
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS

• Homework 1 due on Thursday (2/2)
• Based on course feedback, we will hold in-person

OHs every week on Wednesday 9-11 AM PT.
Location will be updated on the OH calendar.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
PyG provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

http://www.pyg.org/
https://github.com/snap-stanford/GraphGym

How powerful are GNNs?
 Many GNN models have been proposed (e.g.,

GCN, GAT, GraphSAGE, design space).

 What is the expressive power (ability to
distinguish different graph structures) of these
GNN models?

 How to design a maximally expressive GNN
model?

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

(2) Aggregation

(1) Message

 We focus on message passing GNNs:

▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

, 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙
, 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣

𝑙

 Many GNN models have been proposed:

▪ GCN, GraphSAGE, GAT, Design Space etc.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

Different GNN models use different

neural networks in the box

?

?

?

?

 GCN (mean-pool)

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

Element-wise mean pooling +

Linear + ReLU non-linearity

?

?

?

?

[Kipf and Welling ICLR 2017]

 GraphSAGE (max-pool)

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

MLP + element-wise max-pooling

?

?

?

?

[Hamilton et al. NeurIPS 2017]

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

 We use node same/different colors to represent
nodes with same/different features.

▪ For example, the graph below assumes all the nodes
share the same feature.

 Key question: How well can a GNN distinguish
different graph structures?

1 2

3

45

 We specifically consider local neighborhood
structures around each node in a graph.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

▪ Example: Nodes 1 and 5
have different
neighborhood structures
because they have
different node degrees.

1 2

3

45

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

 We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

▪ Example: Nodes 1 and 4
both have the same node
degree of 2. However, they
still have different
neighborhood structures
because their neighbors
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.

Node 4 has neighbors of degrees 1 and 3.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

 We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

▪ Example: Nodes 1 and 2
have the same
neighborhood structure
because they are
symmetric within the
graph.

Node 1 has neighbors of degrees 2 and 3.

Node 2 has neighbors of degrees 2 and 3.

And even if we go a step deeper to 2nd hop neighbors, both nodes

have the same degrees (Node 4 of degree 2)

 Key question: Can GNN node embeddings
distinguish different node’s local
neighborhood structures?

▪ If so, when? If not, when will a GNN fail?

 Next: We need to understand how a GNN
captures local neighborhood structures.

▪ Key concept: Computational graph

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

 In each layer, a GNN aggregates neighboring node
embeddings.

 A GNN generates node embeddings through a
computational graph defined by the neighborhood.

▪ Ex: Node 1’s computational graph (2-layer GNN)

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

1 2

3

45

1

2 5

1 5 1 2 4

 Ex: Nodes 1 and 2’s computational graphs.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

 Ex: Nodes 1 and 2’s computational graphs.
 But GNN only sees node features (not IDs):

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

1 2

3

45

 A GNN will generate the same embedding for
nodes 1 and 2 because:
▪ Computational graphs are the same.

▪ Node features (colors) are identical.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

1 2

3

45

1 2

Note: GNN does not

care about node ids, it
just aggregates features
vectors of different nodes.

GNN won’t be able to distinguish nodes 1 and 2

 In general, different local neighborhoods
define different computational graphs

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

3

4

3 5

 Computational graphs are identical to rooted
subtree structures around each node.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Rooted subtree structures

(defined by recursively unfolding

neighboring nodes from the root nodes)

3

4

3 5

 GNN‘s node embeddings capture rooted
subtree structures.

 Most expressive GNN maps different rooted
subtrees into different node embeddings
(represented by different colors).

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Embedding

 Function 𝑓:𝑋 → Y is injective if it maps
different elements into different outputs.

 Intuition: 𝑓 retains all the information about
input.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

𝑋 𝑌

1

2

3

D

B

C

A

𝑓

 Most expressive GNN should map subtrees to
the node embeddings injectively.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

ℝ𝑑

Embedding space

Subtrees

 Key observation: Subtrees of the same depth
can be recursively characterized from the leaf
nodes to the root nodes.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,

3 neighbors)

Input features

are uniform
Input features

are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,

3 neighbors)

From leaves

to the root

From leaves

to the root

 If each step of GNN’s aggregation can fully
retain the neighboring information, the
generated node embeddings can distinguish
different rooted subtrees.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,

3 neighbors)

Input features

are uniform

Input features

are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,

3 neighbors)

Fully retain

neighboring

information

Fully retain

neighboring

information

 In other words, most expressive GNN would
use an injective neighbor aggregation
function at each step.

▪ Maps different neighbors to different embeddings.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

1

2 5

1 5 1 2 4

Input features

are uniform

Input features

are uniform

4

3 5

4 1 2 4

Injective

neighbor

aggregation

Injective

neighbor

aggregation

 Summary so far

▪ To generate a node embedding, GNNs use a
computational graph corresponding to a subtree
rooted around each node.

▪ GNN can fully distinguish different subtree
structures if every step of its neighbor
aggregation is injective.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

1 2

3

45

1

2 5

1 5 1 2 4

Input graph Computational

graph

= Rooted

subtree

Using injective

neighbor

aggregation

→ distinguish

different
subtrees

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Key observation: Expressive power of GNNs
can be characterized by that of neighbor
aggregation functions they use.

▪ A more expressive aggregation function leads to a
more expressive a GNN.

▪ Injective aggregation function leads to the most
expressive GNN.

 Next:

▪ Theoretically analyze expressive power of
aggregation functions.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

 Observation: Neighbor aggregation can be
abstracted as a function over a multi-set (a
set with repeating elements).

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

Neighbor

aggregation
Multi-set function

Equivalent

Examples of

multi-set

Same color indicates the

same features.

 Next: We analyze aggregation functions of
two popular GNN models

▪ GCN (mean-pool) [Kipf & Welling, ICLR 2017]

▪ Uses element-wise mean pooling over neighboring node
features

Mean(𝑥𝑢 𝑢∈𝑁(𝑣))

▪ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Uses element-wise max pooling over neighboring node
features

Max(𝑥𝑢 𝑢∈𝑁 𝑣)

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Take element-wise mean, followed by linear
function and ReLU activation, i.e., max(0, 𝑥).

▪ Theorem [Xu et al. ICLR 2019]

▪ GCN’s aggregation function cannot distinguish different
multi-sets with the same color proportion.

 Why?
3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Failure case

 For simplicity, we assume node features
(colors) are represented by one-hot encoding.

▪ Example: If there are two distinct colors:

▪ This assumption is sufficient to illustrate how GCN
fails.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Failure case illustration

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-

mean-pool

 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Apply an MLP, then take element-wise max.

▪ Theorem [Xu et al. ICLR 2019]

▪ GraphSAGE’s aggregation function cannot distinguish
different multi-sets with the same set of distinct colors.

 Why?

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Failure case

 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Failure case illustration

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

MLP

For simplicity,

assume the one-

hot encoding

after MLP.

Element-wise-

max-pool

The same outputs!

 We analyzed the expressive power of GNNs.
 Main takeaways:

▪ Expressive power of GNNs can be characterized by
that of the neighbor aggregation function.

▪ Neighbor aggregation is a function over multi-sets
(sets with repeating elements)

▪ GCN and GraphSAGE’s aggregation functions fail to
distinguish some basic multi-sets; hence not injective.

▪ Therefore, GCN and GraphSAGE are not maximally
powerful GNNs.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

 Our goal: Design maximally powerful GNNs
in the class of message-passing GNNs.

 This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

 Here, we design a neural network that can
model injective multiset function.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed
as:

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

𝑆 : multi-set

Some non-

linear function

Some non-

linear function

𝑓 𝑓 𝑓+ +

Sum over multi-set

Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of
the one-hot encodings retains all the information about
the input multi-set.

Example:

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

𝑓 𝑓 𝑓+ +

+ + =One-hot

 How to model 𝜱 and 𝒇 in 𝜱 σ𝒙∈𝑺 𝒇(𝒙) ?
 We use a Multi-Layer Perceptron (MLP).
 Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

▪ 1-hidden-layer MLP with sufficiently-large hidden
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any
continuous function to an arbitrary accuracy.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

𝑾1 𝑾2𝜎Input Output

 We have arrived at a neural network that can
model any injective multiset function.

▪ In practice, MLP hidden dimensionality of 100 to
500 is sufficient.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

 Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

▪ Apply an MLP, element-wise sum, followed by
another MLP.

 Theorem [Xu et al. ICLR 2019]

▪ GIN‘s neighbor aggregation function is injective.
 No failure cases!
 GIN is THE most expressive GNN in the class of

message-passing GNNs we have introduced!
3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

 So far: We have described the neighbor
aggregation part of GIN.

 We now describe the full model of GIN by
relating it to WL graph kernel (traditional way
of obtaining graph-level features).

▪ We will see how GIN is a “neural network” version
of the WL graph kernel.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Recall: Color refinement algorithm in WL kernel.
 Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.

▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Example of color refinement given two graphs

▪ Assign initial colors

▪ Aggregate neighboring colors

3/7/2023 46Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1 1

1

1 1

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs

▪ Aggregated colors:

▪ Injectively HASH the aggregated colors

3/7/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4 3

5

2 2

4

3 4

5

2 2

4

HASH table: Injective!

1,1

1,11

1,111

1,1111

-->

-->

-->

-->

2

3

4

5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs
 Process continues until a stable coloring is

reached
 Two graphs are considered isomorphic if they

have the same set of colors.

3/7/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

11 8

12

7 7

11

9 11

13

7 6

10

 GIN uses a neural network to model the
injective HASH function.

 Specifically, we will model the injective
function over the tuple:

(𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

)

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

Root node

features
Neighboring

node colors

Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Root node

feature
Neighboring

node features
(𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢

𝑢∈𝑁 𝑣
)

 If input feature 𝑐 0 (𝑣) is represented as one-
hot, direct summation is injective.

 We only need Φ to ensure the injectivity.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

+ +

+ + =

Example:

Root node

features Neighboring node

features This MLP can provide “one-hot” input

feature for the next layer.

 GIN’s node embedding updates
 Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial vector 𝑐 0 𝑣 to each node 𝑣.

▪ Iteratively update node vectors by

𝑐 𝑘+1 𝑣 = GINConv 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where GINConv maps different inputs to different embeddings.

▪ After 𝐾 steps of GIN iterations, 𝑐 𝐾 𝑣 summarizes
the structure of 𝐾-hop neighborhood.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Differentiable color HASH function

 GIN can be understood as differentiable neural
version of the WL graph Kernel:

 Advantages of GIN over the WL graph kernel are:

▪ Node embeddings are low-dimensional; hence, they can
capture the fine-grained similarity of different nodes.

▪ Parameters of the update function can be learned for the
downstream tasks.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Update target Update function

WL Graph Kernel Node colors
(one-hot)

HASH

GIN Node embeddings
(low-dim vectors)

GINConv

 Because of the relation between GIN and the
WL graph kernel, their expressive is exactly the
same.

▪ If two graphs can be distinguished by GIN, they can be
also distinguished by the WL kernel, and vice versa.

 How powerful is this?

▪ WL kernel has been both theoretically and
empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

▪ Hence, GIN is also powerful enough to distinguish
most of the real graphs!

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 55

Colors represent feature values

 Can the expressive power of GNNs be improved?
▪ There are basic graph structures that existing GNN

framework cannot distinguish, such as difference in cycles.

▪ GNNs’ expressive power can be improved to resolve
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

▪ Stay tuned for Lecture 15: Advanced Topics in GNNs
3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Graphs

𝑣1A 𝑣2B

Computational graphs

for nodes 𝑣1 and 𝑣2:

 We design a neural network that can model
injective multi-set function.

 We use the neural network for neighbor
aggregation function and arrive at GIN---the
most expressive GNN model.

 The key is to use element-wise sum pooling,
instead of mean-/max-pooling.

 GIN is closely related to the WL graph kernel.
 Both GIN and WL graph kernel can distinguish

most of the real graphs!

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Data preprocessing is important:

▪ Node attributes can vary a lot! Use normalization

▪ E.g. probability ranges (0,1), but some inputs could have much
larger range, say (−1000, 1000)

 Optimizer: ADAM is relatively robust to learning rate

 Activation function

▪ ReLU activation function often works well

▪ Other good alternatives: LeakyReLU, PReLU

▪ No activation function at your output layer

▪ Include bias term in every layer

 Embedding dimensions:

▪ 32, 64 and 128 are often good starting points
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html

 Debug issues: Loss/accuracy not converging
during training

▪ Check pipeline (e.g. in PyTorch we need zero_grad)

▪ Adjust hyperparameters such as learning rate

▪ Pay attention to weight parameter initialization

▪ Scrutinize loss function!

 Important for model development:

▪ Overfit on (part of) training data:

▪ With a small training dataset, loss should be essentially
close to 0, with an expressive neural network

▪ Monitor the training & validation loss curve
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.init.html

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Auto-differentiation frameworks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:
Implements a variety
of GNN architectures

DGL GraphNets

https://www.dgl.ai/
https://github.com/deepmind/graph_nets

Tutorials and overviews:
▪ Relational inductive biases and graph networks (Battaglia et al., 2018)
▪ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
▪ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
▪ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
▪ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling

(Ying et al., 2018, Zhang et al., 2018)
▪ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
▪ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
▪ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
▪ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
▪ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
▪ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
▪ Pre-training Graph Neural Networks (Hu et al., 2019)
▪ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

	Slide 1: Stanford CS224W: How Expressive are Graph Neural Networks?
	Slide 2: Stanford CS224W: Graph Neural Networks
	Slide 3: Recap: A General GNN Framework
	Slide 4: Recap: GNN Training Pipeline
	Slide 5: Theory of GNNs
	Slide 6: Background: A Single GNN Layer
	Slide 7: Background: Many GNN Models
	Slide 8: GNN Model Example (1)
	Slide 9: GNN Model Example (2)
	Slide 10: Note: Node Colors
	Slide 11: Local Neighborhood Structures
	Slide 12: Local Neighborhood Structures
	Slide 13: Local Neighborhood Structures
	Slide 14: Local Neighborhood Structures
	Slide 15: Computational Graph (1)
	Slide 16: Computational Graph (2)
	Slide 17: Computational Graph (3)
	Slide 18: Computational Graph (4)
	Slide 19: Computational Graph
	Slide 20: Computational Graph
	Slide 21: Computational Graph
	Slide 22: Recall: Injective Function
	Slide 23: How Expressive is a GNN?
	Slide 24: How Expressive is a GNN?
	Slide 25: How Expressive is a GNN?
	Slide 26: How Expressive is a GNN?
	Slide 27: How Expressive is a GNN?
	Slide 28: Stanford CS224W: Designing the Most Powerful Graph Neural Network
	Slide 29: Expressive Power of GNNs
	Slide 30: Neighbor Aggregation
	Slide 31: Neighbor Aggregation
	Slide 32: Neighbor Aggregation: Case Study
	Slide 33: Neighbor Aggregation
	Slide 34: Neighbor Aggregation: Case Study
	Slide 35: Neighbor Aggregation: Case Study
	Slide 36: Neighbor Aggregation: Case Study
	Slide 37: Summary So Far
	Slide 38: Designing Most Expressive GNNs
	Slide 39: Injective Multi-Set Function
	Slide 40: Injective Multi-Set Function
	Slide 41: Universal Approximation Theorem
	Slide 42: Injective Multi-Set Function
	Slide 43: Most Expressive GNN
	Slide 44: Full Model of GIN
	Slide 45: Relation to WL Graph Kernel
	Slide 46: Color Refinement (1)
	Slide 47: Color Refinement (2)
	Slide 48: Color Refinement (3)
	Slide 49: The Complete GIN Model
	Slide 50: The Complete GIN Model
	Slide 51: The Complete GIN Model
	Slide 52: The Complete GIN Model
	Slide 53: GIN and WL Graph Kernel
	Slide 54: Expressive Power of GIN
	Slide 55: Discussion: The Power of Pooling
	Slide 56: Improving GNNs’ Power
	Slide 57: Summary of the Lecture
	Slide 58: Stanford CS224W: When Things Don’t Go As Planned
	Slide 59: General Tips
	Slide 60: Debugging Deep Networks
	Slide 61: Resources on Graph Neural Networks
	Slide 62: Resources on Graph Neural Networks

