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ANNOUNCEMENTS
• Today (01/19): HW 1 out
• Monday (01/23): Recitation session for HW 1
• Next Thursday (01/26): Colab 1 due, Colab 2 out



 Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 
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f(    )=
Input graph 2D node embeddings

How to learn mapping function 𝒇?
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Goal:

Need to define!

Input network d-dimensional 

embedding space

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢
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 Encoder: Maps each node to a low-dimensional 
vector

 Similarity function: Specifies how the 
relationships in vector space map to the 
relationships in the original network

5

Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢

node in the input graph

d-dimensional 
embedding
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Simplest encoding approach: Encoder is just an 
embedding-lookup

6

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node
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 Limitations of shallow embedding methods:

▪ 𝑶(|𝑽|𝒅) parameters are needed: 

▪ No sharing of parameters between nodes

▪ Every node has its own unique embedding  

▪ Inherently “transductive”: 

▪ Cannot generate embeddings for nodes that are not seen 
during training

▪ Do not incorporate node features:

▪ Nodes in many graphs have features that we can and 
should leverage

710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



 Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

 Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 

based on graph structure
ENC 𝑣 =
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…

Output: Node embeddings. 

Also, we can embed subgraphs, 

and graphs
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Tasks we will be able to solve:
 Node classification

▪ Predict the type of a given node

 Link prediction

▪ Predict whether two nodes are linked

 Community detection

▪ Identify densely linked clusters of nodes

 Network similarity

▪ How similar are two (sub)networks
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids



But networks are far more complex!

▪ Arbitrary size and complex topological structure (i.e., 
no spatial locality like grids)

▪ No fixed node ordering or reference point

▪ Often dynamic and have multimodal features
12

vs.

Networks Images

Text
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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 Supervised learning: we are given input 𝒙, 
and the goal is to predict label 𝒚.

 Input 𝒙 can be:

▪ Vectors of real numbers

▪ Sequences (natural language)

▪ Matrices (images)

▪ Graphs (potentially with node and edge features)

 We formulate the task as an optimization 
problem.
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 Formulate the task as an optimization problem:
min
Θ

ℒ(𝒚, 𝑓 𝒙 )

 Θ: a set of parameters we optimize
▪ Could contain one or more scalars, vectors, matrices …

▪ E.g. Θ = {𝑍} in the shallow encoder (the embedding lookup)

 ℒ: loss function. Example: L2 loss
ℒ 𝒚, 𝑓 𝒙 = 𝑦 − 𝑓 𝑥 2

▪ Other common loss functions:
▪ L1 loss, huber loss, max margin (hinge loss), cross entropy … 

▪ See https://pytorch.org/docs/stable/nn.html#loss-functions

16

Objective function
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 Each layer of MLP combines linear transformation and 
non-linearity:

▪ where 𝑊𝑙 is weight matrix that transforms hidden representation at
layer 𝑙 to layer 𝑙 + 1

▪ 𝑏𝑙 is bias at layer 𝑙, and is added to the linear transformation of 𝒙(𝒍)

▪ 𝜎 is non-linearity function (e.g., sigmoid)

 Suppose 𝒙 is 2-dimensional, with entries 𝑥1 and 𝑥2

28

𝒙(𝑙+1) = 𝜎(𝑊𝑙𝒙
𝑙 + 𝑏𝑙)

𝑥1

𝑥2

1-dimensional 

output

Every layer:

Linear transformation + 

non-linearity

3-dimensional hidden

representation
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 Objective function:
min
Θ

ℒ(𝒚, 𝑓 𝒙 )

 𝑓 can be a simple linear layer, an MLP, or 
other neural networks (e.g., a GNN later)

 Sample a minibatch of input 𝒙
 Forward propagation: Compute ℒ given 𝒙
 Back-propagation: Obtain gradient ∇wℒ using 

a chain rule.
 Use stochastic gradient descent (SGD) to 

optimize for Θ over many iterations.
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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 Local network neighborhoods:

▪ Describe aggregation strategies

▪ Define computation graphs

 Stacking multiple layers:

▪ Describe the model, parameters, training

▪ How to fit the model?

▪ Simple example for unsupervised and 
supervised training 
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 Assume we have a graph 𝑮:
▪ 𝑉 is the vertex set

▪ 𝑨 is the adjacency matrix (assume binary)

▪ 𝑿 ∈ ℝ 𝑉 ×𝑑 is a matrix of node features

▪ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.

▪ Node features:
▪ Social networks: User profile, User image

▪ Biological networks: Gene expression profiles, gene 
functional information

▪ When there is no node feature in the graph dataset:
▪ Indicator vectors (one-hot encoding of a node)

▪ Vector of constant 1: [1, 1, …, 1]
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 Join adjacency matrix and features
 Feed them into a deep neural net:

 Issues with this idea:
 Issues with this idea:

▪ 𝑂(|𝑉|) parameters

▪ Not applicable to graphs of different sizes

▪ Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]
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CNN on an image:

35

Goal is to generalize convolutions beyond simple lattices

Leverage node features/attributes (e.g., text, images)
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But our graphs look like this:

36

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

or this:

▪ There is no fixed notion of locality or sliding 
window on the graph

▪ Graph is permutation invariant
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 Graph does not have a canonical order of the nodes!
 We can have many different order plans.
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 Graph does not have a canonical order of the nodes!

38

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1
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 Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2
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 Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1

and Order plan 2
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What does it mean by “graph representation is 
same for two order plans”? 
 Consider we learn a function 𝑓 that maps a 

graph 𝐺 = (𝑨,𝑿) to a vector ℝ𝑑 then
𝑓 𝑨1, 𝑿1 = 𝑓 𝑨2, 𝑿2
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A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑨 is the adjacency matrix

𝑿 is the node feature matrix

For two order plans,

output of 𝑓 should 

be the same!



What does it mean by “graph representation is 
same for two order plans”? 
 Consider we learn a function 𝑓 that maps a 

graph 𝐺 = (𝑨,𝑿) to a vector ℝ𝑑. 

 Then, if 𝑓 𝑨𝑖 , 𝑿𝑖 = 𝑓 𝑨𝑗 , 𝑿𝑗 for any order 

plan 𝑖 and 𝑗, we formally say 𝑓 is a permutation 
invariant function.

 Definition: For any graph function 𝑓: ℝ 𝑉 ×𝑚 ×

ℝ 𝑉 ×|𝑉| → ℝ𝑑, 𝑓 is permutation-invariant if 
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋 for any permutation 𝑃.
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For a graph with |𝑉| nodes, there 

are |𝑉|! different order plans.

𝑨 is the adjacency matrix

𝑿 is the node feature matrix

Permutation 𝑃: a shuffle of the node order

Example: (A,B,C)->(B,C,A)



For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.
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A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =



For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.
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A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =

Representation vector 

of the brown node A

Representation vector 

of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!



For node representation: We learn a function 𝑓
that maps nodes of 𝐺 to a matrix ℝ𝑚×𝑑.
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A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F
For two order plans, the vector of node at 

the same position in the graph is the same!

Order plan 1: 𝑨𝟏 , 𝑿𝟏 Order plan 2: 𝑨𝟐 , 𝑿𝟐

𝑓 𝑨1 , 𝑿1 = 𝑓 𝑨2, 𝑿2 =
Representation vector 

of the green node C

Representation vector 

of the green node D



For node representation
 Consider we learn a function 𝑓 that maps a 

graph 𝐺 = (𝑨,𝑿) to a matrix ℝ𝑚×𝑑

 If the output vector of a node at the same 
position in the graph remains unchanged for any 
order plan, we say 𝑓 is permutation 
equivariant.

 Definition: For any node function 𝑓: ℝ 𝑉 ×𝑚 ×

ℝ 𝑉 ×|𝑉| → ℝ 𝑉 ×𝑚 , 𝑓 is permutation-
equivariant if 𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋 for any 
permutation 𝑃.
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 Permutation-invariant
𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Permutation-equivariant
𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Examples:

▪ 𝑓 𝐴, 𝑋 = 1𝑇𝑋 : Permutation-invariant 

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 1𝑇𝑃𝑋 = 1𝑇𝑋 = 𝑓 𝐴, 𝑋

▪ 𝑓 𝐴, 𝑋 = 𝑋 : Permutation-equivariant

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 𝑃𝑋 = 𝑃𝑓 𝐴, 𝑋

▪ 𝑓 𝐴, 𝑋 = 𝐴𝑋 : Permutation-equivariant

▪ Reason: 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋 = 𝑃𝐴𝑃𝑇𝑃𝑋 = 𝑃𝐴𝑋 = 𝑃𝑓 𝐴, 𝑋
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Permute the input, the 

output stays the same.

(map a graph to a vector)

Permute the input, output 

also permutes accordingly.

(map a graph to a matrix)



 Graph neural networks consist of multiple 
permutation equivariant / invariant functions.
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[Bronstein, ICLR 2021 keynote]



Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
 No.
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Switching the order of the 

input leads to different 

outputs!



Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
 No.
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This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]



 Are any neural network architecture, e.g., 
MLPs, permutation invariant / equivariant?
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This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]

Next: Design graph neural 

networks that are permutation 

invariant / equivariant by 

passing and aggregating 

information from neighbors!



1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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Idea: Node’s neighborhood defines a 
computation graph

53

Determine node 
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]
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 Key idea: Generate node embeddings based 
on local network neighborhoods 
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 Intuition: Nodes aggregate information from 
their neighbors using neural networks

55

Neural networks
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 Intuition: Network neighborhood defines a 
computation graph

56

Every node defines a computation 
graph based on its neighborhood!
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 Model can be of arbitrary depth:
▪ Nodes have embeddings at each layer

▪ Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
▪ Layer-𝑘 embedding gets information from nodes that 

are 𝑘 hops away

57

Layer-2

Layer-1
Layer-0
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 Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

58

?

?

?

?

What is in the box?
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 Basic approach: Average information from 
neighbors and apply a neural network

59

(1) average messages 
from neighbors 

(2) apply neural network
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 Basic approach: Average neighbor messages 
and apply a neural network

60

Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)
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Notice summation is a permutation 
invariant pooling/aggregation.



What are the invariance and equivariance
properties for a GCN?
 Given a node, the GCN that computes its 

embedding is permutation invariant
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A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer 
embeddings - Permutation invariant 



 Considering all nodes in a graph, GCN computation 
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

E
D

F

B
A

C

Target Node

A
C

B

E
F

D

Target Node

Order 

plan 1

Order 

plan 2

Permute the input, the output also permutes 

accordingly - permutation equivariant

Embeddings 𝐻1

Embeddings 𝐻2

A

B

C

D

E

F

A

B

C

D

E

F



 Considering all nodes in a graph, GCN computation 
is permutation equivariant 

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddings 𝐻1

Embeddings 𝐻2

Detailed reasoning:
1. The rows of input node features and 
output embeddings are aligned
2. We know computing the embedding 
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node 
feature matrix is changed, and the the 
output embedding of a given node 
stays the same (the colors of node 
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes 

accordingly - permutation equivariant
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𝒛𝐴

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
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We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

 𝑊𝑘: weight matrix for neighborhood aggregation
 𝐵𝑘: weight matrix for transforming hidden vector of 

self
65

Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)
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 Many aggregations can be performed 
efficiently by (sparse) matrix operations

 Let 

 Then: σ𝑢∈𝑁𝑣
ℎ𝑢
(𝑘)

= A𝑣,:H
(𝑘)

 Let 𝐷 be diagonal matrix where
𝐷𝑣,𝑣 = Deg 𝑣 = |𝑁 𝑣 |

▪ The inverse of 𝐷: 𝐷−1 is also diagonal:
𝐷𝑣,𝑣
−1 = 1/|𝑁 𝑣 |

 Therefore,

66

Matrix of hidden embeddings 𝐻(𝑘−1)

𝒉𝑖
(𝑘−1)

𝐻(𝑘) = [ℎ1
(𝑘)

…ℎ|𝑉|
(𝑘)
]T

𝐻(𝑘+1) = 𝐷−1𝐴𝐻(𝑘)
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 Re-writing update function in matrix form:

▪ Red: neighborhood aggregation

▪ Blue:  self transformation

 In practice, this implies that efficient sparse 
matrix multiplication can be used ( ሚ𝐴 is sparse)

 Note: not all GNNs can be expressed in matrix form, when 
aggregation function is complex 
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𝐻(𝑘+1) = 𝜎( ሚ𝐴𝐻(𝑘)𝑊𝑘
T + 𝐻 𝑘 𝐵𝑘

T)
where ሚ𝐴 = 𝐷−1𝐴

𝐻(𝑘) = [ℎ1
(𝑘)

…ℎ|𝑉|
(𝑘)
]𝑇
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 Node embedding 𝒛𝑣 is a function of input graph
 Supervised setting: we want to minimize the loss 
ℒ (see also Slide 15):

min
Θ

ℒ(𝒚, 𝑓 𝒛𝑣 )

▪ 𝒚: node label

▪ ℒ could be L2 if 𝒚 is real number, or cross entropy 
if 𝒚 is categorical

 Unsupervised setting:

▪ No node label available

▪ Use the graph structure as the supervision!
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 “Similar” nodes have similar embeddings

ℒ = ෍

𝑧𝑢 ,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢 , 𝑧𝑣 )

▪ Where 𝑦𝑢,𝑣 = 1when node 𝑢 and 𝑣 are similar

▪ CE is the cross entropy (Slide 16)

▪ DEC is the decoder such as inner product (Lecture 4)
 Node similarity can be anything from 

Lecture 3, e.g., a loss based on:
▪ Random walks (node2vec, DeepWalk, struc2vec)

▪ Matrix factorization

▪ Node proximity in the graph
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Directly train the model for a supervised task 
(e.g., node classification)

70

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network
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Directly train the model for a supervised task 
(e.g., node classification)
 Use cross entropy loss (Slide 16)
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Encoder output:
node embedding

Classification 
weights

Node class 
label

Safe or toxic drug?
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛𝐴
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs
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(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!
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 The same aggregation parameters are shared 
for all nodes:

▪ The number of model parameters is sublinear in 
|𝑉| and we can generalize to unseen nodes!
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𝑊𝑘 𝐵𝑘
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢
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Train with snapshot New node arrives
Generate embedding 

for new node

 Many application settings constantly encounter 
previously unseen nodes:

▪ E.g., Reddit, YouTube, Google Scholar
 Need to generate new embeddings “on the fly”

z𝑢
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs
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 How do GNNs compare to prominent 
architectures such as Convolutional Neural 
Nets?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 79



Convolutional neural network (CNN) layer with 
3x3 filter:

80

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

CNN formulation: h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 ∪{𝑣}W𝑙
𝑢h𝑢

(𝑙)
), ∀𝑙 ∈ {0,… , 𝐿 − 1}
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Image Output
CNN 

weights

𝑵 𝒗 represents the 8 neighbor pixels of 𝒗.



Convolutional neural network (CNN) layer with 
3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h𝑣
(𝑙+1)

= 𝜎(𝐖𝒍 σ𝑢∈N(𝑣)
h𝑢
(𝑙)

N(𝑣)
+ B𝑙h𝑣

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}

• CNN formulation: (previous slide)  h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 ∪ 𝑣 W𝑙
𝑢h𝑢

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}

if we rewrite:                                        h𝑣
(𝑙+1)

= 𝜎(σ𝑢∈N 𝑣 𝐖𝒍
𝒖h𝑢

(𝑙)
+ B𝑙h𝑣

(𝑙)
), ∀𝑙 ∈ {0, … , 𝐿 − 1}
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Convolutional neural network (CNN) layer with 
3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

GNN formulation: h𝑣
(𝑙+1) = 𝜎(𝐖𝒍 σ𝑢∈N(𝑣)

h𝑢
(𝑙)

N(𝑣)
+B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

CNN formulation: h𝑣
(𝑙+1) = 𝜎(σ𝑢∈N(𝑣)𝐖𝒍

𝒖h𝑢
(𝑙) +B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊𝑙
𝑢 for different “neighbor” 𝑢 for pixel 𝑣 on 

the image. The reason is we can pick an order for the 9 neighbors using relative 
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}
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Convolutional neural network (CNN) layer with 
3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

GNN formulation: h𝑣
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h𝑢
(𝑙)

N(𝑣)
+B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

CNN formulation: h𝑣
(𝑙+1) = 𝜎(σ𝑢∈N(𝑣)𝐖𝒍

𝒖h𝑢
(𝑙) +B𝑙h𝑣

(𝑙)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Key difference: We can learn different 𝑊𝑙
𝑢 for different “neighbor” 𝑢 for pixel 𝑣 on 

the image. The reason is we can pick an order for the 9 neighbors using relative 
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

• CNN can be seen as a special GNN with fixed neighbor 
size and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary 

graphs with different degrees for each node.
• CNN is not permutation invariant/equivariant.

• Switching the order of pixels will leads to different 
outputs.



 In this lecture, we introduced
▪ Basics of neural networks

▪ Loss, Optimization, Gradient, SGD, non-linearity, MLP

▪ Idea for Deep Learning for Graphs
▪ Multiple layers of embedding transformation

▪ At every layer, use the embedding at previous layer as 
the input

▪ Aggregation of neighbors and self-embeddings

▪ Graph Convolutional Network
▪ Mean aggregation; can be expressed in matrix form

▪ GNN is a general architecture
▪ CNN can be viewed as a special GNN
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