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 Goal: create long-lasting resources for your 
technical profiles + broader graph ML 
community

 Three types of projects

▪ 1) Real-world applications of GNNs

▪ 2) Tutorial on PyG functionality

▪ 3) Implementation of cutting-edge research

 We will publish your blog posts on our 
course’s Medium page!
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https://medium.com/stanford-cs224w


 Goal: identify a specific use case and 
demonstrate how GNNs and PyG can be used 
to solve this problem

 Output: blog post, Google colab
 Example use cases

▪ Fraud detection

▪ Predicting drug interactions

▪ Friend recommendation

 Check out the featured posts from our course 
last year as examples of this type of project
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https://medium.com/stanford-cs224w/featured/home


 Goal: develop a tutorial that explains how to 
use existing PyG functionality

 Output: blog post, Google colab
 Example topics for tutorials

▪ PyG’s explainability module

▪ Methods for graph sampling (e.g., negative 
sampling, sampling on heterogeneous graphs)

▪ Tutorial on GraphGym, a platform for designing 
and evaluating GNNs

 Check out example tutorials from PyG
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https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html
https://medium.com/@pytorch_geometric/link-prediction-on-heterogeneous-graphs-with-pyg-6d5c29677c70


 Goal: implement interesting methods from a 
recent research paper in graph ML 

 Output: PR to PyG contrib, short blog post 
 Project details
▪ Implementation should include comprehensive 

testing and documentation on new functionality

▪ Try to build on existing PyG and PyTorch code 
wherever possible

▪ Note: this project is more manageable if you are 
already comfortable with PyTorch and deep 
learning. We also highly recommend group of 3.
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https://pytorch-geometric.readthedocs.io/en/latest/modules/contrib.html


 Project is worth 20% of your course grade

▪ Project proposal (2 pages), due February 7

▪ Final reports, due March 21

 We recommend groups of 3, but groups of 2 
are also allowed

 Full project description will be released 
tonight! We will provide much more detail on 
each project type, examples, pointers to 
datasets, tips for writing blog posts and 
Google Colabs, etc.
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(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


(2) Aggregation

(1) Message

 Putting things together:

▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness

▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …

▪ Can be added to message or aggregation
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= AGG 𝑙 𝐦𝑢
𝑙
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 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs

▪ Observation from over-smoothing: Node embeddings in 
earlier GNN layers can sometimes better differentiate nodes

▪ Solution: We can increase the impact of earlier layers on the 
final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


 Graph Feature manipulation

▪ The input graph lacks features → feature 
augmentation

 Graph Structure manipulation

▪ The graph is too sparse → Add virtual nodes / edges

▪ The graph is too dense → Sample neighbors when 
doing message passing

▪ The graph is too large → Sample subgraphs to 
compute embeddings 

▪ Will cover later in lecture: Scaling up GNNs
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 Feature augmentation: constant vs. one-hot
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Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. High dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1



Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Example: Cycle count feature

▪ Can GNN learn the length of a cycle that 𝑣1 resides in?

▪ Unfortunately, no
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4



 𝒗𝟏 cannot differentiate which graph it resides in 

▪ Because all the nodes in the graph have degree of 2

▪ The computational graphs will be the same binary tree
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𝑣1 𝑣2

𝑣1 resides in a cycle 
with length 3

𝑣1 resides in a cycle 
with length 4

𝑣1

𝑣1 resides in a cycle with infinite length

… …

The computational 
graphs for node 𝒗𝟏
are always the same



Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution: 

▪ We can use cycle count as augmented node features
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Other commonly used augmented features:

▪ Degree distribution

▪ Clustering coefficient

▪ PageRank

▪ Centrality

▪ …

 Any feature we have introduced can be used!
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 Motivation: Augment sparse graphs
 (1) Add virtual edges

▪ Common approach: Connect 2-hop neighbors via 
virtual edges

▪ Intuition: Instead of using adj. matrix 𝐴 for GNN 
computation, use 𝐴 + 𝐴2
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A

B

C

D

E

Authors Papers

▪ Use cases: Bipartite graphs

▪ Author-to-papers (they authored)

▪ 2-hop virtual edges make an author-author 
collaboration graph



 Motivation: Augment sparse graphs
 (2) Add virtual nodes

▪ The virtual node will connect to all the 
nodes in the graph

▪ Suppose in a sparse graph, two nodes have 
shortest path distance of 10

▪ After adding the virtual node, all the nodes 
will have a distance of 2 
▪ Node A – Virtual node – Node B

▪ Benefits: Greatly improves message 
passing in sparse graphs
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The virtual 
node



 Previously:
▪ All the nodes are used for message passing

 New idea: (Randomly) sample a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


 For example, we can randomly choose 2 
neighbors to pass messages

▪ Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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 Next time when we compute the embeddings, 
we can sample different neighbors

▪ Only nodes 𝐶 and 𝐷 will pass message to 𝐴
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 In expectation, we can get embeddings similar 
to the case where all the neighbors are used

▪ Benefits: Greatly reduce computational cost

▪ And in practice it works great!
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA
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(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf
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Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿 , ∀𝑣 ∈ 𝐺}
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Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



 Idea: Different task levels require different 
prediction heads
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Node-level

prediction

Edge-level 

prediction

Graph-level 

prediction



 Node-level prediction: We can directly make 
prediction using node embeddings!

 After GNN computation, we have 𝑑-dim node 

embeddings: {𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

 Suppose we want to make 𝑘-way prediction
▪ Classification: classify among 𝑘 categories

▪ Regression: regress on 𝑘 targets

▪ 𝐖(𝐻) ∈ ℝ𝑘∗𝑑 : We map node embeddings from 

𝐡𝑣
(𝐿)

∈ ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘 so that we can compute the 
loss
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 Edge-level prediction: Make prediction using 
pairs of node embeddings

 Suppose we want to make 𝑘-way prediction

 What are the options for ?
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?
𝐡𝑢

𝐿

𝐡𝑣
𝐿



 Options for :

 (1) Concatenation + Linear

▪ We have seen this in graph attention

▪ ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
))

▪ Here Linear(⋅) will map 2𝑑-dimensional 
embeddings (since we concatenated embeddings) 
to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
ෞ𝒚𝑢𝑣



 Options for Headedg𝑒(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
):

 (2) Dot product

▪ ෝ𝒚𝒖𝒗 = (𝐡𝑢
𝐿
)𝑇𝐡𝑣

𝐿

▪ This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

▪ Applying to 𝒌-way prediction: 

▪ Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿
)𝑇𝐖(1)𝐡𝑣

𝐿

…

ෝ𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿
)𝑇𝐖(𝑘)𝐡𝑣

𝐿

ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏)
,… , ෝ𝒚𝒖𝒗

(𝒌)
) ∈ ℝ𝑘
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 Graph-level prediction: Make prediction using 
all the node embeddings in our graph

 Suppose we want to make 𝑘-way prediction
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Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to 

AGG(⋅) in a GNN layer!



 Options for 

 (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (2) Global max pooling

ෝ𝒚𝐺 = Max({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 These options work great for small graphs
 Can we do better for large graphs?
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K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf


 Issue: Global pooling over a (large) graph will lose 
information

 Toy example: we use 1-dim node embeddings

▪ Node embeddings for 𝐺1: {−1,−2, 0, 1, 2}

▪ Node embeddings for 𝐺2: {−10,−20, 0, 10, 20}

▪ Clearly 𝐺1 and 𝐺2 have very different node embeddings 
→ Their structures should be different

 If we do global sum pooling: 

▪ Prediction for 𝐺1: ො𝑦𝐺 = Sum −1,−2, 0, 1, 2 = 0

▪ Prediction for 𝐺2: ො𝑦𝐺 = Sum −10,−20, 0, 10, 20 = 0

▪ We cannot differentiate 𝐺1 and 𝐺2!
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 A solution: Let’s aggregate all the node 
embeddings hierarchically

▪ Toy example: We will aggregate via ReLU Sum ⋅
▪ We first separately aggregate the first 2 nodes and last 3 nodes

▪ Then we aggregate again to make the final prediction

▪ 𝐺1 node embeddings: {−1,−2,0, 1, 2}

▪ Round 1: ො𝑦𝑎 = ReLU Sum −1,−2 = 0, ො𝑦𝑏 =
ReLU Sum 0,1, 2 = 3

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎 , 𝑦𝑏 = 𝟑

▪ 𝐺2 node embeddings: {−10,−20, 0, 10, 20}

▪ Round 1: ො𝑦𝑎 = ReLU Sum −10, −20 = 0, ො𝑦𝑏 =
ReLU Sum 0,10, 20 = 30

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎 , 𝑦𝑏 = 𝟑𝟎
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Now we can 
differentiate 
𝑮𝟏 and 𝑮𝟐 !



 DiffPool idea:

▪ Hierarchically pool node embeddings

▪ Leverage 2 independent GNNs at each level

▪ GNN A: Compute node embeddings

▪ GNN B: Compute the cluster that a node belongs to

▪ GNNs A and B at each level can be executed in parallel
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Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling , NeurIPS 2018

https://arxiv.org/pdf/1806.08804.pdf


 DiffPool idea:

▪ For each Pooling layer

▪ Use clustering assignments from GNN B to aggregate node 
embeddings generated by GNN A

▪ Create a single new node for each cluster, maintaining 
edges between clusters to generated a new pooled network

▪ Jointly train GNN A and GNN B
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(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



 Supervised learning on graphs
▪ Labels come from external sources
▪ E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs
▪ Signals come from graphs themselves 
▪ E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry
▪ We still have “supervision” in unsupervised learning
▪ E.g., train a GNN to predict node clustering coefficient

▪ An alternative name for “unsupervised” is “self-
supervised”
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 Supervised labels come from the specific use 
cases. For example:

▪ Node labels 𝒚𝒗: in a citation network, which subject 
area does a node belong to

▪ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an 
edge is fraudulent

▪ Graph labels 𝒚𝐺: among molecular graphs, the drug 
likeness of graphs

 Advice: Reduce your task to node / edge / graph 
labels, since they are easy to work with

▪ E.g., we knew some nodes form a cluster. We can treat 
the cluster that a node belongs to as a node label
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 The problem: sometimes we only have a graph, 
without any external labels

 The solution: “self-supervised learning”, we can 
find supervision signals within the graph.
▪ For example, we can let GNN predict the following:

▪ Node-level 𝒚𝑣. Node statistics: such as clustering 
coefficient, PageRank, …

▪ Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge 
between two nodes, predict if there should be a link

▪ Graph-level 𝒚𝐺 . Graph statistics: for example, predict 
if two graphs are isomorphic

▪ These tasks do not require any external labels!
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(3) How do we compute the final loss?
- Classification loss
- Regression loss



 The setting: We have 𝑁 data points

▪ Each data point can be a node/edge/graph

▪ Node-level: prediction ෝ𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

▪ Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

▪ Graph-level: prediction ෝ𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

▪ We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖 to refer 
predictions at all levels
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 Classification: labels 𝒚 𝑖 with discrete value

▪ E.g., Node classification: which category does a 
node belong to

 Regression: labels 𝒚 𝑖 with continuous value

▪ E.g., predict the drug likeness of a molecular graph

 GNNs can be applied to both settings
 Differences: loss function & evaluation 

metrics
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 As discussed in lecture 6, cross entropy (CE) is 
a very common loss function in classification

 𝐾-way prediction for 𝑖-th data point:

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding
ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples
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Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g. 

E.g. 



 For regression tasks we often use Mean Squared 
Error (MSE) a.k.a. L2 loss

 𝐾-way regression for data point (i):

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples
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1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g. 

E.g. 

𝒊-th data point

𝒋-th target
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC



 We use standard evaluation metrics for GNN

▪ (Content below can be found in any ML course)

▪ In practice we will use sklearn for implementation

▪ Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:

▪ Root mean square error (RMSE)

▪ Mean absolute error (MAE)
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https://scikit-learn.org/stable/modules/model_evaluation.html


 Evaluate classification tasks on graphs:
 (1) Multi-class classification
▪ We simply report the accuracy

 (2) Binary classification
▪ Metrics sensitive to classification threshold
▪ Accuracy

▪ Precision / Recall

▪ If the range of prediction is [0,1], we will use 0.5 as threshold

▪ Metric Agnostic to classification threshold
▪ ROC AUC
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 Accuracy:

 Precision (P):

 Recall (R):

 F1-Score:
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Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html


 ROC Curve: Captures the tradeoff in TPR and 
FPR as the classification threshold is varied 
for a binary classifier. 
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Note: the dashed line 
represents performance of 
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


 ROC AUC: Area under the ROC Curve. 
 Intuition: The probability that a classifier will rank a 

randomly chosen positive instance higher than a 
randomly chosen negative one
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Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu
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(5) How do we split our dataset 
into train / validation / test set?

Dataset split



 Fixed split: We will split our dataset once

▪ Training set: used for optimizing GNN parameters

▪ Validation set: develop model/hyperparameters

▪ Test set: held out until we report final performance

 A concern: sometimes we cannot guarantee 
that the test set will really be held out

 Random split: we will randomly split our 
dataset into training / validation / test

▪ We report average performance over different 
random seeds
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 Suppose we want to split an image dataset

▪ Image classification: Each data point is an image

▪ Here data points are independent

▪ Image 5 will not affect our prediction on image 1
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 Splitting a graph dataset is different!

▪ Node classification: Each data point is a node

▪ Here data points are NOT independent

▪ Node 5 will affect our prediction on node 1, because it will 
participate in message passing → affect node 1’s embedding

 What are our options?
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 Solution 1 (Transductive setting): The input 
graph can be observed in all the dataset splits 
(training, validation and test set). 

 We will only split the (node) labels
▪ At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels

▪ At validation time, we compute embeddings using 
the entire graph, and evaluate on node 3&4’s labels
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 Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs

▪ Now we have 3 graphs that are independent. Node 5 will 
not affect our prediction on node 1 any more

▪ At training time, we compute embeddings using the 
graph over node 1&2, and train using node 1&2’s labels

▪ At validation time, we compute embeddings using the 
graph over node 3&4, and evaluate on node 3&4’s labels
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 Transductive setting: training / validation / test 
sets are on the same graph
▪ The dataset consists of one graph

▪ The entire graph can be observed in all dataset splits, 
we only split the labels

▪ Only applicable to node / edge prediction tasks
 Inductive setting: training / validation / test sets 

are on different graphs
▪ The dataset consists of multiple graphs

▪ Each split can only observe the graph(s) within the split. 
A successful model should generalize to unseen graphs

▪ Applicable to node / edge / graph tasks
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 Transductive node classification

▪ All the splits can observe the entire graph structure, but 
can only observe the labels of their respective nodes
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 Inductive node classification
▪ Suppose we have a dataset of 3 graphs
▪ Each split contains an independent graph



 Only the inductive setting is well defined for 
graph classification

▪ Because we have to test on unseen graphs

▪ Suppose we have a dataset of 5 graphs. Each split 
will contain independent graph(s).
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 Goal of link prediction: predict missing edges
 Setting up link prediction is tricky:

▪ Link prediction is an unsupervised / self-supervised 
task. We need to create the labels and dataset 
splits on our own

▪ Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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 For link prediction, we will split edges twice
 Step 1: Assign 2 types of edges in the original graph

▪ Message edges: Used for GNN message passing

▪ Supervision edges: Use for computing objectives

▪ After step 1:

▪ Only message edges will remain in the graph

▪ Supervision edges are used as supervision for edge 
predictions made by the model, will not be fed into GNN!
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 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split

▪ Suppose we have a dataset of 3 graphs. Each 
inductive split will contain an independent graph
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 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split

▪ Suppose we have a dataset of 3 graphs. Each 
inductive split will contain an independent graph

▪ In train or val or test set, each graph will have 2
types of edges: message edges + supervision edges

▪ Supervision edges are not the input to GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

Training set Validation set

Message 

edge

Supervision

edge
Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11



 Option 2: Transductive link prediction split:

▪ This is the default setting when people talk about 
link prediction

▪ Suppose we have a dataset of 1 graph
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 Option 2: Transductive link prediction split:

▪ By definition of “transductive”, the entire graph can 
be observed in all dataset splits

▪ But since edges are both part of graph structure and the 
supervision, we need to hold out validation / test edges

▪ To train the training set, we further need to hold out 
supervision edges for the training set

▪ Next: we will show the exact settings
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 Option 2: Transductive link prediction split:
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 Summary: Transductive link prediction split:

▪ Note: Link prediction settings are tricky and complex. You 
may find papers do link prediction differently. 

▪ Luckily, we have full support in PyG and GraphGym
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Implementation resources:
DeepSNAP provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym


 We introduce a general GNN framework:
▪ GNN Layer: 
▪ Transformation + Aggregation

▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity: 
▪ The over-smoothing problem

▪ Solution: skip connections

▪ Graph Augmentation:
▪ Feature augmentation

▪ Structure augmentation

▪ Learning Objectives
▪ The full training pipeline of a GNN
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