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¡ Fixed split: We will split our dataset once
• Training set: used for optimizing GNN parameters
• Validation set: develop model/hyperparameters
• Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee 
that the test set will really be held out

¡ Random split: we will randomly split our 
dataset into training / validation / test
• We report average performance over different 

random seeds

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3



¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1
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¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will 
participate in message passing à affect node 1’s embedding

¡ What are our options?
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¡ Solution 1 (Transductive setting): The input 
graph can be observed in all the dataset splits 
(training, validation and test set). 

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using 

the entire graph, and evaluate on node 3&4’s labels
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¡ Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will 

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the 

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the 

graph over node 3&4, and evaluate on node 3&4’s labels
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¡ Transductive setting: training / validation / test 
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits, 

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets 
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split. 

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks
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¡ Transductive node classification
§ All the splits can observe the entire graph structure, but 

can only observe the labels of their respective nodes
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¡ Inductive node classification
§ Suppose we have a dataset of 3 graphs
§ Each split contains an independent graph



¡ Only the inductive setting is well defined for 
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split 

will contain independent graph(s).
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¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised 

task. We need to create the labels and dataset 
splits on our own

§ Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge 

predictions made by the model, will not be fed into GNN!
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Training set Validation set

Message 
edge

Supervision
edge

Test set

𝐺! 𝐺" 𝐺#

3
2

45

1 8
7

910

6 13
12

1415

11



¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about 

link prediction
§ Suppose we have a dataset of 1 graph
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¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can 

be observed in all dataset splits
§ But since edges are both part of graph structure and the 

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out 

supervision edges for the training set

§ Next: we will show the exact settings
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¡ Option 2: Transductive link prediction split:
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¡ Option 2: Transductive link prediction split:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

3
2

45

1

(1) At training time:
Use training message 
edges to predict training 
supervision edges

(2) At validation time:
Use training message 
edges & training 
supervision edges to 
predict validation edges

(3) At test time:
Use training message 
edges & training 
supervision edges & 
validation edges to 
predict test edges

Why do we use growing number of edges?
After training, supervision edges are known to GNN. 
Therefore, an ideal model should use supervision 
edges in message passing at validation time. 
The same applies to the test time.

3
2

45

13
2

45

1



¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You 
may find papers do link prediction differently. But if you 
follow our reasoning steps, this should be the right way to 
implement link prediction

§ Luckily, we have full support in DeepSNAP and GraphGym
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Implementation resources:
DeepSNAP provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym


¡ We introduce a general perspective for GNNs
§ GNN Layer: 

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity: 
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN
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…

Output: Node embeddings.
We can also embed larger network 
structures,  subgraphs, graphs



¡ Key idea: Generate node embeddings based 
on local network neighborhoods 
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks
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How powerful are GNNs?
¡ Many GNN models have been proposed (e.g., 

GCN, GAT, GraphSAGE, design space).

¡ What is the expressive power (ability to 
distinguish different graph structures) of these 
GNN models?

¡ How to design a maximally expressive GNN 
model?
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¡ Many GNN models have been proposed:
§ GCN,  GraphSAGE, GAT, Design Space etc.
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¡ GCN (mean-pool)
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¡ GraphSAGE (max-pool)
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¡ We use node same/different colors to represent 
nodes with same/different features.
§ For example, the graph below assumes all the nodes 

share the same feature.

¡ Key question: How well can a GNN distinguish 
different graph structures?
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¡ We specifically consider local neighborhood 
structures around each node in a graph.
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§ Example: Nodes 1 and 5 
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Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.
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¡ We specifically consider local neighborhood 
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symmetric within the 
graph.

Node 1 has neighbors of degrees 2 and 3.
Node 2 has neighbors of degrees 2 and 3.
And even if we go a step deeper to 2nd hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)



¡ Key question: Can GNN node embeddings 
distinguish different node’s local 
neighborhood structures?
§ If so, when? If not, when will a GNN fail?

¡ Next: We need to understand how a GNN 
captures local neighborhood structures.
§ Key concept: Computational graph
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¡ In each layer, a GNN aggregates neighboring node 
embeddings.

¡ A GNN generates node embeddings through a 
computational graph defined by the neighborhood.
§ Ex: Node 1’s computational graph (2-layer GNN)
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¡ Ex: Nodes 1 and 2’s computational graphs.
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¡ Ex: Nodes 1 and 2’s computational graphs.
¡ But GNN only sees node features (not IDs):
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¡ A GNN will generate the same embedding for 
nodes 1 and 2 because:
§ Computational graphs are the same.
§ Node features (colors) are identical.
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¡ In general, different local neighborhoods 
define different computational graphs
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¡ Computational graphs are identical to rooted 
subtree structures around each node.
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¡ GNN‘s node embeddings capture rooted 
subtree structures.

¡ Most expressive GNN maps different rooted 
subtrees into different node embeddings 
(represented by different colors).
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¡ Function 𝑓: 𝑋 → Y is injective if it maps 
different elements into different outputs. 

¡ Intuition: 𝑓 retains all the information about 
input.
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¡ Most expressive GNN should map subtrees to 
the node embeddings injectively.
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¡ Key observation: Subtrees of the same depth 
can be recursively characterized from the leaf 
nodes to the root nodes.
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¡ If each step of GNN’s aggregation can fully 
retain the neighboring information, the 
generated node embeddings can distinguish 
different rooted subtrees.
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¡ In other words, most expressive GNN would 
use an injective neighbor aggregation
function at each step.
§ Maps different neighbors to different embeddings.
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¡ Summary so far
§ To generate a node embedding, GNNs use a 

computational graph corresponding to a subtree 
rooted around each node.

§ GNN can fully distinguish different subtree 
structures if every step of its neighbor 
aggregation is injective.
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¡ Key observation: Expressive power of GNNs 
can be characterized by that of neighbor 
aggregation functions they use.
§ A more expressive aggregation function leads to a 

more expressive a GNN.
§ Injective aggregation function leads to the most 

expressive GNN.
¡ Next:
§ Theoretically analyze expressive power of 

aggregation functions.
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¡ Observation: Neighbor aggregation can be 
abstracted as a function over a multi-set (a 
set with repeating elements). 
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¡ Next: We analyze aggregation functions of 
two popular GNN models 
§ GCN (mean-pool) [Kipf & Welling, ICLR 2017] 

§ Uses element-wise mean pooling over neighboring node 
features

Mean( 𝑥! !∈#(%))
§ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Uses element-wise max pooling over neighboring node 
features

Max( 𝑥! !∈# % )
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¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Take element-wise mean, followed by linear 
function and ReLU activation, i.e., max(0, 𝑥).

§ Theorem [Xu et al. ICLR 2019] 

§ GCN’s aggregation function cannot distinguish different 
multi-sets with the same color proportion. 

¡ Why?
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¡ For simplicity, we assume node colors are 
represented by one-hot encoding.
§ Example) If there are two distinct colors:

§ This assumption is sufficient to illustrate how GCN 
fails.
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¡ GCN (mean-pool) [Kipf & Welling ICLR 2017]

§ Failure case illustration
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¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Apply an MLP, then take element-wise max.
§ Theorem [Xu et al. ICLR 2019] 

§ GraphSAGE’s aggregation function cannot distinguish 
different multi-sets with the same set of distinct colors. 

¡ Why?
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¡ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

§ Failure case illustration
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¡ We analyzed the expressive power of GNNs.
¡ Main takeaways: 
§ Expressive power of GNNs can be characterized by 

that of the neighbor aggregation function.
§ Neighbor aggregation is a function over multi-sets 

(sets with repeating elements) 
§ GCN and GraphSAGE’s aggregation functions fail to 

distinguish some basic multi-sets; hence not injective.
§ Therefore, GCN and GraphSAGE are not maximally 

powerful GNNs.
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¡ Our goal: Design maximally powerful GNNs 
in the class of message-passing GNNs.

¡ This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

¡ Here, we design a neural network that can 
model injective multiset function.
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Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed 
as:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Φ -
'∈(

𝑓(𝑥)

𝑆 : multi-set

Some non-
linear function

Some non-
linear function

Φ 𝑓 𝑓 𝑓+ +

Sum over multi-set



Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of 
the one-hot encodings retains all the information about 
the input multi-set.

Example:
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¡ How to model 𝜱 and 𝒇 in 𝜱 ∑𝒙∈𝑺 𝒇(𝒙) ?
¡ We use a Multi-Layer Perceptron (MLP).
¡ Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

§ 1-hidden-layer MLP with sufficiently-large hidden 
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any 
continuous function to an arbitrary accuracy.
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¡ We have arrived at a neural network that can 
model any injective multiset function.

§ In practice, MLP hidden dimensionality of 100 to 
500 is sufficient.
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¡ Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

§ Apply an MLP, element-wise sum, followed by 
another MLP.

¡ Theorem [Xu et al. ICLR 2019] 

§ GIN‘s neighbor aggregation function is injective.
¡ No failure cases!
¡ GIN is THE most expressive GNN in the class of 

message-passing GNNs!
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¡ So far: We have described the neighbor 
aggregation part of GIN.

¡ We now describe the full model of GIN by 
relating it to WL graph kernel (traditional way 
of obtaining graph-level features).
§ We will see how GIN is a “neural network” version 

of the WL graph kernel.
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Recall: Color refinement algorithm in WL kernel.
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial color 𝑐 + 𝑣 to each node 𝑣.
§ Iteratively refine node colors by

𝑐 ,-. 𝑣 = HASH 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# % ,

where HASH maps different inputs to different colors.

§ After 𝐾 steps of color refinement, 𝑐 / 𝑣
summarizes the structure of 𝐾-hop neighborhood
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Example of color refinement given two graphs
§ Assign initial colors

§ Aggregate neighboring colors
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Example of color refinement given two graphs
§ Aggregated colors:

§ Injectively HASH the aggregated colors
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HASH table: Injective!
1,1
1,11
1,111
1,1111

-->
-->
-->
-->

2
3
4
5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111



Example of color refinement given two graphs
¡ Process continues until a stable coloring is 

reached
¡ Two graphs are considered isomorphic if they 

have the same set of colors.
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¡ GIN uses a neural network to model the 
injective HASH function.

¡ Specifically, we will model the injective 
function over the tuple:

(𝑐 $ 𝑣 , 𝑐 $ 𝑢 %∈& ' )
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𝑐 ,-. 𝑣 = HASH 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# %

Root node 
features

Neighboring 
node colors



Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.
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Root node 
feature

Neighboring 
node features

MLP) 1 + 𝜖 ⋅ MLP*(𝑐 , (𝑣))) + -
!∈# %

MLP*(𝑐 , 𝑢 )

(𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# % )



¡ If input feature 𝑐 ( (𝑣) is represented as one-
hot, direct summation is injective.

¡ We only need Φ to ensure the injectivity.
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0
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+ + = 1
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Example:

GINConv 𝑐 ! 𝑣 , 𝑐 ! 𝑢 "∈$ % = MLP& 1 + 𝜖 ⋅ 𝑐 ! (𝑣) + C
"∈$ %

𝑐 ! 𝑢
Root node 
features Neighboring node 

features This MLP can provide “one-hot” input 
feature for the next layer.



¡ GIN’s node embedding updates
¡ Given: A graph 𝐺 with a set of nodes 𝑉.
§ Assign an initial vector 𝑐 + 𝑣 to each node 𝑣.
§ Iteratively update node vectors by

𝑐 ,-. 𝑣 = GINConv 𝑐 , 𝑣 , 𝑐 , 𝑢 !∈# % ,

where GINConv maps different inputs to different embeddings.

§ After 𝐾 steps of GIN iterations, 𝑐 / 𝑣 summarizes 
the structure of 𝐾-hop neighborhood.
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¡ GIN can be understood as differentiable neural 
version of the WL graph Kernel:

¡ Advantages of GIN over the WL graph kernel are:
§ Node embeddings are low-dimensional; hence, they can 

capture the fine-grained similarity of different nodes.
§ Parameters of the update function can be learned for the 

downstream tasks.
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Update target Update function

WL Graph Kernel Node colors
(one-hot) 

HASH 

GIN Node embeddings
(low-dim vectors)

GINConv



¡ Because of the relation between GIN and the 
WL graph kernel, their expressive is exactly the 
same.
§ If two graphs can be distinguished by GIN, they can be 

also distinguished by the WL kernel, and vice versa.
¡ How powerful is this?
§ WL kernel has been both theoretically and 

empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

§ Hence, GIN is also powerful enough to distinguish 
most of the real graphs!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74



¡ We design a neural network that can model 
injective multi-set function.

¡ We use the neural network for neighbor 
aggregation function and arrive at GIN---the 
most expressive GNN model.

¡ The key is to use element-wise sum pooling, 
instead of mean-/max-pooling.

¡ GIN is closely related to the WL graph kernel.
¡ Both GIN and WL graph kernel can distinguish 

most of the real graphs!
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Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 76

Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument
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¡ Can expressive power of GNNs be improved?
§ There are basic graph structures that existing GNN 

framework cannot distinguish, such as difference in cycles.

§ GNNs’ expressive power can be improved to resolve 
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]
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