

Subgraph isomorphism relationship can be
nicely encoded in order embedding space

2/16/2023

Transitivity: If G, is a subgraph of G,, G, is a
subgraph of G5, then G, is a subgraph of G4

Anti-symmetry: If G, is a subgraph of G,, and G, is
a subgraph of G, then G is isomorphic to G,

Closure under intersection: The trivial graph of 1
node is a subgraph of any graph

All properties have their counter-parts in the
order embedding space
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Why Order Embedding Space?

Subgraph isomorphism relationship can be nicely encoded in
order embedding space
Transitivity: If = <®, B<H then” <N 0 embedding:
] Trivial graph
Anti-symmetry: If © <@ and ® <" ,then” =M \ith one node
Closure under intersection: The 0 embedding satisfies 0 <

for any order embedding i since all dimensions of order
embedding are non-negative

Corollary: If = <M and " <M then " has a valid embedding

Transitivity Anti-symmetry Closure under intersection
A A A

] []
O -l

(o) > 0] > 0] >
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Order Constraint (1)

2/1

6/2023

We use a GNN to learn to embed neighborhoods
and preserve the order embedding structure
What loss function should we use, so that the
learned order embedding reflects the subgraph
relationship?

We design loss functions based on the order
constraint:

Order constraint specifies the ideal order embedding
property that reflects subgraph relationships



Order Constraint (2)

We specify the order constraint to ensure that
the subgraph properties are preserved in the
order embedding space

Embedding dimension

/
V?=1Zq li] < Zt[i] iff GQ C Gr trained with max-margin loss

N\

Query embedding Targetembedding  Subgraph Relation
Embedding space

subgraph anchored M is subgraph
of the one anchored at Il
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Loss Function: Order Constraint

GNN Embeddings are learned by minimizing a max-
margin loss

Define E(Gq, Gt) = Y2, (max(0, Zg|i] — z,[i]))? as
the “margin” between graphs G, and G,

Embedding space AEmbedding space
A
_Jen .Gt
mG, WG,
> o >
E(Gg4,Gr) =0 E(G, G) >0

According to the order embedding,

According to the order embedding,
G, Is a subgraph of G,!

G4 Is not a subgraph of G;!
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Embeddings are learned by minimizing a max-
margin loss

Let E(Gq, Gt) = Z?zl(maX(O, Zg|l] — z:[i]))? be
the “margin” between graphs G, and G;

To learn the correct order embeddings, we want
to learn Zg,Z; such that

E(Gq, Gt) = 0 when G, is a subgraph of G;
E(Gq, Gt) > 0 when G, is not a subgraph of G;

2/16/2023 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, cs 224w.stanford.edu



Training Neural Subgraph Matching

To learn such embeddings, construct training
examples (G,, G;) where half the time, G is a
subgraph of G;, and the other half, it is not
Train on these examples by minimizing the
following max-margin loss:

For positive examples: Minimize E (G, G;) when

G4 is a subgraph of G,

For negative examples:

Minimize max(0, a — E(Gq, Gt))

Max-margin loss prevents the model from learning the
degenerate strategy of moving embeddings further and
further apart forever
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Training Example Construction

Need to generate training queries G, and targets Gy from the dataset ¢
Get G by choosing a random anchor v and taking all nodes in G within
distance K from v to be in Gy

Positive examples: Sample induced subgraph G, of Gr. Use BFS sampling:

Initialize S = {v}, V=0

Let N(S) be all neighbors of nodes in S. At every step, sample 10% of the
nodes in N(S) \ V, put themin S. Put the remaining nodes of N(S) in V.

After K steps, take the subgraph of G induced by S anchored at g
Negative examples (G not subgraph of Gr): “corrupt” G, by
adding/removing nodes/edges so it’s no longer a subgraph.

BFS sampling T
©s 2 ® -\/ZK'
@V G
Q

© Not yet visited
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Training Detaills

How many training examples to sample?
At every iteration, we sample new training pairs

Benefit: Every iteration, the model sees different
subgraph examples

Improves performance and avoids overfitting — since
there are exponential number of possible subgraphs
to sample from

How deep is the BFS sampling?

A hyper-parameter that trades off runtime and
performance

Usually use 3-5, depending on size of the dataset

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, cs 224w.stanford.edu 53



Subgraph Predictions on New Graphs

Given: query graph G, anchored at node g,

target graph G; anchored at node ¢t

Goal: output whether the query is a node-
anchored subgraph of the target
Procedure:

IfE(Gq, Gt) < €, predict “True”; else “False”

€ is a hyper-parameter
To check if G, is isomorphicto a subgraph of
Gt , repeat this procedure forallq € G, t €
Gr. Here G, is the neighborhood around node
q € Gyp.
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Summary: Neural Subgraph Matching

Neural subgraph matching uses a machine learning-
based approach to learn the NP-hard problem of
subgraph isomorphism

Given query and target graph, it embeds both graphs into an
order embedding space

Using these embeddings, it then computes E(Gq, Gt) to
determine whether query is a subgraph of the target

Embedding graphs within an order embedding
space allows subgraph isomorphismto be
efficiently represented and tested by the relative

positions of graph embeddings
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Stanford CS224W:
Finding Frequent Subgraphs




Plan for Today

Mining Frequent Subgraphs @
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Intro: Finding Frequent Subgraphs

Generally, finding the most frequent size-k
motifs requires solving two challenges:

1) Enumerating all size-k connected subgraphs
2) Counting #(occurrences of each subgraph type)

Ay

Possible size-3 motifs

~—

count # of trianle motifs
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Just knowing if a certain subgraph exists in
a graph, is a hard computational problem!

Subgraph isomorphism is NP-complete

Computation time grows exponentially as
the size of the subgraphs increases

Feasible motif size for traditional methods is
relatively small (3 to 7)
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Solution with Representation Learning

Finding frequent subgraph patterns is
computationally hard

Combinatorial explosion of number of possible patterns

Counting subgraph frequency is NP-hard
Representation learning can tackle these

challenges:

Combinatorial explosion = organize the search space
Subgraph isomorphism = prediction using GNN

~"ENC(u)

)
/\\“ encode nodes 2
P / \

ENC(v)
original network embedding space
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Solution with Representation Learning

Representation learning can tackle these
challenges:

1) Counting #(occurrences of each subgraph type)

Solution: Use GNN to “predict” the frequency
of the subgraph.

2) Enumerating all size-k connected subgraphs

Solution: Don’t enumerate subgraphs but constructa
size-k subgraph incrementally

Note: We are only interested P 2,
in high frequency subgraphs /\\u

encode nodes

‘ENC(v)
original network embedding space

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, cs 224w.stanford.edu 61



Problem Setup: Frequent Motif Mining

Target graph (dataset) G, size parameter k

Desired number of results r

Goal: Identify, among all possible graphs of k nodes,
the r graphs with the highest frequency in G7.

We use the node-level definition:

The number of nodes u in G for which some
subgraph of Gt is isomorphic to G, and the
isomorphism maps u to v.

R
Gr Go: Star Subgraph

A/
% i-gree —> Anchor
100

Frequency: 1
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SPMiner: Overview

SPMiner: A neural model to identify frequent motifs

Decompose: Overlapping Encoder: Embed Search Procedure: Find
node-anchored neighborhoods  subgraphs into order frequent subgraphs by
embedding space growing patterns

Stepl Step2

o—e

&= 5010 Step 9

Same as neural subgraph matching
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SPMiner: Key Idea

Decompose input graph G+ into
neighborhoods

Embed neighborhoodsinto an order
embedding space

Key benefit of order embedding:
We can quickly “predict” the frequency of a

given subgraph G
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Motif Frequency Estimation

Given: Set of subgraphs (“node-anchored
neighborhoods”) G of G (sampled randomly)
Key idea: Estimate frequency of G by counting the
number of (), such that their embeddings 7, satisty
Zg = Zy,

This is a consequence of the order embedding space property

Embedding Space

. “Super-graph” region:

All points in the red shaded region
correspond to neighborhoods in Gy
that contain G,

®----------- Benefit: Super-fast subgraph

Node-anchored _
neighborhood frequency counting!

@ Motif
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SPMiner Search Procedure (1)

Initial step: Start by randomly picking a starting
node u in the target graph G1. Set S = {u}.

Each pointin the shaded region

Walk in Embedding Space represents a neighborhoodin

A target graph that contains the
¢ Qﬁggg;rnhgosw motif pattern
@ otif walk /
Step 1
- u

Initially, all neighborhoods
contain thetrivial subgraph
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SPMiner Search Procedure (2)

Iteratively: Grow a motif by iteratively choosing a
neighbor in G of a node in § and add that node to S.
We grow the motif S to find larger frequent motifs!

Walk in Embedding Space . gma|| motifs grow by adding neighbors

A ! » Their embeddings correspond to red
@ Neighborhood points on the left
embeddings Step 3 Step 4 Step 5
@ wotif walk 4 < >4‘

Step1l2  Step 11 Step 10

Goal: maximize number of

neighborhoods in red shaded
area after k step!

0
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SPMiner Search Procedure (3)

Termination: Upon reaching a desired motif size, take
the subgraph of the target graph induced by S.

Step 3 Step 4 Step 5

Walk in Embedding Space
A A 4 =4

Neighborhood Step12  Step1l  Step 10

® .
embeddings % g f’ %

@ wvotif walk

Identified frequent motif of size 12:
It has the largest number of blue
points in super-graph region,

among all embeddings of possible
subgraphs of size 12

0
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SPMiner Search Procedure (4)

How to pick which node to add at each step?

Def: Total violation of a subgraph G

the number of neighborhoods | |

that do not contain G. xvalk 'n Embedding Space

 The number of neighborhoods GNL. @ Neighborhood
that do not satisfy z, < zy, empeddings

* Minimizing total violation =
maximizing frequency

@ Votif walk

Greedy strategy (heuristic):
At every step, add the node
that results in the smallest
total violation
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Results: Small Motifs

Ground-truth: Find most frequent 10 motifs in
dataset by brute-force exact enumeration (expensive)

Question: Can the model identify frequent motifs?

Result: The model identifies 9 and 8 of the top 10
motifs, respectively.

Size 5 Size 6

N
o

o]

o

[EEY
[¥,]

- -
- et
- e
- ——
— .
. T X
—— e o D o
e e ee—— -
- -

= =
o wu

o wul
[%a]

Pattern frequency (x1000)
=
Pattern frequency (x1000)

o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

MFinder RAND-ESU - = Exact MFinder RAND-ES sPMiner|F - - Exact

Traditional methods Ground-truth
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Experiments: Large motifs

Question: How do the frequencies of the
identified motif compare?

Result: SPMiner identifies motifs that appear
10-100x more frequently than the baselines

COX2 ENZYMES
104_
104_

> >
c c
@ 1034 ]
=] =]
= T
s L
© 102_ 8
g —es— MFinder S 10%3 —e— MFinder
< MLP S MLP (greedy)
& 1014 —* Rand-ESU b= —e— Rand-ESU

—e— SPMiner (greedy) —e— SPMiner (greedy)

—®— SPMiner (MCTS) \-/‘ —®— SPMiner (MCTS)

5 8 11 14 17 20 5 8 11 14 17 20

Graph size k Graph size k
Molecule dataset Protein dataset
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Subgraphs and motifs are important concepts that
provide insights into the structure of graphs. Their
frequency can be used as features for nodes/graphs.

We covered neural approaches to prediction subgraph
isomorphism relationship.

Order embeddings have desirable properties and can
be used to encode subgraph relations

Neural embedding-guided search in order embedding
space can enable ML model to identify motifs much
more frequent than existing methods
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