
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Today (01/19): HW 1 out
• Monday (01/23): Recitation session for HW 1
• Next Thursday (01/26): Colab 1 due, Colab 2 out

 Intuition: Map nodes to 𝑑-dimensional
embeddings such that similar nodes in the
graph are embedded close together

3

f()=
Input graph 2D node embeddings

How to learn mapping function 𝒇?
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4

Goal:

Need to define!

Input network d-dimensional

embedding space

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Encoder: Maps each node to a low-dimensional
vector

 Similarity function: Specifies how the
relationships in vector space map to the
relationships in the original network

5

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢

node in the input graph

d-dimensional
embedding

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Simplest encoding approach: Encoder is just an
embedding-lookup

6

Dimension/size

of embeddings

one column per node

embedding

matrix

embedding vector for a

specific node

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Limitations of shallow embedding methods:

▪ 𝑶(|𝑽|𝒅) parameters are needed:

▪ No sharing of parameters between nodes

▪ Every node has its own unique embedding

▪ Inherently “transductive”:

▪ Cannot generate embeddings for nodes that are not seen
during training

▪ Do not incorporate node features:

▪ Nodes in many graphs have features that we can and
should leverage

710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

 Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

8

multiple layers of
non-linear transformations

based on graph structure
ENC 𝑣 =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

9

…

Output: Node embeddings.

Also, we can embed subgraphs,

and graphs
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Tasks we will be able to solve:
 Node classification

▪ Predict the type of a given node

 Link prediction

▪ Predict whether two nodes are linked

 Community detection

▪ Identify densely linked clusters of nodes

 Network similarity

▪ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

But networks are far more complex!

▪ Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

▪ No fixed node ordering or reference point

▪ Often dynamic and have multimodal features
12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Supervised learning: we are given input 𝒙,
and the goal is to predict label 𝒚.

 Input 𝒙 can be:

▪ Vectors of real numbers

▪ Sequences (natural language)

▪ Matrices (images)

▪ Graphs (potentially with node and edge features)

 We formulate the task as an optimization
problem.

1510/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Formulate the task as an optimization problem:
min
Θ

ℒ(𝒚, 𝑓 𝒙)

 Θ: a set of parameters we optimize
▪ Could contain one or more scalars, vectors, matrices …

▪ E.g. Θ = {𝑍} in the shallow encoder (the embedding lookup)

 ℒ: loss function. Example: L2 loss
ℒ 𝒚, 𝑓 𝒙 = 𝑦 − 𝑓 𝑥 2

▪ Other common loss functions:
▪ L1 loss, huber loss, max margin (hinge loss), cross entropy …

▪ See https://pytorch.org/docs/stable/nn.html#loss-functions

16

Objective function

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

https://pytorch.org/docs/stable/nn.html

 Each layer of MLP combines linear transformation and
non-linearity:

▪ where 𝑊𝑙 is weight matrix that transforms hidden representation at
layer 𝑙 to layer 𝑙 + 1

▪ 𝑏𝑙 is bias at layer 𝑙, and is added to the linear transformation of 𝒙(𝒍)

▪ 𝜎 is non-linearity function (e.g., sigmoid)

 Suppose 𝒙 is 2-dimensional, with entries 𝑥1 and 𝑥2

28

𝒙(𝑙+1) = 𝜎(𝑊𝑙𝒙
𝑙 + 𝑏𝑙)

𝑥1

𝑥2

1-dimensional

output

Every layer:

Linear transformation +

non-linearity

3-dimensional hidden

representation

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Objective function:
min
Θ

ℒ(𝒚, 𝑓 𝒙)

 𝑓 can be a simple linear layer, an MLP, or
other neural networks (e.g., a GNN later)

 Sample a minibatch of input 𝒙
 Forward propagation: Compute ℒ given 𝒙
 Back-propagation: Obtain gradient ∇wℒ using

a chain rule.
 Use stochastic gradient descent (SGD) to

optimize for Θ over many iterations.

2910/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

3010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Local network neighborhoods:

▪ Describe aggregation strategies

▪ Define computation graphs

 Stacking multiple layers:

▪ Describe the model, parameters, training

▪ How to fit the model?

▪ Simple example for unsupervised and
supervised training

3210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Assume we have a graph 𝑮:
▪ 𝑉 is the vertex set

▪ 𝑨 is the adjacency matrix (assume binary)

▪ 𝑿 ∈ ℝ 𝑉 ×𝑑 is a matrix of node features

▪ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.

▪ Node features:
▪ Social networks: User profile, User image

▪ Biological networks: Gene expression profiles, gene
functional information

▪ When there is no node feature in the graph dataset:
▪ Indicator vectors (one-hot encoding of a node)

▪ Vector of constant 1: [1, 1, …, 1]

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Join adjacency matrix and features
 Feed them into a deep neural net:

 Issues with this idea:
 Issues with this idea:

▪ 𝑂(|𝑉|) parameters

▪ Not applicable to graphs of different sizes

▪ Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CNN on an image:

35

Goal is to generalize convolutions beyond simple lattices

Leverage node features/attributes (e.g., text, images)
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

But our graphs look like this:

36

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

or this:

▪ There is no fixed notion of locality or sliding
window on the graph

▪ Graph is permutation invariant
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graph does not have a canonical order of the nodes!
 We can have many different order plans.

3710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graph does not have a canonical order of the nodes!

38

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

What does it mean by “graph representation is
same for two order plans”?
 Consider we learn a function 𝑓 that maps a

graph 𝐺 = (𝑨,𝑿) to a vector ℝ𝑑 then
𝑓 𝑨1, 𝑿1 = 𝑓 𝑨2, 𝑿2

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑨 is the adjacency matrix

𝑿 is the node feature matrix

For two order plans,

output of 𝑓 should

be the same!

What does it mean by “graph representation is
same for two order plans”?
 Consider we learn a function 𝑓 that maps a

graph 𝐺 = (𝑨,𝑿) to a vector ℝ𝑑.

 Then, if 𝑓 𝑨𝑖 , 𝑿𝑖 = 𝑓 𝑨𝑗 , 𝑿𝑗 for any order

plan 𝑖 and 𝑗, we formally say 𝑓 is a permutation
invariant function.

 Definition: For any graph function 𝑓: ℝ 𝑉 ×𝑚 ×

ℝ 𝑉 ×|𝑉| → ℝ𝑑, 𝑓 is permutation-invariant if
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋 for any permutation 𝑃.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

For a graph with |𝑉| nodes, there

are |𝑉|! different order plans.

𝑨 is the adjacency matrix

𝑿 is the node feature matrix

Permutation 𝑃: a shuffle of the node order

Example: (A,B,C)->(B,C,A)

For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =

For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =

Representation vector

of the brown node A

Representation vector

of the brown node EFor two order plans, the vector of node at

the same position in the graph is the same!

For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F
For two order plans, the vector of node at

the same position in the graph is the same!

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =
Representation vector

of the green node C

Representation vector

of the green node D

For node representation
 Consider we learn a function 𝑓 that maps a

graph 𝐺 = (𝑨,𝑿) to a matrix ℝ𝑚×𝑑

 If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say 𝑓 is permutation
equivariant.

 Definition: For any node function 𝑓: ℝ 𝑉 ×𝑚 ×

ℝ 𝑉 ×|𝑉| → ℝ 𝑉 ×𝑚 , 𝑓 is permutation-
equivariant if 𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋 for any
permutation 𝑃.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

 Permutation-invariant
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Permutation-equivariant
𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Examples:

▪ 𝑓 𝐴, 𝑋 = 1𝑇𝑋 : Permutation-invariant

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 1𝑇𝑃𝑋 = 1𝑇𝑋 = 𝑓 𝐴, 𝑋

▪ 𝑓 𝐴, 𝑋 = 𝑋 : Permutation-equivariant

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 𝑃𝑋 = 𝑃𝑓 𝐴, 𝑋

▪ 𝑓 𝐴, 𝑋 = 𝐴𝑋 : Permutation-equivariant

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 𝑃𝐴𝑃𝑇𝑃𝑋 = 𝑃𝐴𝑋 = 𝑃𝑓 𝐴, 𝑋
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the

output stays the same.

(map a graph to a vector)

Permute the input, output

also permutes accordingly.

(map a graph to a matrix)

 Graph neural networks consist of multiple
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

[Bronstein, ICLR 2021 keynote]

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
 No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the

input leads to different

outputs!

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
 No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

 Are any neural network architecture, e.g.,
MLPs, permutation invariant / equivariant?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

Next: Design graph neural

networks that are permutation

invariant / equivariant by

passing and aggregating

information from neighbors!

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

5210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Node’s neighborhood defines a
computation graph

53

Determine node
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Key idea: Generate node embeddings based
on local network neighborhoods

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Intuition: Nodes aggregate information from
their neighbors using neural networks

55

Neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Intuition: Network neighborhood defines a
computation graph

56

Every node defines a computation
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Model can be of arbitrary depth:
▪ Nodes have embeddings at each layer

▪ Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
▪ Layer-𝑘 embedding gets information from nodes that

are 𝑘 hops away

57

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

58

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Basic approach: Average information from
neighbors and apply a neural network

59

(1) average messages
from neighbors

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Basic approach: Average neighbor messages
and apply a neural network

60

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after K
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Notice summation is a permutation
invariant pooling/aggregation.

What are the invariance and equivariance
properties for a GCN?
 Given a node, the GCN that computes its

embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer
embeddings - Permutation invariant

 Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

E
D

F

B
A

C

Target Node

A
C

B

E
F

D

Target Node

Order

plan 1

Order

plan 2

Permute the input, the output also permutes

accordingly - permutation equivariant

Embeddings 𝐻1

Embeddings 𝐻2

A

B

C

D

E

F

A

B

C

D

E

F

 Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddings 𝐻1

Embeddings 𝐻2

Detailed reasoning:
1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node
feature matrix is changed, and the the
output embedding of a given node
stays the same (the colors of node
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes

accordingly - permutation equivariant

A

B

C

D

E

F

A

B

C

D

E

F

𝒛𝐴

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.

6410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

 𝑊𝑘: weight matrix for neighborhood aggregation
 𝐵𝑘: weight matrix for transforming hidden vector of

self
65

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Many aggregations can be performed
efficiently by (sparse) matrix operations

 Let

 Then: σ𝑢∈𝑁𝑣
ℎ𝑢
(𝑘)

= A𝑣,:H
(𝑘)

 Let 𝐷 be diagonal matrix where
𝐷𝑣,𝑣 = Deg 𝑣 = |𝑁 𝑣 |

▪ The inverse of 𝐷: 𝐷−1 is also diagonal:
𝐷𝑣,𝑣
−1 = 1/|𝑁 𝑣 |

 Therefore,

66

Matrix of hidden embeddings 𝐻(𝑘−1)

𝒉𝑖
(𝑘−1)

𝐻(𝑘) = [ℎ1
(𝑘)

…ℎ|𝑉|
(𝑘)
]T

𝐻(𝑘+1) = 𝐷−1𝐴𝐻(𝑘)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Re-writing update function in matrix form:

▪ Red: neighborhood aggregation

▪ Blue: self transformation

 In practice, this implies that efficient sparse
matrix multiplication can be used (ሚ𝐴 is sparse)

 Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex

67

𝐻(𝑘+1) = 𝜎(ሚ𝐴𝐻(𝑘)𝑊𝑘
T + 𝐻 𝑘 𝐵𝑘

T)
where ሚ𝐴 = 𝐷−1𝐴

𝐻(𝑘) = [ℎ1
(𝑘)

…ℎ|𝑉|
(𝑘)
]𝑇

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Node embedding 𝒛𝑣 is a function of input graph
 Supervised setting: we want to minimize the loss
ℒ (see also Slide 15):

min
Θ

ℒ(𝒚, 𝑓 𝒛𝑣)

▪ 𝒚: node label

▪ ℒ could be L2 if 𝒚 is real number, or cross entropy
if 𝒚 is categorical

 Unsupervised setting:

▪ No node label available

▪ Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 “Similar” nodes have similar embeddings

ℒ = ෍

𝑧𝑢 ,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢 , 𝑧𝑣)

▪ Where 𝑦𝑢,𝑣 = 1when node 𝑢 and 𝑣 are similar

▪ CE is the cross entropy (Slide 16)

▪ DEC is the decoder such as inner product (Lecture 4)
 Node similarity can be anything from

Lecture 3, e.g., a loss based on:
▪ Random walks (node2vec, DeepWalk, struc2vec)

▪ Matrix factorization

▪ Node proximity in the graph

6910/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)

70

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)
 Use cross entropy loss (Slide 16)

71

Encoder output:
node embedding

Classification
weights

Node class
label

Safe or toxic drug?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

72

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛𝐴

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

73

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

74

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 The same aggregation parameters are shared
for all nodes:

▪ The number of model parameters is sublinear in
|𝑉| and we can generalize to unseen nodes!

75

𝑊𝑘 𝐵𝑘

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

76

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

77

Train with snapshot New node arrives
Generate embedding

for new node

 Many application settings constantly encounter
previously unseen nodes:

▪ E.g., Reddit, YouTube, Google Scholar
 Need to generate new embeddings “on the fly”

z𝑢

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs

7810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 How do GNNs compare to prominent
architectures such as Convolutional Neural
Nets?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 79

Convolutional neural network (CNN) layer with
3x3 filter:

80

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

CNN formulation: h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 ∪{𝑣}W𝑙
𝑢h𝑢

(𝑙)
), ∀𝑙 ∈ {0,… , 𝐿 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Image Output
CNN

weights

𝑵 𝒗 represents the 8 neighbor pixels of 𝒗.

Convolutional neural network (CNN) layer with
3x3 filter:

81

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h𝑣
(𝑙+1)

= 𝜎(𝐖𝒍 σ𝑢∈N(𝑣)
h𝑢
(𝑙)

N(𝑣)
+ B𝑙h𝑣

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}

• CNN formulation: (previous slide) h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 ∪ 𝑣 W𝑙
𝑢h𝑢

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}

if we rewrite: h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 𝐖𝒍
𝒖h𝑢

(𝑙)
+ B𝑙h𝑣

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

82

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

GNN formulation: h𝑣
(𝑙+1) = 𝜎(𝐖𝒍 σ𝑢∈N(𝑣)

h𝑢
(𝑙)

N(𝑣)
+B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

CNN formulation: h𝑣
(𝑙+1) = 𝜎(σ𝑢∈N(𝑣)𝐖𝒍

𝒖h𝑢
(𝑙) +B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊𝑙
𝑢 for different “neighbor” 𝑢 for pixel 𝑣 on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

83

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

GNN formulation: h𝑣
(𝑙+1) = 𝜎(𝐖𝒍 σ𝑢∈N(𝑣)

h𝑢
(𝑙)

N(𝑣)
+B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

CNN formulation: h𝑣
(𝑙+1) = 𝜎(σ𝑢∈N(𝑣)𝐖𝒍

𝒖h𝑢
(𝑙) +B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊𝑙
𝑢 for different “neighbor” 𝑢 for pixel 𝑣 on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

• CNN can be seen as a special GNN with fixed neighbor
size and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary

graphs with different degrees for each node.
• CNN is not permutation invariant/equivariant.

• Switching the order of pixels will leads to different
outputs.

 In this lecture, we introduced
▪ Basics of neural networks

▪ Loss, Optimization, Gradient, SGD, non-linearity, MLP

▪ Idea for Deep Learning for Graphs
▪ Multiple layers of embedding transformation

▪ At every layer, use the embedding at previous layer as
the input

▪ Aggregation of neighbors and self-embeddings

▪ Graph Convolutional Network
▪ Mean aggregation; can be expressed in matrix form

▪ GNN is a general architecture
▪ CNN can be viewed as a special GNN

8410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

