
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Goal: create long-lasting resources for your
technical profiles + broader graph ML
community

 Three types of projects

▪ 1) Real-world applications of GNNs

▪ 2) Tutorial on PyG functionality

▪ 3) Implementation of cutting-edge research

 We will publish your blog posts on our
course’s Medium page!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

https://medium.com/stanford-cs224w

 Goal: identify a specific use case and
demonstrate how GNNs and PyG can be used
to solve this problem

 Output: blog post, Google colab
 Example use cases

▪ Fraud detection

▪ Predicting drug interactions

▪ Friend recommendation

 Check out the featured posts from our course
last year as examples of this type of project

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

https://medium.com/stanford-cs224w/featured/home

 Goal: develop a tutorial that explains how to
use existing PyG functionality

 Output: blog post, Google colab
 Example topics for tutorials

▪ PyG’s explainability module

▪ Methods for graph sampling (e.g., negative
sampling, sampling on heterogeneous graphs)

▪ Tutorial on GraphGym, a platform for designing
and evaluating GNNs

 Check out example tutorials from PyG

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html
https://medium.com/@pytorch_geometric/link-prediction-on-heterogeneous-graphs-with-pyg-6d5c29677c70

 Goal: implement interesting methods from a
recent research paper in graph ML

 Output: PR to PyG contrib, short blog post
 Project details
▪ Implementation should include comprehensive

testing and documentation on new functionality

▪ Try to build on existing PyG and PyTorch code
wherever possible

▪ Note: this project is more manageable if you are
already comfortable with PyTorch and deep
learning. We also highly recommend group of 3.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

https://pytorch-geometric.readthedocs.io/en/latest/modules/contrib.html

 Project is worth 20% of your course grade

▪ Project proposal (2 pages), due February 7

▪ Final reports, due March 21

 We recommend groups of 3, but groups of 2
are also allowed

 Full project description will be released
tonight! We will provide much more detail on
each project type, examples, pointers to
datasets, tips for writing blog posts and
Google Colabs, etc.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

(2) Aggregation

(1) Message

 Putting things together:

▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness

▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …

▪ Can be added to message or aggregation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

, 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙
, 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣

𝑙

 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs

▪ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

▪ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

 Graph Feature manipulation

▪ The input graph lacks features → feature
augmentation

 Graph Structure manipulation

▪ The graph is too sparse → Add virtual nodes / edges

▪ The graph is too dense → Sample neighbors when
doing message passing

▪ The graph is too large → Sample subgraphs to
compute embeddings

▪ Will cover later in lecture: Scaling up GNNs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

 Feature augmentation: constant vs. one-hot

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Example: Cycle count feature

▪ Can GNN learn the length of a cycle that 𝑣1 resides in?

▪ Unfortunately, no

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

 𝒗𝟏 cannot differentiate which graph it resides in

▪ Because all the nodes in the graph have degree of 2

▪ The computational graphs will be the same binary tree

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

𝑣1 𝑣2

𝑣1 resides in a cycle
with length 3

𝑣1 resides in a cycle
with length 4

𝑣1

𝑣1 resides in a cycle with infinite length

… …

The computational
graphs for node 𝒗𝟏
are always the same

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution:

▪ We can use cycle count as augmented node features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Other commonly used augmented features:

▪ Degree distribution

▪ Clustering coefficient

▪ PageRank

▪ Centrality

▪ …

 Any feature we have introduced can be used!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

 Motivation: Augment sparse graphs
 (1) Add virtual edges

▪ Common approach: Connect 2-hop neighbors via
virtual edges

▪ Intuition: Instead of using adj. matrix 𝐴 for GNN
computation, use 𝐴 + 𝐴2

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

A

B

C

D

E

Authors Papers

▪ Use cases: Bipartite graphs

▪ Author-to-papers (they authored)

▪ 2-hop virtual edges make an author-author
collaboration graph

 Motivation: Augment sparse graphs
 (2) Add virtual nodes

▪ The virtual node will connect to all the
nodes in the graph

▪ Suppose in a sparse graph, two nodes have
shortest path distance of 10

▪ After adding the virtual node, all the nodes
will have a distance of 2
▪ Node A – Virtual node – Node B

▪ Benefits: Greatly improves message
passing in sparse graphs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

The virtual
node

 Previously:
▪ All the nodes are used for message passing

 New idea: (Randomly) sample a node’s
neighborhood for message passing

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

 For example, we can randomly choose 2
neighbors to pass messages

▪ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

 Next time when we compute the embeddings,
we can sample different neighbors

▪ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

 In expectation, we can get embeddings similar
to the case where all the neighbors are used

▪ Benefits: Greatly reduce computational cost

▪ And in practice it works great!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿 , ∀𝑣 ∈ 𝐺}

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

 Idea: Different task levels require different
prediction heads

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Node-level

prediction

Edge-level

prediction

Graph-level

prediction

 Node-level prediction: We can directly make
prediction using node embeddings!

 After GNN computation, we have 𝑑-dim node

embeddings: {𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

 Suppose we want to make 𝑘-way prediction
▪ Classification: classify among 𝑘 categories

▪ Regression: regress on 𝑘 targets

▪ 𝐖(𝐻) ∈ ℝ𝑘∗𝑑 : We map node embeddings from

𝐡𝑣
(𝐿)

∈ ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘 so that we can compute the
loss

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

 Edge-level prediction: Make prediction using
pairs of node embeddings

 Suppose we want to make 𝑘-way prediction

 What are the options for ?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

?
𝐡𝑢

𝐿

𝐡𝑣
𝐿

 Options for :

 (1) Concatenation + Linear

▪ We have seen this in graph attention

▪ ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
))

▪ Here Linear(⋅) will map 2𝑑-dimensional
embeddings (since we concatenated embeddings)
to 𝑘-dim embeddings (𝑘-way prediction)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
ෞ𝒚𝑢𝑣

 Options for Headedg𝑒(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
):

 (2) Dot product

▪ ෝ𝒚𝒖𝒗 = (𝐡𝑢
𝐿
)𝑇𝐡𝑣

𝐿

▪ This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

▪ Applying to 𝒌-way prediction:

▪ Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿
)𝑇𝐖(1)𝐡𝑣

𝐿

…

ෝ𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿
)𝑇𝐖(𝑘)𝐡𝑣

𝐿

ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏)
,… , ෝ𝒚𝒖𝒗

(𝒌)
) ∈ ℝ𝑘

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

 Graph-level prediction: Make prediction using
all the node embeddings in our graph

 Suppose we want to make 𝑘-way prediction

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to

AGG(⋅) in a GNN layer!

 Options for

 (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (2) Global max pooling

ෝ𝒚𝐺 = Max({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 These options work great for small graphs
 Can we do better for large graphs?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf

 Issue: Global pooling over a (large) graph will lose
information

 Toy example: we use 1-dim node embeddings

▪ Node embeddings for 𝐺1: {−1,−2, 0, 1, 2}

▪ Node embeddings for 𝐺2: {−10,−20, 0, 10, 20}

▪ Clearly 𝐺1 and 𝐺2 have very different node embeddings
→ Their structures should be different

 If we do global sum pooling:

▪ Prediction for 𝐺1: ො𝑦𝐺 = Sum −1,−2, 0, 1, 2 = 0

▪ Prediction for 𝐺2: ො𝑦𝐺 = Sum −10,−20, 0, 10, 20 = 0

▪ We cannot differentiate 𝐺1 and 𝐺2!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

 A solution: Let’s aggregate all the node
embeddings hierarchically

▪ Toy example: We will aggregate via ReLU Sum ⋅
▪ We first separately aggregate the first 2 nodes and last 3 nodes

▪ Then we aggregate again to make the final prediction

▪ 𝐺1 node embeddings: {−1,−2,0, 1, 2}

▪ Round 1: ො𝑦𝑎 = ReLU Sum −1,−2 = 0, ො𝑦𝑏 =
ReLU Sum 0,1, 2 = 3

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎 , 𝑦𝑏 = 𝟑

▪ 𝐺2 node embeddings: {−10,−20, 0, 10, 20}

▪ Round 1: ො𝑦𝑎 = ReLU Sum −10, −20 = 0, ො𝑦𝑏 =
ReLU Sum 0,10, 20 = 30

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎 , 𝑦𝑏 = 𝟑𝟎
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Now we can
differentiate
𝑮𝟏 and 𝑮𝟐 !

 DiffPool idea:

▪ Hierarchically pool node embeddings

▪ Leverage 2 independent GNNs at each level

▪ GNN A: Compute node embeddings

▪ GNN B: Compute the cluster that a node belongs to

▪ GNNs A and B at each level can be executed in parallel

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling , NeurIPS 2018

https://arxiv.org/pdf/1806.08804.pdf

 DiffPool idea:

▪ For each Pooling layer

▪ Use clustering assignments from GNN B to aggregate node
embeddings generated by GNN A

▪ Create a single new node for each cluster, maintaining
edges between clusters to generated a new pooled network

▪ Jointly train GNN A and GNN B
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

 Supervised learning on graphs
▪ Labels come from external sources
▪ E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs
▪ Signals come from graphs themselves
▪ E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry
▪ We still have “supervision” in unsupervised learning
▪ E.g., train a GNN to predict node clustering coefficient

▪ An alternative name for “unsupervised” is “self-
supervised”

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

 Supervised labels come from the specific use
cases. For example:

▪ Node labels 𝒚𝒗: in a citation network, which subject
area does a node belong to

▪ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an
edge is fraudulent

▪ Graph labels 𝒚𝐺: among molecular graphs, the drug
likeness of graphs

 Advice: Reduce your task to node / edge / graph
labels, since they are easy to work with

▪ E.g., we knew some nodes form a cluster. We can treat
the cluster that a node belongs to as a node label

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

 The problem: sometimes we only have a graph,
without any external labels

 The solution: “self-supervised learning”, we can
find supervision signals within the graph.
▪ For example, we can let GNN predict the following:

▪ Node-level 𝒚𝑣. Node statistics: such as clustering
coefficient, PageRank, …

▪ Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge
between two nodes, predict if there should be a link

▪ Graph-level 𝒚𝐺 . Graph statistics: for example, predict
if two graphs are isomorphic

▪ These tasks do not require any external labels!
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

 The setting: We have 𝑁 data points

▪ Each data point can be a node/edge/graph

▪ Node-level: prediction ෝ𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

▪ Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

▪ Graph-level: prediction ෝ𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

▪ We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖 to refer
predictions at all levels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

 Classification: labels 𝒚 𝑖 with discrete value

▪ E.g., Node classification: which category does a
node belong to

 Regression: labels 𝒚 𝑖 with continuous value

▪ E.g., predict the drug likeness of a molecular graph

 GNNs can be applied to both settings
 Differences: loss function & evaluation

metrics

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

 As discussed in lecture 6, cross entropy (CE) is
a very common loss function in classification

 𝐾-way prediction for 𝑖-th data point:

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding
ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

 For regression tasks we often use Mean Squared
Error (MSE) a.k.a. L2 loss

 𝐾-way regression for data point (i):

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC

 We use standard evaluation metrics for GNN

▪ (Content below can be found in any ML course)

▪ In practice we will use sklearn for implementation

▪ Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:

▪ Root mean square error (RMSE)

▪ Mean absolute error (MAE)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

https://scikit-learn.org/stable/modules/model_evaluation.html

 Evaluate classification tasks on graphs:
 (1) Multi-class classification
▪ We simply report the accuracy

 (2) Binary classification
▪ Metrics sensitive to classification threshold
▪ Accuracy

▪ Precision / Recall

▪ If the range of prediction is [0,1], we will use 0.5 as threshold

▪ Metric Agnostic to classification threshold
▪ ROC AUC

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

 Accuracy:

 Precision (P):

 Recall (R):

 F1-Score:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

 ROC Curve: Captures the tradeoff in TPR and
FPR as the classification threshold is varied
for a binary classifier.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Note: the dashed line
represents performance of
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

 ROC AUC: Area under the ROC Curve.
 Intuition: The probability that a classifier will rank a

randomly chosen positive instance higher than a
randomly chosen negative one

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

 Fixed split: We will split our dataset once

▪ Training set: used for optimizing GNN parameters

▪ Validation set: develop model/hyperparameters

▪ Test set: held out until we report final performance

 A concern: sometimes we cannot guarantee
that the test set will really be held out

 Random split: we will randomly split our
dataset into training / validation / test

▪ We report average performance over different
random seeds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

 Suppose we want to split an image dataset

▪ Image classification: Each data point is an image

▪ Here data points are independent

▪ Image 5 will not affect our prediction on image 1

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Training

Validation

Test

3
2

45

1

6

 Splitting a graph dataset is different!

▪ Node classification: Each data point is a node

▪ Here data points are NOT independent

▪ Node 5 will affect our prediction on node 1, because it will
participate in message passing → affect node 1’s embedding

 What are our options?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Training

Validation

Test

3
2

45

1

6

 Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).

 We will only split the (node) labels
▪ At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels

▪ At validation time, we compute embeddings using
the entire graph, and evaluate on node 3&4’s labels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Training

Validation

Test

3
2

45

1

6

 Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs

▪ Now we have 3 graphs that are independent. Node 5 will
not affect our prediction on node 1 any more

▪ At training time, we compute embeddings using the
graph over node 1&2, and train using node 1&2’s labels

▪ At validation time, we compute embeddings using the
graph over node 3&4, and evaluate on node 3&4’s labels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Training

Validation

Test

3
2

45

1

6

 Transductive setting: training / validation / test
sets are on the same graph
▪ The dataset consists of one graph

▪ The entire graph can be observed in all dataset splits,
we only split the labels

▪ Only applicable to node / edge prediction tasks
 Inductive setting: training / validation / test sets

are on different graphs
▪ The dataset consists of multiple graphs

▪ Each split can only observe the graph(s) within the split.
A successful model should generalize to unseen graphs

▪ Applicable to node / edge / graph tasks

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

 Transductive node classification

▪ All the splits can observe the entire graph structure, but
can only observe the labels of their respective nodes

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Training

Validation

Test

Training

Validation

Test

 Inductive node classification
▪ Suppose we have a dataset of 3 graphs
▪ Each split contains an independent graph

 Only the inductive setting is well defined for
graph classification

▪ Because we have to test on unseen graphs

▪ Suppose we have a dataset of 5 graphs. Each split
will contain independent graph(s).

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Training Validation Test

 Goal of link prediction: predict missing edges
 Setting up link prediction is tricky:

▪ Link prediction is an unsupervised / self-supervised
task. We need to create the labels and dataset
splits on our own

▪ Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

 For link prediction, we will split edges twice
 Step 1: Assign 2 types of edges in the original graph

▪ Message edges: Used for GNN message passing

▪ Supervision edges: Use for computing objectives

▪ After step 1:

▪ Only message edges will remain in the graph

▪ Supervision edges are used as supervision for edge
predictions made by the model, will not be fed into GNN!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

3
2

45

1

Original graph

Message edges Supervision edges

 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split

▪ Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺1 𝐺2 𝐺3

 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split

▪ Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

▪ In train or val or test set, each graph will have 2
types of edges: message edges + supervision edges

▪ Supervision edges are not the input to GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

Training set Validation set

Message

edge

Supervision

edge
Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11

 Option 2: Transductive link prediction split:

▪ This is the default setting when people talk about
link prediction

▪ Suppose we have a dataset of 1 graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

3
2

45

1

 Option 2: Transductive link prediction split:

▪ By definition of “transductive”, the entire graph can
be observed in all dataset splits

▪ But since edges are both part of graph structure and the
supervision, we need to hold out validation / test edges

▪ To train the training set, we further need to hold out
supervision edges for the training set

▪ Next: we will show the exact settings

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

3
2

45

1

 Option 2: Transductive link prediction split:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

3
2

45

1

The original graph

3
2

45

1

(1) At training time:

Use training message

edges to predict training

supervision edges

(2) At validation time:

Use training message

edges & training

supervision edges to

predict validation edges

(3) At test time:

Use training message

edges & training

supervision edges &

validation edges to
predict test edges

3
2

45

1 3
2

45

1

 Summary: Transductive link prediction split:

▪ Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently.

▪ Luckily, we have full support in PyG and GraphGym

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

3
2

45

1

The original graph

3
2

45

1

Split Graph with
4 types of edges

Split

Training message edges
Training supervision edges
Validation edges
Test edges

https://github.com/snap-stanford/GraphGym

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
DeepSNAP provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym

 We introduce a general GNN framework:
▪ GNN Layer:
▪ Transformation + Aggregation

▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity:
▪ The over-smoothing problem

▪ Solution: skip connections

▪ Graph Augmentation:
▪ Feature augmentation

▪ Structure augmentation

▪ Learning Objectives
▪ The full training pipeline of a GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

