
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

¡ Fixed split: We will split our dataset once
• Training set: used for optimizing GNN parameters
• Validation set: develop model/hyperparameters
• Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee
that the test set will really be held out

¡ Random split: we will randomly split our
dataset into training / validation / test
• We report average performance over different

random seeds

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

Training

Validation

Test

3
2

45

1

6

¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will
participate in message passing à affect node 1’s embedding

¡ What are our options?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Training

Validation

Test

3
2

45

1

6

¡ Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using

the entire graph, and evaluate on node 3&4’s labels

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Training

Validation

Test

3
2

45

1

6

¡ Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the

graph over node 3&4, and evaluate on node 3&4’s labels

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

Training

Validation

Test

3
2

45

1

6

¡ Transductive setting: training / validation / test
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits,

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split.

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

¡ Transductive node classification
§ All the splits can observe the entire graph structure, but

can only observe the labels of their respective nodes

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

Training

Validation

Test

Training

Validation

Test

¡ Inductive node classification
§ Suppose we have a dataset of 3 graphs
§ Each split contains an independent graph

¡ Only the inductive setting is well defined for
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split

will contain independent graph(s).

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Training Validation Test

¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised

task. We need to create the labels and dataset
splits on our own

§ Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge

predictions made by the model, will not be fed into GNN!
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

3
2

45

1

Original graph

Message edges Supervision edges

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺! 𝐺" 𝐺#

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Training set Validation set

Message
edge

Supervision
edge

Test set

𝐺! 𝐺" 𝐺#

3
2

45

1 8
7

910

6 13
12

1415

11

¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about

link prediction
§ Suppose we have a dataset of 1 graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

3
2

45

1

¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can

be observed in all dataset splits
§ But since edges are both part of graph structure and the

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out

supervision edges for the training set

§ Next: we will show the exact settings
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

3
2

45

1

¡ Option 2: Transductive link prediction split:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

3
2

45

1

The original graph

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

3
2

45

1 3
2

45

1

¡ Option 2: Transductive link prediction split:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

Why do we use growing number of edges?
After training, supervision edges are known to GNN.
Therefore, an ideal model should use supervision
edges in message passing at validation time.
The same applies to the test time.

3
2

45

13
2

45

1

¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently. But if you
follow our reasoning steps, this should be the right way to
implement link prediction

§ Luckily, we have full support in DeepSNAP and GraphGym

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

3
2

45

1

The original graph

3
2

45

1

Split Graph with
4 types of edges

Split
Training message edges
Training supervision edges
Validation edges
Test edges

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
DeepSNAP provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym

¡ We introduce a general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

…

Output: Node embeddings.
We can also embed larger network
structures, subgraphs, graphs

¡ Key idea: Generate node embeddings based
on local network neighborhoods

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

How powerful are GNNs?
¡ Many GNN models have been proposed (e.g.,

GCN, GAT, GraphSAGE, design space).

¡ What is the expressive power (ability to
distinguish different graph structures) of these
GNN models?

¡ How to design a maximally expressive GNN
model?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

¡ Many GNN models have been proposed:
§ GCN, GraphSAGE, GAT, Design Space etc.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Different GNN models use different
neural networks in the box

?

?

?

?

¡ GCN (mean-pool)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Element-wise mean pooling +
Linear + ReLU non-linearity

?

?

?

?

[Kipf and Welling ICLR 2017]

¡ GraphSAGE (max-pool)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

MLP + element-wise max-pooling

?

?

?

?

[Hamilton et al. NeurIPS 2017]

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

¡ We use node same/different colors to represent
nodes with same/different features.
§ For example, the graph below assumes all the nodes

share the same feature.

¡ Key question: How well can a GNN distinguish
different graph structures?

1 2

3

45

¡ We specifically consider local neighborhood
structures around each node in a graph.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

§ Example: Nodes 1 and 5
have different
neighborhood structures
because they have
different node degrees.

1 2

3

45

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

¡ We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 4
both have the same node
degree of 2. However, they
still have different
neighborhood structures
because their neighbors
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

¡ We specifically consider local neighborhood
structures around each node in a graph.

1 2

3

45

§ Example: Nodes 1 and 2
have the same
neighborhood structure
because they are
symmetric within the
graph.

Node 1 has neighbors of degrees 2 and 3.
Node 2 has neighbors of degrees 2 and 3.
And even if we go a step deeper to 2nd hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)

¡ Key question: Can GNN node embeddings
distinguish different node’s local
neighborhood structures?
§ If so, when? If not, when will a GNN fail?

¡ Next: We need to understand how a GNN
captures local neighborhood structures.
§ Key concept: Computational graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

¡ In each layer, a GNN aggregates neighboring node
embeddings.

¡ A GNN generates node embeddings through a
computational graph defined by the neighborhood.
§ Ex: Node 1’s computational graph (2-layer GNN)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

1 2

3

45

1

2 5

1 5 1 2 4

¡ Ex: Nodes 1 and 2’s computational graphs.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

¡ Ex: Nodes 1 and 2’s computational graphs.
¡ But GNN only sees node features (not IDs):

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

1 2

3

45

¡ A GNN will generate the same embedding for
nodes 1 and 2 because:
§ Computational graphs are the same.
§ Node features (colors) are identical.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

1 2

3

45

1 2

Note: GNN does not
care about node ids, it
just aggregates features
vectors of different nodes.

GNN won’t be able to distinguish nodes 1 and 2

¡ In general, different local neighborhoods
define different computational graphs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

3

4

3 5

¡ Computational graphs are identical to rooted
subtree structures around each node.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

1 2

3

45

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Rooted subtree structures
(defined by recursively unfolding

neighboring nodes from the root nodes)

3

4

3 5

¡ GNN‘s node embeddings capture rooted
subtree structures.

¡ Most expressive GNN maps different rooted
subtrees into different node embeddings
(represented by different colors).

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

Embedding

¡ Function 𝑓: 𝑋 → Y is injective if it maps
different elements into different outputs.

¡ Intuition: 𝑓 retains all the information about
input.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

𝑋 𝑌
1

2

3

D

B

C
A

𝑓

¡ Most expressive GNN should map subtrees to
the node embeddings injectively.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

1

2 5

1 5 1 2 4

2

1 5

2 5 1 2 4

3

4

5

4

3 5

4 1 2 4

5

1 2

2 1 5

4

5 3 5

ℝ"
Embedding space

Subtrees

¡ Key observation: Subtrees of the same depth
can be recursively characterized from the leaf
nodes to the root nodes.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,
3 neighbors)

Input features
are uniform

Input features
are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,
3 neighbors)≠

From leaves
to the root

From leaves
to the root

¡ If each step of GNN’s aggregation can fully
retain the neighboring information, the
generated node embeddings can distinguish
different rooted subtrees.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

1

2 5

1 5 1 2 4

3 neighbors2 neighbors

(2 neighbors,
3 neighbors)

Input features
are uniform

Input features
are uniform

1 neighbor 3 neighbors

4

3 5

4 1 2 4

(1 neighbor,
3 neighbors)≠Fully retain

neighboring
information

Fully retain
neighboring
information

¡ In other words, most expressive GNN would
use an injective neighbor aggregation
function at each step.
§ Maps different neighbors to different embeddings.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

1

2 5

1 5 1 2 4
Input features
are uniform

Input features
are uniform

4

3 5

4 1 2 4

Injective
neighbor
aggregation

Injective
neighbor
aggregation

¡ Summary so far
§ To generate a node embedding, GNNs use a

computational graph corresponding to a subtree
rooted around each node.

§ GNN can fully distinguish different subtree
structures if every step of its neighbor
aggregation is injective.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

1 2

3

45

1

2 5

1 5 1 2 4

Input graph Computational
graph
= Rooted
subtree

Using injective
neighbor
aggregation
à distinguish
different
subtrees

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Key observation: Expressive power of GNNs
can be characterized by that of neighbor
aggregation functions they use.
§ A more expressive aggregation function leads to a

more expressive a GNN.
§ Injective aggregation function leads to the most

expressive GNN.
¡ Next:
§ Theoretically analyze expressive power of

aggregation functions.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

¡ Observation: Neighbor aggregation can be
abstracted as a function over a multi-set (a
set with repeating elements).

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Neighbor
aggregation

Multi-set function

Equivalent
Examples of
multi-set

Same color indicates the
same features.

¡ Next: We analyze aggregation functions of
two popular GNN models
§ GCN (mean-pool) [Kipf & Welling, ICLR 2017]

§ Uses element-wise mean pooling over neighboring node
features

Mean(𝑥! !∈#(%))
§ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Uses element-wise max pooling over neighboring node
features

Max(𝑥! !∈# %)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Take element-wise mean, followed by linear
function and ReLU activation, i.e., max(0, 𝑥).

§ Theorem [Xu et al. ICLR 2019]

§ GCN’s aggregation function cannot distinguish different
multi-sets with the same color proportion.

¡ Why?
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Failure case

¡ For simplicity, we assume node colors are
represented by one-hot encoding.
§ Example) If there are two distinct colors:

§ This assumption is sufficient to illustrate how GCN
fails.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

1
0

0
1

¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Failure case illustration

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

1
0

1
0

0
1

0
1

1
0

0
1

0.5
0.5

0.5
0.5

Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-
mean-pool

¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Apply an MLP, then take element-wise max.
§ Theorem [Xu et al. ICLR 2019]

§ GraphSAGE’s aggregation function cannot distinguish
different multi-sets with the same set of distinct colors.

¡ Why?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Failure case

¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Failure case illustration

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

MLP

1
0

0
1

For simplicity,
assume the one-
hot encoding
after MLP.

1
0

1
0

1
0

0
1

0
1

0
1

1
0

1
1

Element-wise-
max-pool

1
1

1
1

The same outputs!

¡ We analyzed the expressive power of GNNs.
¡ Main takeaways:
§ Expressive power of GNNs can be characterized by

that of the neighbor aggregation function.
§ Neighbor aggregation is a function over multi-sets

(sets with repeating elements)
§ GCN and GraphSAGE’s aggregation functions fail to

distinguish some basic multi-sets; hence not injective.
§ Therefore, GCN and GraphSAGE are not maximally

powerful GNNs.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

¡ Our goal: Design maximally powerful GNNs
in the class of message-passing GNNs.

¡ This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

¡ Here, we design a neural network that can
model injective multiset function.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed
as:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Φ -
'∈(

𝑓(𝑥)

𝑆 : multi-set

Some non-
linear function

Some non-
linear function

Φ 𝑓 𝑓 𝑓+ +

Sum over multi-set

Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of
the one-hot encodings retains all the information about
the input multi-set.

Example:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Φ -
'∈(

𝑓(𝑥)

Φ 𝑓 𝑓 𝑓+ +

1
0

0
1

0
1

+ + = 1
2

One-hot

¡ How to model 𝜱 and 𝒇 in 𝜱 ∑𝒙∈𝑺 𝒇(𝒙) ?
¡ We use a Multi-Layer Perceptron (MLP).
¡ Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

§ 1-hidden-layer MLP with sufficiently-large hidden
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any
continuous function to an arbitrary accuracy.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

𝑾! 𝑾"𝜎Input Output

¡ We have arrived at a neural network that can
model any injective multiset function.

§ In practice, MLP hidden dimensionality of 100 to
500 is sufficient.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

MLP) -
'∈(

MLP*(𝑥)

¡ Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

§ Apply an MLP, element-wise sum, followed by
another MLP.

¡ Theorem [Xu et al. ICLR 2019]

§ GIN‘s neighbor aggregation function is injective.
¡ No failure cases!
¡ GIN is THE most expressive GNN in the class of

message-passing GNNs!
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

MLP) -
'∈(

MLP*(𝑥)

¡ So far: We have described the neighbor
aggregation part of GIN.

¡ We now describe the full model of GIN by
relating it to WL graph kernel (traditional way
of obtaining graph-level features).
§ We will see how GIN is a “neural network” version

of the WL graph kernel.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

Recall: Color refinement algorithm in WL kernel.
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial color 𝑐 + 𝑣 to each node 𝑣.
§ Iteratively refine node colors by

𝑐 ,-. 𝑣 = HASH 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# % ,

where HASH maps different inputs to different colors.

§ After 𝐾 steps of color refinement, 𝑐 / 𝑣
summarizes the structure of 𝐾-hop neighborhood

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

Example of color refinement given two graphs
§ Assign initial colors

§ Aggregate neighboring colors

2/22/21 66Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1 1

1

1 1

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs
§ Aggregated colors:

§ Injectively HASH the aggregated colors

2/22/21 67Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4 3

5

2 2

4

3 4

5

2 2

4

HASH table: Injective!
1,1
1,11
1,111
1,1111

-->
-->
-->
-->

2
3
4
5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs
¡ Process continues until a stable coloring is

reached
¡ Two graphs are considered isomorphic if they

have the same set of colors.

2/22/21 68Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

11 8

12

7 7

11

9 11

13

7 6

10≠

¡ GIN uses a neural network to model the
injective HASH function.

¡ Specifically, we will model the injective
function over the tuple:

(𝑐 $ 𝑣 , 𝑐 $ 𝑢 %∈& ')

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

𝑐 ,-. 𝑣 = HASH 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# %

Root node
features

Neighboring
node colors

Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

Root node
feature

Neighboring
node features

MLP) 1 + 𝜖 ⋅ MLP*(𝑐 , (𝑣))) + -
!∈# %

MLP*(𝑐 , 𝑢)

(𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# %)

¡ If input feature 𝑐 ((𝑣) is represented as one-
hot, direct summation is injective.

¡ We only need Φ to ensure the injectivity.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

Φ + +

1
0

0
1

0
1

+ + = 1
2

Example:

GINConv 𝑐 ! 𝑣 , 𝑐 ! 𝑢 "∈$ % = MLP& 1 + 𝜖 ⋅ 𝑐 ! (𝑣) + C
"∈$ %

𝑐 ! 𝑢
Root node
features Neighboring node

features This MLP can provide “one-hot” input
feature for the next layer.

¡ GIN’s node embedding updates
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial vector 𝑐 + 𝑣 to each node 𝑣.
§ Iteratively update node vectors by

𝑐 ,-. 𝑣 = GINConv 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# % ,

where GINConv maps different inputs to different embeddings.

§ After 𝐾 steps of GIN iterations, 𝑐 / 𝑣 summarizes
the structure of 𝐾-hop neighborhood.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

Differentiable color HASH function

¡ GIN can be understood as differentiable neural
version of the WL graph Kernel:

¡ Advantages of GIN over the WL graph kernel are:
§ Node embeddings are low-dimensional; hence, they can

capture the fine-grained similarity of different nodes.
§ Parameters of the update function can be learned for the

downstream tasks.
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

Update target Update function

WL Graph Kernel Node colors
(one-hot)

HASH

GIN Node embeddings
(low-dim vectors)

GINConv

¡ Because of the relation between GIN and the
WL graph kernel, their expressive is exactly the
same.
§ If two graphs can be distinguished by GIN, they can be

also distinguished by the WL kernel, and vice versa.
¡ How powerful is this?
§ WL kernel has been both theoretically and

empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

§ Hence, GIN is also powerful enough to distinguish
most of the real graphs!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

¡ We design a neural network that can model
injective multi-set function.

¡ We use the neural network for neighbor
aggregation function and arrive at GIN---the
most expressive GNN model.

¡ The key is to use element-wise sum pooling,
instead of mean-/max-pooling.

¡ GIN is closely related to the WL graph kernel.
¡ Both GIN and WL graph kernel can distinguish

most of the real graphs!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 75

Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 76

Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument

6

Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument

6

Colors represent feature values

A B A B A B

¡ Can expressive power of GNNs be improved?
§ There are basic graph structures that existing GNN

framework cannot distinguish, such as difference in cycles.

§ GNNs’ expressive power can be improved to resolve
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 77

Graphs
𝑣'A 𝑣(B

Computational graphs
for nodes 𝑣# and 𝑣$:

