Stanford CS224W: Exam Preparation

CS224W: Machine Learning with Graphs Xuan Su \& Serina Chang, Stanford University http://cs224w.stanford.edu

Exam Information

■ Percentage: 35\% of your course grade

- Time: a consecutive, 120-minute slot from Nov 19, 10:00AM to Nov 20, 09:59AM
- The make-up exam is 2 days prior
- Exam Format: The exam is administered through Gradescope
- You can typeset your answers in LaTeX or handwrite your answers + upload them as images
- The exam should take around 110 minutes, and you have 10 minutes to upload images

Exam Information

- There will be $\mathbf{1 1}$ questions
- Some questions are easy, and some are harder
- Try to spend 5-15 minutes on each question
- If stuck on a particular question for too long, please skip that question and come back later
- Types of questions:
- True/False questions with explanation
- Give examples of graphs
- Comparison of approaches
- Mathematical calculations and derivations
- We feel that the exam is medium difficulty

General Advice for the Exam

- We suggest that you read through all lecture slides carefully
- Topics that are important for the exam:
- Node centrality measures, PageRank
- GNN model and design space (e.g., message, aggregation, update)
- Knowledge graph embeddings, Query2Box, recommender systems (LightGCN)
- Lectures that are important for the exam: lectures 2, 4, 6, 7, 8, 10, 11, 13

General Advice for the Exam

- We suggest that you read through all lecture slides carefully
- Lectures that are relatively unimportant for the exam: lectures $1,3,5,9,12,14$
- You can spend less time studying these lectures
- However, you should still read through them and understand the concepts as there may be miscellaneous questions

Stanford CS224W: Homework Review

CS224W: Machine Learning with Graphs Xuan Su \& Serina Chang, Stanford University http://cs224w.stanford.edu

Homework 1, Q4. 6

- We use GNNs to execute the BFS algorithm
- Initially, all nodes have input features 0, except a source node with feature 1
- At every step, nodes reached by BFS have embedding 1, and nodes not reached by BFS have embedding 0
- Describe the message, aggregate, update functions
- Advice: Think from the perspective of nodes in the graph

Homework 1, Q4. 6

(1) Message passing

- Imagine you are a node in the graph. What information would you tell your neighbors?
- "I have been visited by the BFS algorithm!" or "I have not been visited!"
- Simply pass my embedding to my neighbors

$$
\operatorname{message}_{v \rightarrow u}\left(h_{v}^{(k-1)}, e_{v, u}\right)=h_{v}^{(k-1)}
$$

Homework 1, Q4. 6

(2) Aggregation

- What information should you get from your neighbors?
- I want to know whether any of my neighbors have been visited
Node u aggregates neighbors' information via:
$\left.\left.\operatorname{aggregate}^{\left(\left\{\text {message }_{v \rightarrow u}\right.\right.}, \forall v \in \mathcal{N}(u)\right\}\right)=$

$$
\max _{v \in \mathcal{N}(u)} \text { message }_{v \rightarrow u}
$$

Homework 1, Q4. 6

(3) Update

Don't forget the self-link to the previous embedding for node u

- BFS: I am visited if (1) I have been visited, or (2) any of my neighbors has been visited
update $\left(h_{u}^{(k-1)}, \operatorname{aggregate}(\cdots)\right)=$

$$
\max \left(h_{u}^{(k-1)}, \operatorname{aggregate}(\cdots)\right)
$$

This is one solution to Q4.6, there are alternatives

Homework 2, O3.1

- There are common patterns in knowledge graph embeddings
- Symmetry: A is married to B, and B is married to A
- Inverse: A is teacher of B, and B is student of A
= Composition: A is son of B, and C is sister of B, then C is aunt of A
- KG method: TransE
- Given a triplet (h, l, t), TransE trains entity and relation embeddings to follow the equation $h+1 \approx t$
- Can we use TransE to model each of the relation patterns?

Homework 2, O3.1

- Given (h, I, t), TransE equation is: $\boldsymbol{h}+\boldsymbol{I} \approx \boldsymbol{t}$
- Key question: For the given relation pattern, what equations should hold true?
- Symmetry: A is married to B, and B is married to A
- Can we use TransE to model symmetry? No
- For two triplets (h, l, t) and (t, l, h) to both hold true, we will have: $\boldsymbol{h}+\boldsymbol{I} \approx \boldsymbol{t}$ and $\boldsymbol{t}+\boldsymbol{I} \approx \boldsymbol{h}$
- The only possibility for both equations to be true is if I = 0 and $\mathbf{h}=\mathbf{t}$, which is a problem since two different entities should have different embeddings

Homework 2, O3.1

- Given (h, l, t), TransE equation is: $\boldsymbol{h}+I \approx \boldsymbol{t}$ Inverse: A is teacher to B, and B is student to A Can we use TransE to model inverse? Yes
- For two triplets ($h, r 1, t$) and ($t, r 2, h$) to both hold true, we will have: $h+r 1 \approx t$ and $t+r 2 \approx h$
- It suffices to set the inverse relation $r 2=-r 1$

Homework 2, O3.1

- Given (h, l, t), TransE equation is: $\boldsymbol{h}+\boldsymbol{l} \approx \boldsymbol{t}$
- Composition: A is son of B, and C is sister of B, then C is aunt of A
- Can we use TransE to model composition? Yes
- Given three triplets, $(a, r 1, b),(b, r 2, c),(a, r 3, c)$, where $r 3$ is the composition of $r 2$ and $r 1$
- For all triplets to be true, we will have: $a+r 1 \approx b, b+$ $r 2 \approx c, a+r 3 \approx c$
- Set r3 = r1 + r2 for composition

Stanford CS224W: Miscellaneous Topics

CS224W: Machine Learning with Graphs Xuan Su \& Serina Chang, Stanford University http://cs224w.stanford.edu

Erdös-Rényi Random Graph

- To produce an undirected graph $G=(V, E)$, the ER model uses a fixed likelihood to generate edges connecting any pair of nodes:

$$
\mathbb{P}[(u, v) \in E]=r, \quad \forall u, v \in V, u \neq v
$$

$\mathrm{n}=10$
$r=1 / 6$

Erdös-Rényi Random Graph

What is the expected average node degree, $E[d]$, of a graph generated by ER?

- Key idea: summing the edge connectivity over nodes to compute the expected node degree

$$
\begin{aligned}
|E| & =\frac{1}{2} \sum_{u \in V} \sum_{v \in V \backslash\{u\}} 1 \cdot \mathbb{1}[(u, v) \in E] \\
\mathbb{E}[|E|] & =\frac{1}{2} \sum_{u \in V} \sum_{v \in V \backslash\{u\}} 1 \cdot \mathbb{E}[\mathbb{1}[(u, v) \in E]] \\
& =\frac{1}{2} \sum_{u \in V} \sum_{v \in V \backslash\{u\}} 1 \cdot r \\
& =\frac{|V|(|V|-1)}{2} r \\
& =\binom{|V|}{2} r
\end{aligned}
$$

All the Best

All the best with your exam preparation!

