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ANNOUNCEMENTS

• Homework 1 due on Thursday (2/2)
• Based on course feedback, we will hold in-person 

OHs every week on Wednesday 9-11 AM PT. 
Location will be updated on the OH calendar.
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(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

Dataset split

Implementation resources:
PyG provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design

http://www.pyg.org/
https://github.com/snap-stanford/GraphGym


How powerful are GNNs?
 Many GNN models have been proposed (e.g., 

GCN, GAT, GraphSAGE, design space).

 What is the expressive power (ability to 
distinguish different graph structures) of these 
GNN models?

 How to design a maximally expressive GNN 
model?
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(2) Aggregation

(1) Message

 We focus on message passing GNNs:

▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

, 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙
, 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣

𝑙



 Many GNN models have been proposed:

▪ GCN,  GraphSAGE, GAT, Design Space etc.
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Different GNN models use different 

neural networks in the box

?

?

?

?



 GCN (mean-pool)
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Element-wise mean pooling +

Linear + ReLU non-linearity

?

?

?

?

[Kipf and Welling ICLR 2017]



 GraphSAGE (max-pool)
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MLP + element-wise max-pooling

?

?

?

?

[Hamilton et al. NeurIPS 2017]
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 We use node same/different colors to represent 
nodes with same/different features.

▪ For example, the graph below assumes all the nodes 
share the same feature.

 Key question: How well can a GNN distinguish 
different graph structures?

1 2

3

45



 We specifically consider local neighborhood 
structures around each node in a graph.
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▪ Example: Nodes 1 and 5 
have different 
neighborhood structures 
because they have 
different node degrees.

1 2

3

45
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 We specifically consider local neighborhood 
structures around each node in a graph.

1 2

3

45

▪ Example: Nodes 1 and 4
both have the same node 
degree of 2. However, they 
still have different
neighborhood structures 
because their neighbors 
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.

Node 4 has neighbors of degrees 1 and 3.
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 We specifically consider local neighborhood 
structures around each node in a graph.

1 2

3

45

▪ Example: Nodes 1 and 2 
have the same
neighborhood structure 
because they are 
symmetric within the 
graph.

Node 1 has neighbors of degrees 2 and 3.

Node 2 has neighbors of degrees 2 and 3.

And even if we go a step deeper to 2nd hop neighbors, both nodes

have the same degrees (Node 4 of degree 2)



 Key question: Can GNN node embeddings 
distinguish different node’s local 
neighborhood structures?

▪ If so, when? If not, when will a GNN fail?

 Next: We need to understand how a GNN 
captures local neighborhood structures.

▪ Key concept: Computational graph
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 In each layer, a GNN aggregates neighboring node 
embeddings.

 A GNN generates node embeddings through a 
computational graph defined by the neighborhood.

▪ Ex: Node 1’s computational graph (2-layer GNN)
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 Ex: Nodes 1 and 2’s computational graphs.
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 Ex: Nodes 1 and 2’s computational graphs.
 But GNN only sees node features (not IDs):
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1 2

3

45



 A GNN will generate the same embedding for 
nodes 1 and 2 because:
▪ Computational graphs are the same.

▪ Node features (colors) are identical.
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1 2

3

45

1 2

Note: GNN does not

care about node ids, it
just aggregates features
vectors of different nodes.

GNN won’t be able to distinguish nodes 1 and 2



 In general, different local neighborhoods 
define different computational graphs
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 Computational graphs are identical to rooted 
subtree structures around each node.
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 GNN‘s node embeddings capture rooted 
subtree structures.

 Most expressive GNN maps different rooted 
subtrees into different node embeddings 
(represented by different colors).
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 Function 𝑓:𝑋 → Y is injective if it maps 
different elements into different outputs. 

 Intuition: 𝑓 retains all the information about 
input.
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 Most expressive GNN should map subtrees to 
the node embeddings injectively.
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 Key observation: Subtrees of the same depth 
can be recursively characterized from the leaf 
nodes to the root nodes.
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1
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Input features 
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 If each step of GNN’s aggregation can fully 
retain the neighboring information, the 
generated node embeddings can distinguish 
different rooted subtrees.
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 In other words, most expressive GNN would 
use an injective neighbor aggregation
function at each step.

▪ Maps different neighbors to different embeddings.
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 Summary so far

▪ To generate a node embedding, GNNs use a 
computational graph corresponding to a subtree 
rooted around each node.

▪ GNN can fully distinguish different subtree 
structures if every step of its neighbor 
aggregation is injective.
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 Key observation: Expressive power of GNNs 
can be characterized by that of neighbor 
aggregation functions they use.

▪ A more expressive aggregation function leads to a 
more expressive a GNN.

▪ Injective aggregation function leads to the most 
expressive GNN.

 Next:

▪ Theoretically analyze expressive power of 
aggregation functions.
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 Observation: Neighbor aggregation can be 
abstracted as a function over a multi-set (a 
set with repeating elements). 
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same features.



 Next: We analyze aggregation functions of 
two popular GNN models 

▪ GCN (mean-pool) [Kipf & Welling, ICLR 2017] 

▪ Uses element-wise mean pooling over neighboring node 
features

Mean( 𝑥𝑢 𝑢∈𝑁(𝑣))

▪ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Uses element-wise max pooling over neighboring node 
features

Max( 𝑥𝑢 𝑢∈𝑁 𝑣 )
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 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Take element-wise mean, followed by linear 
function and ReLU activation, i.e., max(0, 𝑥).

▪ Theorem [Xu et al. ICLR 2019] 

▪ GCN’s aggregation function cannot distinguish different 
multi-sets with the same color proportion. 

 Why?
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Failure case



 For simplicity, we assume node features 
(colors) are represented by one-hot encoding.

▪ Example: If there are two distinct colors:

▪ This assumption is sufficient to illustrate how GCN 
fails.
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 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Failure case illustration
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Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-

mean-pool



 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Apply an MLP, then take element-wise max.

▪ Theorem [Xu et al. ICLR 2019] 

▪ GraphSAGE’s aggregation function cannot distinguish 
different multi-sets with the same set of distinct colors. 

 Why?
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Failure case



 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Failure case illustration
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MLP

For simplicity, 

assume the one-

hot encoding 

after MLP.

Element-wise-

max-pool

The same outputs!



 We analyzed the expressive power of GNNs.
 Main takeaways: 

▪ Expressive power of GNNs can be characterized by 
that of the neighbor aggregation function.

▪ Neighbor aggregation is a function over multi-sets 
(sets with repeating elements) 

▪ GCN and GraphSAGE’s aggregation functions fail to 
distinguish some basic multi-sets; hence not injective.

▪ Therefore, GCN and GraphSAGE are not maximally 
powerful GNNs.
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 Our goal: Design maximally powerful GNNs 
in the class of message-passing GNNs.

 This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

 Here, we design a neural network that can 
model injective multiset function.
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Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed 
as:
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𝑆 : multi-set

Some non-

linear function

Some non-

linear function

𝑓 𝑓 𝑓+ +

Sum over multi-set



Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of 
the one-hot encodings retains all the information about 
the input multi-set.

Example:
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𝑓 𝑓 𝑓+ +

+ + =One-hot



 How to model 𝜱 and 𝒇 in 𝜱 σ𝒙∈𝑺 𝒇(𝒙) ?
 We use a Multi-Layer Perceptron (MLP).
 Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

▪ 1-hidden-layer MLP with sufficiently-large hidden 
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any 
continuous function to an arbitrary accuracy.
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𝑾1 𝑾2𝜎Input Output



 We have arrived at a neural network that can 
model any injective multiset function.

▪ In practice, MLP hidden dimensionality of 100 to 
500 is sufficient.

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42



 Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

▪ Apply an MLP, element-wise sum, followed by 
another MLP.

 Theorem [Xu et al. ICLR 2019] 

▪ GIN‘s neighbor aggregation function is injective.
 No failure cases!
 GIN is THE most expressive GNN in the class of 

message-passing GNNs we have introduced!
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 So far: We have described the neighbor 
aggregation part of GIN.

 We now describe the full model of GIN by 
relating it to WL graph kernel (traditional way 
of obtaining graph-level features).

▪ We will see how GIN is a “neural network” version 
of the WL graph kernel.
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Recall: Color refinement algorithm in WL kernel.
 Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.

▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood
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Example of color refinement given two graphs

▪ Assign initial colors

▪ Aggregate neighboring colors
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Example of color refinement given two graphs

▪ Aggregated colors:

▪ Injectively HASH the aggregated colors
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Example of color refinement given two graphs
 Process continues until a stable coloring is 

reached
 Two graphs are considered isomorphic if they 

have the same set of colors.
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 GIN uses a neural network to model the 
injective HASH function.

 Specifically, we will model the injective 
function over the tuple:

(𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

)
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𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

Root node 

features
Neighboring 

node colors



Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.
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Root node 

feature
Neighboring 

node features
(𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢

𝑢∈𝑁 𝑣
)



 If input feature 𝑐 0 (𝑣) is represented as one-
hot, direct summation is injective.

 We only need Φ to ensure the injectivity.
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+ +

+ + =

Example:

Root node 

features Neighboring node 

features This MLP can provide “one-hot” input 

feature for the next layer.



 GIN’s node embedding updates
 Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial vector 𝑐 0 𝑣 to each node 𝑣.

▪ Iteratively update node vectors by

𝑐 𝑘+1 𝑣 = GINConv 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where GINConv maps different inputs to different embeddings.

▪ After 𝐾 steps of GIN iterations, 𝑐 𝐾 𝑣 summarizes 
the structure of 𝐾-hop neighborhood.
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Differentiable color HASH function



 GIN can be understood as differentiable neural 
version of the WL graph Kernel:

 Advantages of GIN over the WL graph kernel are:

▪ Node embeddings are low-dimensional; hence, they can 
capture the fine-grained similarity of different nodes.

▪ Parameters of the update function can be learned for the 
downstream tasks.
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Update target Update function

WL Graph Kernel Node colors
(one-hot) 

HASH 

GIN Node embeddings
(low-dim vectors)

GINConv



 Because of the relation between GIN and the 
WL graph kernel, their expressive is exactly the 
same.

▪ If two graphs can be distinguished by GIN, they can be 
also distinguished by the WL kernel, and vice versa.

 How powerful is this?

▪ WL kernel has been both theoretically and 
empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

▪ Hence, GIN is also powerful enough to distinguish 
most of the real graphs!
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Failure cases for mean and max pooling:

Ranking by discriminative power:
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Colors represent feature values



 Can the expressive power of GNNs be improved?
▪ There are basic graph structures that existing GNN 

framework cannot distinguish, such as difference in cycles.

▪ GNNs’ expressive power can be improved to resolve 
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

▪ Stay tuned for Lecture 15: Advanced Topics in GNNs
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Graphs

𝑣1A 𝑣2B

Computational graphs 

for nodes 𝑣1 and 𝑣2:



 We design a neural network that can model 
injective multi-set function.

 We use the neural network for neighbor 
aggregation function and arrive at GIN---the 
most expressive GNN model.

 The key is to use element-wise sum pooling, 
instead of mean-/max-pooling.

 GIN is closely related to the WL graph kernel.
 Both GIN and WL graph kernel can distinguish 

most of the real graphs!

3/7/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



 Data preprocessing is important: 

▪ Node attributes can vary a lot! Use normalization

▪ E.g. probability ranges (0,1), but some inputs could have much 
larger range, say (−1000, 1000)

 Optimizer: ADAM is relatively robust to learning rate

 Activation function

▪ ReLU activation function often works well

▪ Other good alternatives: LeakyReLU, PReLU

▪ No activation function at your output layer 

▪ Include bias term in every layer 

 Embedding dimensions:

▪ 32, 64 and 128 are often good starting points
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html


 Debug issues: Loss/accuracy not converging 
during training

▪ Check pipeline (e.g. in PyTorch we need zero_grad)

▪ Adjust hyperparameters such as learning rate

▪ Pay attention to weight parameter initialization

▪ Scrutinize loss function!

 Important for model development:

▪ Overfit on (part of) training data: 

▪ With a small training dataset, loss should be essentially 
close to 0, with an expressive neural network

▪ Monitor the training & validation loss curve
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https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.init.html
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Auto-differentiation frameworks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:
Implements a variety 
of GNN architectures

DGL GraphNets

https://www.dgl.ai/
https://github.com/deepmind/graph_nets


Tutorials and overviews:
▪ Relational inductive biases and graph networks (Battaglia et al., 2018)
▪ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
▪ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
▪ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
▪ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling 

(Ying et al., 2018,  Zhang et al., 2018)
▪ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
▪ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
▪ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
▪ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
▪ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
▪ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
▪ Pre-training Graph Neural Networks (Hu et al., 2019)
▪ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
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