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Recap: Node Embeddings

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?
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Recap: Node Embeddings

Goal: similarity(u,v) ~ z.z,

\ Need to define! \

d-dimensional

Input network _
embedding space
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Recap: Two Key Components

Encoder: Maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

Specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u, v) =~ z.)z, Decoder
Similarity of u and v in dot product between node

the original network embeddings
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Recap: “"Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
mat{ix @ / R
Dimension/size
1 — :®: ” of embeddings
o y
N ~ Wy

one column per node
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Recap: Shallow Encoders

Limitations of shallow embedding methods:
O(|V|d) parameters are needed:

No sharing of parameters between nodes
Every node has its own unique embedding
Inherently “transductive”:

Cannot generate embeddings for nodes that are not seen
during training

Do not incorporate node features:

Nodes in many graphs have features that we can and
should leverage
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Today: Deep Graph Encoders

10/7/21

Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

multiple layers of

ENC(v) = non-linear transformations
based on graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.
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Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
@53 Q)‘b
& &
Activation Q
/ &

function Q

A,

Y
'y

Output: Node embeddings.
Also, we can embed subgraphs,

and graphs
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Tasks on Networks

Tasks we will be able to solve:
Node classification

Predict the type of a given node
Link prediction

Predict whether two nodes are linked
Community detection

ldentify densely linked clusters of nodes
Network similarity

How similar are two (sub)networks
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Modern ML Toolbox
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But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features
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Outline of Today’s Lecture

10/7/21

Basics of deep learning %

Deep learning for graphs
Graph Convolutional Networks

GNNs subsume CNNs



Stanford CS224W:
Basics of Deep Learning




Machine Learning as Optimization

10/7/21

Supervised learning: we are given input x,
and the goal is to predict label y.

Vectors of real numbers
Sequences (natural language)
Matrices (images)

Graphs (potentially with node and edge features)
We formulate the task as an optimization
problem.
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Machine Learning as Optimization

Formulate the task as an optimization problem:

mi }L(y,f(x))\ ~

Objective function
0): a set of parameters we optimize

Could contain one or more scalars, vectors, matrices ...
E.g. © = {Z} in the shallow encoder (the embedding lookup)

L: loss function. Example: L2 loss

Ly, f) =y = f(D)l2

Other common loss functions:
L1 loss, huber loss, max margin (hinge loss), cross entropy ...
See https://pytorch.org/docs/stable/nn.htmi#loss-functions
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https://pytorch.org/docs/stable/nn.html

Multi-layer Perceptron (MLP)

Each layer of MLP combines linear transformation and
non-linearity:
xUD = g, x® + ph

where W, is weight matrix that transforms hidden representation at
layer [ to layer [ + 1

bl is bias at layer [, and is added to the linear transformation of x(¥
o is non-linearity function (e.g., sigmoid)
Suppose x is 2-dimensional, with entries x; and x5

3-dimensional hidden
representation

X ; )
1 1-dimensional
X, output
Every layer:

Linear transformation +
non-linearity
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Objective function:

min L(y, f(x))
f can be a simple linear layer, an MLP, or
other neural networks (e.g., a GNN later)
Sample a minibatch of input x
Forward propagation: Compute L given x
Back-propagation: Obtain gradient V,,, L using
a chain rule.
Use stochastic gradient descent (SGD) to
optimize for ® over many iterations.
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Outline of Today’s Lecture

v

Deep learning for graphs %

Graph Convolutional Networks

GNNs subsume CNNs
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Stanford CS224W:
Deep Learning for Graphs




Local network neighborhoods:

Describe aggregation strategies
Define computation graphs

Stacking multiple layers:
Describe the model, parameters, training
How to fit the model?

Simple example for unsupervised and
supervised training
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Setup

Assume we have a graph G:

V is the vertex set
A is the adjacency matrix (assume binary)

X € RVIXd js 3 matrix of node features
v:anodein V; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:
Indicator vectors (one-hot encoding of a node)
Vector of constant1:[1, 1, ..., 1]
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A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1  hidden laver 2  hidden layer 3

m O O W >
o r Pk |rkr|lo »
P P oo, @

P O P |kr|kr
o r olr|o
B P Oo|ofr
o L ko

\ /

Issues with this idea:

O(|V|) parameters
Not applicable to graphs of different sizes

Sensitive to node ordering
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ldea: Convolutional Networks

CNN on an image:

Subsampling

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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Real-World Graphs

But our graphs look like this:

A o
o J7 or this: AN i S A
¢ ® o .o N ® =1
[ [ . ® ®
® @ ® ® o °

" There is no fixed notion of locality or sliding
window on the graph

" Graphis permutation invariant
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Permutation Invariance

Graph does not have a canonical order of the nodes!
We can have many different order plans.
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X;  Adjacency matrix 4

Order plan 1 ABCDEF

m m ON W >
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X;  Adjacency matrix 4

Order plan 1 ABCDEF

m m ON W >

Node features X, Adjacency matrix 4,

Order plan 2 ~ G A B CDEF
@
c D g
P @D
@D -
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Permutation Invariance

Graph does not have a canonical order of the nodes!

Node feature X, Adjacency matrix 44
Order plan 1 » D ABCDEF

: D

c D 2 |

D@D

Order plan 1

Or Order plan 2

O
m O M C
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Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?
Consider we learn a function f that maps a
graph G = (4, X) to a vector R? then
f(Al’Xl) - f(AZJXZ) Ais the adjacency matrix

X is the node feature matrix

Order plani1: 44, X4 Order plan 2: 4;, X,

For two order plans,
output of f should
be the same!
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Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?
Consider we learn a function f that maps a
graph G = (A4, X) to a vector R%. §gieiicamr,
Then, if f(A4;,X;) = ( - ) for any order
plani and j, we formally sayf is a permutation

For a graph with |VV| nodes, there

invariant function. are |V ! differentorder plans.
Definition: For any graph function f: RIVIXm
RIVIXIVI 5 RE, f is permutation-invariant if
fl4,X) = f(PAPT PX) for any permutation P.

Permutatlon P: a shuffle of the node order
Example: (A,B,C)- >(B CA)
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Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Order plani1: A4, X4 Order plan2: 4,, X,

A A
B B
FAL X)) = g f(Az,X) =
E E
F F

ith Graphs, http://cs224w.stanford.edu




Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Order plani1: A4, X4 Order plan2: 4,, X,

Representation vector
of the brown node A

f(A1'X1 ) =

Representation vector
of the brown node E

For two order plans, the vector of node at

the same position in the graph is the same!
12/6/18 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 44
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Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Order plani1: A4, X4 Order plan2: 4,, X,

A
B

Representation vector

f(Al,Xl ) _ of the green node C f(Az, XZ) :

Representation vector
of the green node D

For two order plans, the vector of node at
the same position in the graph is the same! F
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Permutation Equivariance

For node representation
Consider we learn a function f that maps a
graph G = (4, X) to a matrix R™*¢
If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say f is permutation
equivariant.
Definition: For any node function f: RIVIXm
RIVIXIVI - RIVIX™m £ is permutation-
equivariantif Pf(4,X) = f(PAP',PX) for any
permutation P.
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Summary: Invariance and Equivariance

Permutation-invariant Permute the input, the
output stays the same.
f(A’X) p— f(PAPT,PX) (map a graph to a vector)
Permutation-equivariant |
T Permute the input, output
Pf(A’ X) — f(PAP , PX) also permutes accordingly.

(map a graph to a matrix)

Examples:
f(A4,X) = : Permutation-invariant
Reason: f(PAPT,PX) = 1TPX = = f(4,X)
f(A,X) = X : Permutation-equivariant
Reason: f(PAPT,PX) = PX = Pf(4,X)
f(4,X) = : Permutation-equivariant

Reason: f(PAPT,PX) = PAPTPX = PAX = Pf(4,X)
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[Bronstein, ICLR 2021 keynote]

Graph Neural Network Overview

Graph neural networks consist of multiple
permutation equivariant / invariant functions.




Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

Switching the order of the
Input leads to different
outputs!

10/7/21 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 49



Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

hidden layer 1 hidden layer 2  hidden layer 3

A B C D E Feat
A(01110 10\
B 10 0 1 1 0 0 ?
c 10 0 1 O 0 1 u
D 11 1 0 1 1 1
EL o 1010 1 0 |

the naive MLP approach

fails for graphs
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Graph Neural Network Overview

Are any neural network architecture, e.g.,

?

passing and aggregating
Information from neighbors
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Outline of Today’s Lecture

v
v

Graph Convolutional Networks ?

GNNs subsume CNNs
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[Kipfand Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
i

i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features
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|ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

AGET NODE ® A‘:‘ﬁ ..................... c

l “..’
a
A w".
'y A ‘
&
A <« > TELTTTYTEETRTTIR ' v

'
INPUT GRAPH Ty A
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|ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
./ B «

INPUT GRAPH

Neural networks
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|ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! ‘/

INPUT GRAPH

@ ® 4 ® @
| ./ - - == ::--\7‘ : |
y = o9 o b ale =
o0 > o ®eo0® _ ® o ® o

g N .' nu® . O a N e
e ramrel ¥ L& W . & % »

L1\ . . Sy am , & . . - [ . & o o2 . - . . % L

2a® e o® ® 0 g o0 L TY ) ®e ® ®e °®
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Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer
Layer-0 embedding of node v is its input feature, x,,

Layer-k embedding gets information from nodes that
are k hops away

Layer-0

Layer-1 B XA

TARGET NODE B '4‘: c XC’

- Layer-2 .-~ » XA

. A’O"” A . X B

® B < :::: ............... ol ® XF

D ® ® Xp
@

INPUT GRAPH ‘.‘ A

XA
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Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

ARGET NODE ® A‘: ...................... )

| Whatis in the box?.-

A

. @
/ R S —— © 4-.3 .................

' N
INPUT GRAPH Ty A
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Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages
IARGET NODE from neighbors P CERP

A w"‘
K P ‘
e
.................. ...
A < "'., .............. E
‘. .....

°-n
INPUTGRAPH & T A

(2) apply neural network
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The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

embedding of

hY = x
v v / v at layer k

(0

hHD = g, Z v, B, h% vk e (o,.. K- 1
IN(v)|
UEN(V) \

K Total number
Z, = h1(; ) Average of neighbor’s of layers

previous layer embeddings

Non-linearity , o .
RelU Notice summation is a permutation
(e'g" = ) invariant pooling/aggregation.
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GCN: Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

-D«la«ckiz

Permutation invariant

Target Node
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GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
Is permutation equivariant

Node feature X, Adjacency matrix 4, Embeddings H,;

AGEED  ABCDEF A

Order - D B
C
plan 1 c
: O
E E E
- QD F
Target Node Permute the input, the output also permutes

accordingly - permutation equivariant
Node feature X, Adjacency matrix A, Embedding

Order ~ D
plan 2 :

D

E
F

al»
Target Node G
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GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
Is permutation equivariant

Node feature X, Adjacency matrix 4, Embeddings H,;

Detailed reasoning: A = e TA T
1. The rows of input node features and °
output embeddings are aligned
2. We know computing the embedding E
of a given node with GCN is invariant. F D
3. So, after permutation, the location  Permute the input, the output also permutes
of a given node in the input node accordingly - permutation equivariant_
.. Node feature X, Adjacency matrix A, Embedding
feature matrix is changed, and the the P
output embedding of a given node 5
stays the same (the colors of node - D
feature and embedding are matched)

This is permutation equivariant

mMmm gonNn W >

|

M m
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Training the Model

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.
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Model Parameters

Trainable weight matrices
(i.e., what we learn)

= X
(k+1) _ U . (k) _ 1
h;; o (W E Nl Bgh, ), vk € {0..K — 1

h(©

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

hi: the hidden representation of node v at layer k
W, : weight matrix for neighborhood aggregation
B}, : weight matrix for transforming hidden vector of
self
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Matrix Formulation (1)

Many aggregations can be performed

efficiently by (sparse) matrix operations

Let gt = ™ hl(ll;l)]T Matrix of hidden embeddings H®~1

Then: ¥ e, hjgk) = A, H®
Let D be diagonal matrix where
Dy, = Deg(v) = |[N(v)|
The inverse of D: D~ 1is also diagonal:
Dy = 1/IN(w)| (k=)
Therefore,

h(k_l)
z |1¢IL(v)| =) H&*D = p=14g®)

UEN (v)
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Matrix Formulation (2)

Re-writing update function in matrix form:

(k+1) — Ay (KT (k) pT
H ~a(AliI1 W, + HYB )|§>
where A=D"-"A
(k) h(k) hl("/fl)

Red: neighborhood aggregation
Blue: self transformation

In practice, this implies that efficient sparse
matrix multiplication can be used (A is sparse)

Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex
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How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical

Unsupervised setting:
No node label available
Use the graph structure as the supervision!
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Unsupervised Training

“Similar” nodes have similar embeddings
L= z CE(yy, v, DEC(zy, z,,))

Zyu,Zy

Where y,, , = 1 when node u and v are similar

CE is the cross entropy (Slide 16)
DEC is the decoder such as inner product (Lecture 4)
Node similarity can be anything from
Lecture 3, e.g., a loss based on:
Random walks (node2vec, DeepWalk, struc2vec)
Matrix factorization
Node proximity in the graph
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or toxic
Safe or toxic

drug?
drug? s
o=
o ©
g
% S _ &
 SE Pl E.g., a drug-drug

interaction network
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss (Slide 16)

L=-— Z wlog(o(z)) + (1 —[wDlog(1 — o ()

vevV
Encoder output: Classification
node embedding weights
i Node class
Safe or toxic drug? :: .‘ label
y Xl 2@
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Model Design: Overview

(1) Define a neighborhood

aggregation function
X

ZAA4- D PPN

(2) Define a loss function on the
embeddings
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Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

INPUT GRAPH
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Model Design: Overview

(4) Generate embeddings
/ for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH
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Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

N ®.
B shared parameters
A W, B
® o0 k .0 K & o
P ./‘ . ¥» shared parameters . ‘
ST S R @ ——— . ...................................... Y

000 ®e o‘

INPUT GRAPH Compute graph for node A Compute graph for node B
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Inductive Capability: New Graphs

- O\
o <4

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B
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Inductive Capability: New Nodes

Z
Tu
Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”
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Outline of Today’s Lecture

GNNs subsume CNNs
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Architecture Comparison

How do GNNs compare to prominent
architectures such as Convolutional Neural
Nets?
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Convolutional Neural Network

Convolutional neural network (CNN) layer with

3x3 filter:
6.

B

CNN

weights Output

Image

CNN formulation: hgﬂ) =0 }Wluhg)), vie{0,..,L—1}

ueN()u{v

N (v) represents the 8 neighbor pixels of v.
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Convolutional neural network (CNN) layer with
3x3 filter:

Image
D
. GNNformuIation:hl(,Hl) = o(W, ZueN(v)Il\}Il( )] +B h(l)) vie{0,..,L -1}
* CNN formulation: (previous slide) h( D _ U(ZuEN(v)U{v} Wluhg)),VZ € {0,..,L—1}
if we rewrite: h““) 0 (Lyeniy Wihy + B, vi € (0, ..., L — 1)
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Convolutional neural network (CNN) layer with
3x3 filter:

Image

O

GNN formulation:h{* = o(W, e s * B;h), vie{o,..,L — 1}

CNN formulation: h{ Y = 6(Z,enw) WL + Bih(), Vi € (0, ..., L — 1}

Key difference: We can learn different W}* for different “neighbor” u for pixel v on
the image.The reason is we can pickan order for the g neighborsusing relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (2, 1)}
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GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter: el a

Key difference: We can learn different W}* for different “neighbor” u for pixel v on
the image.The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 2), ..., (3, 1)}
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Summary

In this lecture, we introduced

Basics of neural networks
Loss, Optimization, Gradient, SGD, non-linearity, MLP

ldea for Deep Learning for Graphs
Multiple layers of embedding transformation
At every layer, use the embedding at previous layer as
the input
Aggregation of neighbors and self-embeddings
Graph Convolutional Network
Mean aggregation; can be expressed in matrix form

GNN is a general architecture
CNN can be viewed as a special GNN
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