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1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Knowledge in graph form
§ Capture entities, types, and relationships

¡ Nodes are entities
¡ Nodes are labeled with 
their types
¡ Edges between two nodes
capture relationships 
between entities
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¡ Node types: paper, title, author, conference, 
year 

¡ Relation types: pubWhere, pubYear, hasTitle, 
hasAuthor, cite
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¡ Node types: account, song, post, food, channel
¡ Relation types: friend, like, cook, watch, listen
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¡ Google Knowledge Graph 
¡ Amazon Product Graph
¡ Facebook Graph API 
¡ IBM Watson 
¡ Microsoft Satori 
¡ Project Hanover/Literome
¡ LinkedIn Knowledge Graph 
¡ Yandex Object Answer 
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¡ Serving information 
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¡ Question answering and conversation agents
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1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Publicly available KGs:
§ FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

¡ Common characteristics:
§ Massive: millions of nodes and edges
§ Incomplete: many true edges are missing
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Given a massive KG, 
enumerating all the 

possible facts is 
intractable!

Can we predict plausible 
BUT missing links?



¡ Freebase
§ ~50 million entities
§ ~38K relation types
§ ~3 billion facts/triples

¡ FB15k/FB15k-237
§ A complete subset of Freebase, used by 

researchers to learn KG models
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93.8% of persons from Freebase 
have no place of birth and 78.5% 
have no nationality!

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies. 2013.



¡ Given an enormous KG, can we complete the 
KG / predict missing relations?
§ links + type
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missing relation: genre



¡ Edges in KG are represented as triples (ℎ, 𝑟, 𝑡)
§ head (ℎ) has relation 𝑟 with tail (𝑡). 

¡ Key Idea: 
§ Model entities and relations in the 

embedding/vector space ℝ( . 
§ Given a true triple (ℎ, 𝑟, 𝑡), the goal is that the 

embedding of (ℎ, 𝑟) should be close to the 
embedding of 𝑡.
§ How to embed ℎ, 𝑟 ?
§ How to define closeness?
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¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

§ Example: Family, Roommate
¡ Composition Relations:

𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧
§ Example: My mother’s husband is my father.

¡ 1-to-N, N-to-1 relations:
𝑟 ℎ, 𝑡+ , 𝑟 ℎ, 𝑡/ , … , 𝑟(ℎ, 𝑡3) are all True.

§ Example: 𝑟 is “StudentsOf” 
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¡ Translation Intuition: 
For a triple (ℎ, 𝑟, 𝑡), 𝐡, 𝐫, 𝐭 ∈ ℝ(,

𝐡 + 𝐫 = 𝐭

Score function: 𝑓; ℎ, 𝑡 = ||ℎ + 𝑟 − 𝑡||
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𝐡 𝐭

𝐫 Obama
Nationality

American

Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems. 2013.

NOTATION: 
embedding 
vectors will 
appear in
boldface



¡ Translation Intuition: for a triple (ℎ, 𝑟, 𝑡), 
𝐡 + 𝐫 = 𝐭

Max margin loss:

ℒ = ?
(@,;,A)∈B,(@,;,AC)∉B

𝛾 + 𝑓;(ℎ, 𝑡) − 𝑓;(ℎ, 𝑡F) G

where 𝛾 is the margin, i.e., the smallest distance tolerated by the 
model between a valid triple and a corrupted one.
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Valid triple Corrupted triple

NOTE: check 
lecture 7 for a more 
in-depth discussion
of TransE!



¡ Who has won the Turing award?

¡ Who is a Canadian citizen?
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Win

Hinton
Bengio

Pearl

Turing
Award

Canada

Trudeau Bieber

𝐪

Answers!

Hinton
Bengio

Pearl

Turing
Award

Canada
Citizen

Trudeau Bieber

Answers!

𝐪



¡ Composition Relations:
𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

¡ Example: My mother’s husband is my father.
¡ In TransE:

𝑟1 = 𝑟+ + 𝑟/ ü
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𝐱
𝐫+ 𝐫/

𝐫1

𝐲
𝐳



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

¡ Example: Family, Roommate
¡ In TransE:

𝑟 = 0, ℎ = 𝑡 û
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𝐡 𝐭

𝐫

If we want TransE to handle symmetric 
relations 𝑟, for all ℎ, 𝑡 that satisfy 𝑟(ℎ, 𝑡), 
𝑟(𝑡, ℎ) is also True, which means ‖
‖

ℎ + 𝑟 −
𝑡 = 0 and 𝑡 + 𝑟 − ℎ = 0. Then 𝑟 = 0 and 
ℎ = 𝑡, however ℎ and 𝑡 are two different 
entities and should be mapped to different 
locations.



¡ 1-to-N, N-to-1, N-to-N relations.
¡ Example: (ℎ, 𝑟, 𝑡+) and (ℎ, 𝑟, 𝑡/) both exist in 

the knowledge graph, e.g., 𝑟 is “StudentsOf”

With TransE, 𝑡+ and 𝑡/ will map to the same 
vector, although they are different entities.

¡ 𝐭+ = 𝐡 + 𝐫 = 𝐭/
¡ 𝐭+ ≠ 𝐭/
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𝐡

𝐭+
𝐭/ 𝐫

𝐫contradictory!



¡ TransR: model entities as vectors in the entity 
space ℝ( and model each relation as vector 𝒓 in 
relation space ℝP with 𝐌; ∈ ℝP×( as the 
projection matrix.

¡ ℎS = 𝑀;ℎ, 𝑡S = 𝑀;𝑡
¡ 𝑓; ℎ, 𝑡 = ||ℎS + 𝑟 − 𝑡S||

11/21/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

𝐡
𝐡S 𝐭S

𝐭

𝐫

Lin, Yankai, et al. "Learning entity and relation embeddings for knowledge graph completion." AAAI. 2015.



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

¡ Example: Family, Roommate

𝑟 = 0, ℎS = 𝑀;ℎ = 𝑀;𝑡 = 𝑡Sü
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𝐡 𝐭S, ℎS

𝐭

𝑴;

For TransR, we can map ℎ and 𝑡 to the same 
location on the space of relation 𝑟. 



¡ 1-to-N, N-to-1, N-to-N relations
¡ Example: If (ℎ, 𝑟, 𝑡+) and (ℎ, 𝑟, 𝑡/) exist in the 

knowledge graph.

We can learn 𝑀; so that 𝑡S = 𝑀;𝑡+ = 𝑀;𝑡/, note 
that 𝑡+ does not need to be equal to 𝑡/!
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𝐡
𝐡S 𝐭S

𝐭+

𝐭/
𝐫



¡ Composition Relations:
𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

¡ Example: My mother’s husband is my father.

Each relation has different space.
It is not naturally compositional for multiple 
relations! û
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Embedding Entity Relation 𝒇𝒓(𝒉, 𝒕)
TransE ℎ, 𝑡 ∈ ℝ( 𝑟 ∈ ℝ( ||ℎ + 𝑟 − 𝑡||
TransR ℎ, 𝑡 ∈ ℝ( 𝑟 ∈ ℝP,𝑀; ∈ ℝP×( ||𝑀;ℎ + 𝑟 −𝑀;𝑡||
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Embedding Symmetry Composition One-to-many

TransE û ü û

TransR ü û ü



1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Can we do multi-hop reasoning, i.e., answer 
complex queries efficiently on an incomplete, 
massive KG?
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Query  Types Examples

One-hop Queries Where did Hinton graduate?

Path Queries Where did Turing Award winners graduate?

Conjunctive Queries Where did Canadians with Turing Award graduate?

EPFO Queries Where did Canadians with Turing Award or Nobel graduate?



¡ We can formulate link prediction problems as 
answering one-hop queries.

¡ Link prediction: Is link (ℎ, 𝑟, 𝑡) True?

¡ One-hop query: Is 𝑡 an answer to query (ℎ, 𝑟)?
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¡ Generalize one-hop queries to path queries by 
adding more relations on the path.

¡ Path queries can be represented by
𝑞 = 𝑣\, 𝑟+, … , 𝑟3

𝑣\ is a constant node, answers are denoted by 𝑞 .

Computation graph of 𝑞:

Computation graph of path queries is a chain.
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𝑉?𝑣\

𝑟+ 𝑟/ 𝑟3…



“Where did Turing Award winners graduate?”
¡ 𝑣\ is “Turing Award”.
¡ 𝑟+, 𝑟/ is (“win”, “graduate”).

Given a KG, how to answer the query?
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Win Graduate

𝑉 𝑉?
Turing 
Award



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

The anchor node is Turing Award.



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

Win

Pearl

Hinton

Bengio

Start from the anchor node “Turing Award” 
and traverse the KG by the relation “Win”, 
we reach entities {“Pearl”, “Hinton”, 
“Bengio”}.



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”
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Turing 
Award

Win

Pearl

Graduate EdinburghHinton

McGill

Bengio

Cambridge

NYU

Answers!
Start from nodes {“Pearl”, “Hinton”, “Bengio”} 
and traverse the KG by the relation 
“Graduate”, we reach entities {“NYU”, 
“Edinburgh”, “Cambridge”, “McGill”}. These are 
the answers to the query!



¡ Answer path queries by traversing the KG.
“Where did Turing Award winners graduate?”

What if KG is incomplete?
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Turing 
Award

Win

Pearl

Graduate EdinburghHinton

McGill

Bengio

Cambridge

NYU

Answers!



¡ Can we first do link prediction and then 
traverse the completed (probabilistic) KG?

¡ No! The completed KG is a dense graph!
¡ Time complexity of traversing a dense KG with 
𝑉 entities to answer (𝑣\, 𝑟+, … , 𝑟3) of length 
𝑛 is 𝒪 𝑉 3 .
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𝑟/

𝑣\

𝑟+
𝑣+

𝑣/

𝑣|b|

…

𝑣/

𝑣|b|

…

𝑣+

…

…



¡ Key idea: embed queries!
§ Generalize TransE to multi-hop reasoning. 

Given a path query 𝑞 = 𝑣\, 𝑟+, … , 𝑟3 ,

𝐪 = 𝐯\ + 𝐫+ + ⋯+ 𝐫3
¡ Is 𝑣 an answer to 𝑞? 
§ Do a nearest neighbor search for all 𝑣 based on 
𝑓e 𝑣 = ||𝐪 − 𝐯||, time complexity is 𝒪(𝑉).
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𝐯𝒂
𝐪

𝐫+ 𝐫/
𝐫3…

Guu, Kelvin, John Miller, and Percy Liang. "Traversing knowledge graphs in vector space." arXiv preprint arXiv:1506.01094 (2015).



¡ Embed path queries in vector space.
“Where did Turing Award winners graduate?”
Follow the computation graph:
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Turing
Award

Computation Graph

Turing
Award

Embedding Space



¡ Embed path queries in vector space.
“Where did Turing Award winners graduate?”
Follow the computation graph:
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Turing
Award Projection

Computation Graph

Win

Bengio

Pearl

Turing
Award

Embedding Space

Hinton



¡ Embed path queries in vector space.
“Where did Turing Award winners graduate?”
Follow the computation graph:
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Turing
Award Projection Projection

Computation Graph

Win

NYU

Hinton
Bengio

Pearl

Graduate
McGill Edinburgh

Cambridge

Turing
Award

Embedding Process
𝐪

Answers!



1. Introduction to Knowledge Graphs

2. Link Prediction

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Can we answer more complex queries?
¡ What if we start from multiple anchor nodes?
“Where did Canadian citizens with Turing Award graduate?”

Computation graph of 𝑞:
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Turing
Award

Canada

Projection

Projection
Projection

Intersection

Intersection



¡ Can we answer even more complex queries?
“Where did Canadian citizens with Turing Award graduate?”

Two anchor nodes: Canada and Turing Award.
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Turing 
Award

Win

Pearl

Hinton

Bengio

Start from the first anchor node “Turing 
Award”, and traverse by relation “Win”, 
we reach {“Pearl”, “Hinton”, “Bengio”} .



¡ Can we answer even more complex queries?
“Where did Canadian citizens with Turing Award graduate?”

Two anchor nodes: Canada and Turing Award.
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Turing 
Award

Win

Canada

Citizen

Pearl

Hinton

Bieber

Bengio

Trudeau

Start from the second anchor node 
“Canada”, and traverse by relation 
“citizen”, we reach { “Hinton”, “Bengio”, 
“Bieber”, “Trudeau”} 



¡ Can we answer even more complex queries?
“Where did Canadian citizens with Turing Award graduate?”

Two anchor nodes: Canada and Turing Award.
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Turing 
Award

Win

Canada

Citizen

Pearl

Hinton

Bieber

Bengio

Trudeau

Then, we take intersection of the two 
sets and achieve {‘Hinton’, ‘Bengio’}



¡ Can we answer even more complex queries?
“Where did Canadian citizens with Turing Award graduate?”

Two anchor nodes: Canada and Turing Award.
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Turing 
Award

Win

Canada

Citizen

Pearl

Graduate

EdinburghHinton

McGill

Bieber

Bengio

Trudeau

Cambridge

We do another traverse and arrive at 
the answers!



¡ Key Idea: embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”

Follow the computation graph:
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Computation Graph Embedding Space

Turing
Award

Canada

Projection

Projection

Win

Hinton
Bengio

Pearl

Turing
Award

Canada
Citizen

Trudeau

Bieber

𝐪+

𝐪/



¡ Key Idea: embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”

Follow the computation graph:
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Computation Graph Embedding Process

Win

Hinton
Bengio

Pearl

Turing
Award

Canada
Citizen

Trudeau

Bieber

Turing
Award

Canada

Projection

Projection

Intersection

Intersection

?
𝐪+

𝐪/



¡ How do we take intersection of several 
vectors in the embedding space?

¡ Design a neural intersection operator ℐ
§ Input: current query embeddings 𝐪+, … , 𝐪h
§ Output: intersection query embedding 𝐪
§ ℐ should be permutation invariant:

ℐ 𝐪+, … , 𝐪h = ℐ(𝐪i + , … , 𝐪i(h))
[𝑝 1 , … , 𝑝 𝑚 ] is any permutation of [1, … ,𝑚]
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¡ DeepSets architecture
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𝐪+𝐪/…𝐪h

𝜙 mean 𝛽 𝐪

Permutation Invariant

Vector embeddings 
of the input queries

Features of the input 
queries

𝜙(𝐪+)

𝜙(𝐪h)

Vector embedding of 
the intersection query



¡ Key Idea: embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”

Follow the computation graph:
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Computation Graph Embedding Space

Win

Hinton
Bengio

Pearl

Turing
Award

Canada
Citizen

NYU

Graduate

McGill Edinburgh

Cambridge

𝐪

𝐪 = ℐ(𝐪+, 𝐪/)

Turing
Award

Canada

Projection

Projection
Projection

Intersection

Intersection

Trudeau Bieber

𝐪/

𝐪+

Answers!



¡ Given an entity embedding 𝐯 and a query 
embedding 𝐪, the distance is 𝑓e 𝑣 = ||𝐪 − 𝐯||.

¡ Trainable parameters: 
§ entity embeddings: 𝑑 𝑉
§ relation embeddings: 𝑑 𝑅
§ intersection operator 𝜙, 𝛽: number of parameters 

does not depend on graph size

¡ Same training strategy as TransE
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¡ Training:
1. Sample a query 𝑞, answer 𝑣, negative sample 𝑣′.
2. Embed the query 𝐪.
3. Calculate the distance 𝑓e(𝑣) and 𝑓e(𝑣F).
4. Optimize the loss ℒ.

¡ Query evaluation:
1. Given a test query 𝑞, embed the query 𝐪.
2. For all 𝑣 in KG, calculate 𝑓e(𝑣).
3. Sort the distance and rank all 𝑣.
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¡ Taking the intersection between two vectors 
is an operation that does not follow intuition.

¡ When we traverse the KG to achieve the 
answers, each step produces a set of 
reachable entities. How can we better model 
these sets? 

¡ Can we define a more expressive geometry to 
embed the queries? 
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1. Introduction to Knowledge Graphs

2. Knowledge Graph completion

3. Path Queries

4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings
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¡ Embed queries with hyper-rectangles (boxes)
𝐪 = (𝐶𝑒𝑛𝑡𝑒𝑟 𝑞 , 𝑂𝑓𝑓𝑠𝑒𝑡(𝑞))
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Edinburgh𝑞
McGill

Cambridge

Stanford

Embedding Space



¡ Taking intersection between two vectors is an 
operation that does not follow intuition.
§ Intersection of boxes is well-defined!

¡ When we traverse the KG to achieve the 
answers, each step produces a set of 
reachable entities. How can we better model 
these sets? 
§ Boxes are a powerful abstraction, as we can 

project the center and control the offset to model 
the set of entities enclosed in the box.
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¡ Parameters: 
§ entity embeddings: 𝑑 𝑉

§ entities are seen as zero-volume boxes

§ relation embeddings: 2𝑑 𝑅
§ augment each relation with an offset

§ intersection operator 𝜙, 𝛽: number of parameters 
does not depend on graph size 
§ New operator, inputs are boxes and output is a box
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Geometric Projection Operator 𝒫
¡ 𝒫 : Box × Relation → Box

𝐶𝑒𝑛 𝑞F = 𝐶𝑒𝑛 𝑞 + 𝐶𝑒𝑛 𝑟
𝑂𝑓𝑓 𝑞F = 𝑂𝑓𝑓 𝑞 + 𝑂𝑓𝑓(𝑟)
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Geometric Intersection Operator ℐ
¡ ℐ : Box ×⋯× Box → Box   
§ The new center is a weighted average.
§ The new offset shrinks.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6411/21/19



¡ Geometric Intersection Operator ℐ
¡ ℐ : Box ×⋯× Box → Box   

𝐶𝑒𝑛 𝑞{3A|; =?
{

𝒘{ ⊙ 𝐶𝑒𝑛 𝑞{

𝑂𝑓𝑓 𝑞{3A|;
= min 𝑂𝑓𝑓 𝑞+ , … , 𝑂𝑓𝑓 𝑞3
⊙ 𝜎(𝐷𝑒𝑒𝑝𝑠𝑒𝑡𝑠(𝐪+, … , 𝐪3))
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weight

guarantees shrinking

Sigmoid function:
squashes output in (0,1)

dimension-wise product
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Embed queries in vector space
“Where did Canadian citizens with Turing Award graduate?”
Note that computation graph stays the same!
Follow the computation graph:
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¡ Given a query box 𝐪 and entity vector 𝐯,

𝑑��� 𝐪, 𝐯 = 𝑑��A 𝐪, 𝐯 + 𝛼 ⋅ 𝑑{3(𝐪, 𝐯)

where 0 < 𝛼 < 1.
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𝑑��A(𝐪, 𝐯)
𝑑{3(𝐪, 𝐯)

𝑣

𝐶𝑒𝑛(𝑞)
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¡ Given a set of queries and answers,
ℒ = − log 𝜎 𝛾 − 𝑑��� 𝑞, 𝑣 −

log 𝜎(𝑑��� 𝑞, 𝑣{F − 𝛾)
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𝛾 𝛾

− log 𝜎 𝛾 − 𝑑��� 𝑞, 𝑣
minimize loss → minimize 𝑑���(𝑞, 𝑣)

− log 𝜎 𝑑��� 𝑞, 𝑣′ − 𝛾
minimize loss → maximize 𝑑���(𝑞, 𝑣′)



¡ Can query2box handle different relation 
patterns?
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Embedding Symmetry Composition One-to-many

TransE û ü û

TransH ü û ü

Query2Box ü ü ü

For details please check the paper https://openreview.net/forum?id=BJgr4kSFDS

https://openreview.net/forum%3Fid=BJgr4kSFDS


¡ 1-to-N, N-to-1, N-to-N relations.
¡ Example: Both (ℎ, 𝑟, 𝑡+) and (ℎ, 𝑟, 𝑡/) exist.

¡ Box Embedding can handle since 𝑡+ and 𝑡/ will 
be mapped to different locations in the box of 
(ℎ, 𝑟). ü
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𝐡

𝐭+
𝐭/

𝐡 + 𝐫



¡ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ ∀ℎ, 𝑡

¡ Example: Family, Roommate
¡ Box Embedding

𝐶𝑒𝑛 𝑟 = 0ü
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𝐡
𝐭

𝐡 + 𝐫

For symmetric relations 𝑟, we could assign 
𝐶𝑒𝑛 𝑟 = 0. In this case, as long as 𝑡 is in 
the box of (ℎ, 𝑟), it is guaranteed that ℎ is in 
the box of (𝑡, 𝑟). So we have 𝑟(ℎ, 𝑡) ⇒ 𝑟(𝑡, ℎ)

𝐭 + 𝐫



¡ Composition Relations:
𝑟+ 𝑥, 𝑦 ∧ 𝑟/ 𝑦, 𝑧 ⇒ 𝑟1 𝑥, 𝑧 ∀𝑥, 𝑦, 𝑧

¡ Example: My mother’s husband is my father.
¡ Box Embedding

𝐫1 = 𝐫+ + 𝐫/ ü
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𝐱
𝐫1

𝐲

𝐳

𝐱 + 𝐫𝟏
𝐲 + 𝐫𝟐

𝐱 + 𝐫𝟏 + 𝐫𝟐

For composition relations, if 𝑦 is in the box of 
(𝑥, 𝑟+) and 𝑧 is in the box of (𝑦, 𝑟/), it is 
guaranteed that 𝑧 is in the box of (𝑥, 𝑟+ + 𝑟/). 



¡ Can we embed even more complex queries?
“Where did Canadians with Turing Award or Nobel graduate?”

¡ Conjunctive queries + disjunction is called 
Existential Positive First-order (EPFO) queries.

¡ Can we also design a disjunction operator and 
embed EPFO queries in low-dimensional vector 
space? YES!
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For details please check the paper https://openreview.net/forum?id=BJgr4kSFDS

https://openreview.net/forum%3Fid=BJgr4kSFDS


¡ Datasets: FB15K, FB15K-237

¡ Goal: can the model discover true answers that 
cannot be achieved by traversing the KG?
§ Training KG: Training Edges
§ Validation KG: Training Edges + Validation Edges
§ Test KG: Training Edges + Validation Edges + Test Edges

¡ Queries:
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Training Conjunctive Queries

ip pi

Unseen Conjunctive Queries

u
u

u
u

2u up

Union Queries
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¡ Given a query structure, use pre-order traversal (traverse 
from root to leaves) to assign an entity/relation for every 
node/edge.

¡ We explicitly rule out degenerated queries.
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rootleaf

leaf

𝒓 𝒓�𝟏

𝑉 𝑉?𝑣\

𝒓

𝒓𝑣\

𝑣\

𝑉?
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¡ After instantiation, run post-order traversal (traverse 
from leaves 𝑣+, 𝑣/ to root) to achieve all answers. 

¡ For test queries, we guarantee that they cannot be fully 
answered on training/validation KG.
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𝑣/

𝑟+

𝑟/

𝑟1

root
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3i2i3p2p1p

Training Conjunctive Queries

ip pi

Unseen Conjunctive Queries

u
u

u
u

2u up

Union Queries
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¡ What does query2box actually learn?

Example: “List male instrumentalists who play 
string instruments”

¡ We use T-SNE to reduce the embedding space 
to a 2-dimensional space, in order to visualize 
the query results
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“List male instrumentalists who play string instruments”
String
Instrument

Male

Projection

Projection

Projection Intersection

Intersection

Embedding of 
14951 entities
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Anchor

“List male instrumentalists who play string instruments”
String
Instrument
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TP

FP
TN

FN

“List male instrumentalists who play string instruments”
String
Instrument Projection

TPR: 100%
FPR: 0%

# of string instruments: 10
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TP

FP
TN

FN

“List male instrumentalists who play string instruments”
String
Instrument Projection Projection

# of instrumentalists: 472

TPR: 98.4%
FPR: 0.01%
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“List male instrumentalists who play string instruments”

Male

Anchor
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TP

FP
TN

FN

Male
Projection

TPR: 97.9%
FPR: 0.01%

“List male instrumentalists who play string instruments”

# of men: 3555
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TP

FP
TN

FN

String
Instrument

Male

Projection

Projection

Projection Intersection

Intersection

“List male instrumentalists who play string instruments”

# of answers: 396

TPR: 99.4%
FPR: 0.01%
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