Reasoning over Knowledge Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Hongyu Ren, Stanford University

Outline of Today's Lecture

1. Introduction to Knowledge Graphs
2. Knowledge Graph completion
3. Path Queries
4. Conjunctive Queries
5. Query2Box: Reasoning with Box Embeddings

Knowledge Graphs

- Knowledge in graph form
- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities

Example: Bibliographic networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

Example: Social networks

- Node types: account, song, post, food, channel
- Relation types: friend, like, cook, watch, listen

Example: Google Knowledge Graph

Knowledge Graphs in Practice

- Google Knowledge Graph
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

Applications of Knowledge Graphs

- Serving information

latest films by the director of titantic

809 97th Ave SE, Bellevue, WA
98004 $\$ 44,580,000$
4 bed $\cdot 4.75$ bath $\cdot 6,220$ sq ft

719 96th Ave SE, Bellevue, WA 98004
\$9,988,000
5 bed - 5.75 bath - 14,140 sq ft

355 Shoreland Dr SE, Bellevue, \$4,988,00
5 bed $\cdot 4.75$ bath $\cdot 6,500$ sq ft

Compare

Compare

12210 NE 33rd St, Bellevue, WA 98005
$\$ 6,888,000$
6 bed $\cdot 6.5$ bath $\cdot 10,088$ sq ft

\qquad

48 NE 95 th Ave, Bellevue WA 98004
\$9,400,000
4 bed $\cdot 5.5$ bath $\cdot 6,100 \mathrm{sqfi}$
Images Videos Maps News Shop I My saves

Latest films by the director of Titanic

Avatar 4
Dec 20, 2024 (...

Avatar 2 Dec 18, 2020 (...

Avatar Dec 18, 2009 (

Aliens of the Deep
Jan 28, 2005 (..

Ghosts of the Abyss
Mar 31, 2003 (

Expedition: Bismarck Dec 8, 2002 (U.

Titanic Dec 19, 1997 (..

Applications of Knowledge Graphs

- Question answering and conversation agents

Okay, booking a flight to JFK from November 20 to November 27. Where will you be flying from?

From San Francisco, and also non-stop in first class

Got it, I've found some flights for you ...

How about leaving in the afternoon

23

Outline

1. Introduction to Knowledge Graphs
2. Knowledge Graph completion

3. Path Queries
4. Conjunctive Queries
5. Query2Box: Reasoning with Box Embeddings

Knowledge Graph Datasets

- Publicly available KGs:
- FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.
- Common characteristics:
- Massive: millions of nodes and edges
- Incomplete: many true edges are missing

Given a massive KG, enumerating all the possible facts is intractable!

Can we predict plausible BUT missing links?

Example: Freebase

- Freebase
₹ Freebase
- ~50 million entities
- ~38K relation types \qquad
93.8\% of persons from Freebase have no place of birth and 78.5\% have no nationality!
- FB15k/FB15k-237
- A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

KG Completion

- Given an enormous KG, can we complete the KG / predict missing relations?
- links + type

KG Representation

- Edges in KG are represented as triples (h, r, t)
- head (h) has relation (r) with tail (t).
- Key Idea:
- Model entities and relations in the embedding/vector space \mathbb{R}^{d}.
- Given a true triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
- How to embed (h, r)?
- How to define closeness?

Relation Patterns

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- 1-to-N, N-to-1 relations:
$r\left(h, t_{1}\right), r\left(h, t_{2}\right), \ldots, r\left(h, t_{n}\right)$ are all True.
" Example: r is "StudentsOf"

TransE

- Translation Intuition:

For a triple $(h, r, t), \mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^{d}$,

$$
\mathbf{h}+\mathbf{r}=\mathbf{t}
$$

NOTATION:
embedding
vectors will appear in boldface

Score function: $f_{r}(h, t)=\|h+r-t\|$

Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems. 2013.

TransE Training

- Translation Intuition: for a triple (h, r, t),

$$
\mathbf{h}+\mathbf{r}=\mathbf{t}
$$

Max margin loss:

$$
\mathcal{L}=\sum_{(h, r, t) \in G,\left(h, r, t^{\prime}\right) \notin G}\left[\gamma+f_{\text {Valid triple }}^{\left.f_{r}(h, t)-f_{r}\left(h, t^{\prime}\right)\right]_{+}}\right.
$$

where γ is the margin, i.e., the smallest distance tolerated by the model between a valid triple and a corrupted one.

NOTE: check
lecture 7 for a more in-depth discussion of TransE!

Link Prediction in a KG using TransE

- Who has won the Turing award?

- Who is a Canadian citizen?

Turing $_{\circ}$
Award

Composition in TransE

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- In TransE:

$$
r_{3}=r_{1}+r_{2}
$$

Limitation: Symmetric Relations

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- In TransE:

Limitation: N-ary Relations

- 1-to-N, N-to-1, N-to-N relations.
- Example: $\left(h, r, t_{1}\right)$ and $\left(h, r, t_{2}\right)$ both exist in the knowledge graph, e.g., r is "StudentsOf"

With TransE, t_{1} and t_{2} will map to the same vector, although they are different entities.
$-\mathbf{t}_{1}=\mathbf{h}+\mathbf{r}=\mathbf{t}_{2}$

- $\mathbf{t}_{1} \neq \mathbf{t}_{2} \quad$ contradictory!

TransR

- TransR: model entities as vectors in the entity space \mathbb{R}^{d} and model each relation as vector r in relation space \mathbb{R}^{k} with $\mathbf{M}_{r} \in \mathbb{R}^{k \times d}$ as the projection matrix.
- $h_{\perp}=M_{r} h, t_{\perp}=M_{r} t$
- $f_{r}(h, t)=\left\|h_{\perp}+r-t_{\perp}\right\|$

Lin, Yankai, et al. "Learning entity and relation embeddings for knowledge graph completion." AAAI. 2015.

Symmetric Relations in TransR

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate

$$
r=0, h_{\perp}=M_{r} h=M_{r} t=t_{\perp}
$$

N -ary Relations in TransR

- 1-to-N, N-to-1, N-to-N relations
- Example: If $\left(h, r, t_{1}\right)$ and (h, r, t_{2}) exist in the knowledge graph.

We can learn M_{r} so that $t_{\perp}=M_{r} t_{1}=M_{r} t_{2}$, note that t_{1} does not need to be equal to t_{2} !

Limitation: Composition in TransR

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.

Each relation has different space.
It is not naturally compositional for multiple relations! \times

Translation-Based Embedding

Embedding	Entity	Relation	$f_{r}(h, t)$		
TransE	$h, t \in \mathbb{R}^{d}$	$r \in \mathbb{R}^{d}$	$\\|h+r-t\\|$		
TransR	$h, t \in \mathbb{R}^{d}$	$r \in \mathbb{R}^{k}, M_{r} \in \mathbb{R}^{k \times d}$	$\left\\|M_{r} h+r-M_{r} t\right\\|$		

Embedding	Symmetry	Composition	One-to-many
TransE	x	\checkmark	x
TransR	\checkmark	x	\checkmark

Outline

1. Introduction to Knowledge Graphs
2. Knowledge Graph completion
3. Path Queries

4. Conjunctive Queries
5. Query2Box: Reasoning with Box Embeddings

Query Types on KG

- Can we do multi-hop reasoning, i.e., answer complex queries efficiently on an incomplete, massive KG?

Ouery Types
One-hop Queries
Path Queries
Conjunctive Queries
EPFO Queries

Examples

Where did Hinton graduate?
Where did Turing Award winners graduate?
Where did Canadians with Turing Award graduate?
Where did Canadians with Turing Award or Nobel graduate?

One-hop Queries

- We can formulate link prediction problems as answering one-hop queries.
- Link prediction: Is link (h, r, t) True?

- One-hop query: Is t an answer to query (h, r)?

Path Queries

- Generalize one-hop queries to path queries by adding more relations on the path.
- Path queries can be represented by

$$
q=\left(v_{a}, r_{1}, \ldots, r_{n}\right)
$$

v_{a} is a constant node, answers are denoted by $\llbracket q \rrbracket$.

Computation graph of q :

Computation graph of path queries is a chain.

Path Queries

"Where did Turing Award winners graduate?"

- v_{a} is "Turing Award".
- (r_{1}, r_{2}) is ("win", "graduate").

Given a KG, how to answer the query?

Traversing Knowledge Graphs

- Answer path queries by traversing the KG. "Where did Turing Award winners graduate?"

Turing

Award

The anchor node is Turing Award.

Traversing Knowledge Graphs

- Answer path queries by traversing the KG. "Where did Turing Award winners graduate?"

Start from the anchor node "Turing Award" and traverse the KG by the relation "Win", we reach entities \{"Pearl", "Hinton", "Bengio"\}.

Traversing Knowledge Graphs

- Answer path queries by traversing the KG. "Where did Turing Award winners graduate?"
 "Graduate", we reach entities \{"NYU",
"Edinburgh", "Cambridge", "McGill"\}. These are the answers to the query!

Traversing Knowledge Graphs

- Answer path queries by traversing the KG. "Where did Turing Award winners graduate?"

What if KG is incomplete?

Answering Path Queries

- Can we first do link prediction and then traverse the completed (probabilistic) KG?
- No! The completed KG is a dense graph!
- Time complexity of traversing a dense KG with $|V|$ entities to answer $\left(v_{a}, r_{1}, \ldots, r_{n}\right)$ of length n is $\mathcal{O}\left(|V|^{n}\right)$.

Traversing KG in Vector Space

- Key idea: embed queries!
- Generalize TransE to multi-hop reasoning.

Given a path query $q=\left(v_{a}, r_{1}, \ldots, r_{n}\right)$,

$$
\mathbf{q}=\mathbf{v}_{a}+\mathbf{r}_{1}+\cdots+\mathbf{r}_{n}
$$

- Is v an answer to q ?
- Do a nearest neighbor search for all v based on $f_{q}(v)=\|\mathbf{q}-\mathbf{v}\|$, time complexity is $\mathcal{O}(V)$.
Guu, Kelvin, John Miller, and Percy Liang. "Traversing knowledge graphs in vector space." arXiv preprint arXiv:1506.01094 (2015).

Traversing KG in Vector Space

- Embed path queries in vector space. "Where did Turing Award winners graduate?" Follow the computation graph:

Computation Graph
Embedding Space

Turing $_{\text {A }}$
Award

Turing
Award

Traversing KG in Vector Space

- Embed path queries in vector space. "Where did Turing Award winners graduate?" Follow the computation graph:

Computation Graph
Embedding Space

Traversing KG in Vector Space

- Embed path queries in vector space. "Where did Turing Award winners graduate?" Follow the computation graph:

Computation Graph

Embedding Process

Outline of Today's Lecture

1. Introduction to Knowledge Graphs
2. Link Prediction
3. Path Queries
4. Conjunctive Queries

5. Query2Box: Reasoning with Box Embeddings

Conjunctive Queries

- Can we answer more complex queries?
- What if we start from multiple anchor nodes?
"Where did Canadian citizens with Turing Award graduate?"
Computation graph of q :

Conjunctive Queries

- Can we answer even more complex queries? "Where did Canadian citizens with Turing Award graduate?"

Two anchor nodes: Canada and Turing Award.

Start from the first anchor node "Turing Award", and traverse by relation "Win", we reach \{"Pearl", "Hinton", "Bengio"\}.

Conjunctive Queries

- Can we answer even more complex queries? "Where did Canadian citizens with Turing Award graduate?"

Two anchor nodes: Canada and Turing Award.

Conjunctive Queries

- Can we answer even more complex queries? "Where did Canadian citizens with Turing Award graduate?"

Two anchor nodes: Canada and Turing Award.

Conjunctive Queries

- Can we answer even more complex queries? "Where did Canadian citizens with Turing Award graduate?"

Two anchor nodes: Canada and Turing Award.

Traversing KG in Vector Space

- Key Idea: embed queries in vector space
"Where did Canadian citizens with Turing Award graduate?"

Follow the computation graph:

Computation Graph
Embedding Space

Traversing KG in Vector Space

- Key Idea: embed queries in vector space "Where did Canadian citizens with Turing Award graduate?"

Follow the computation graph:

Computation Graph
Embedding Process

Neural Intersection Operator

- How do we take intersection of several vectors in the embedding space?
- Design a neural intersection operator \mathcal{J}
- Input: current query embeddings $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$
- Output: intersection query embedding \mathbf{q}
- I should be permutation invariant:

$$
\mathcal{J}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}\right)=\mathcal{J}\left(\mathbf{q}_{p(1)}, \ldots, \mathbf{q}_{p(m)}\right)
$$

$[p(1), \ldots, p(m)]$ is any permutation of $[1, \ldots, m]$

Neural Intersection Operator

- DeepSets architecture

Traversing KG in Vector Space

- Key Idea: embed queries in vector space "Where did Canadian citizens with Turing Award graduate?"

Follow the computation graph:

Computation Graph

Answers!

Training

- Given an entity embedding \mathbf{v} and a query embedding \mathbf{q}, the distance is $f_{q}(v)=\|\mathbf{q}-\mathbf{v}\|$.
- Trainable parameters:
- entity embeddings: $d|V|$
- relation embeddings: $d|R|$
- intersection operator ϕ, β : number of parameters does not depend on graph size
- Same training strategy as TransE

Whole Process

- Training:

1. Sample a query q, answer v, negative sample v^{\prime}.
2. Embed the query \mathbf{q}.
3. Calculate the distance $f_{q}(v)$ and $f_{q}\left(v^{\prime}\right)$.
4. Optimize the loss \mathcal{L}.

- Query evaluation:

1. Given a test query q, embed the query \mathbf{q}.
2. For all v in KG, calculate $f_{q}(v)$.
3. Sort the distance and rank all v.

Limitations

- Taking the intersection between two vectors is an operation that does not follow intuition.
- When we traverse the KG to achieve the answers, each step produces a set of reachable entities. How can we better model these sets?
- Can we define a more expressive geometry to embed the queries?

Outline

1. Introduction to Knowledge Graphs
2. Knowledge Graph completion
3. Path Queries
4. Conjunctive Queries
5. Query2Box: Reasoning with Box Embeddings

Box Embeddings

- Embed queries with hyper-rectangles (boxes) $\mathbf{q}=(\operatorname{Center}(q), O f f \operatorname{set}(q))$

Addressing Limitations

- Taking intersection between two vectors is an operation that does not follow intuition.
- Intersection of boxes is well-defined!
- When we traverse the KG to achieve the answers, each step produces a set of reachable entities. How can we better model these sets?
- Boxes are a powerful abstraction, as we can project the center and control the offset to model the set of entities enclosed in the box.

Embed with Box Embeddings

- Parameters:
- entity embeddings: $d|V|$
- entities are seen as zero-volume boxes
- relation embeddings: $2 d|R|$
- augment each relation with an offset
- intersection operator ϕ, β : number of parameters does not depend on graph size
- New operator, inputs are boxes and output is a box

Embed with Box Embedding

- Embed queries in vector space "Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Embedding Space

Turing
Award

Embed with Box Embedding

- Embed queries in vector space
"Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Turing。
Award
?

Projection Operator

- Geometric Projection Operator \mathcal{P}
- $\mathcal{P}:$ Box \times Relation \rightarrow Box

$$
\begin{aligned}
\operatorname{Cen}\left(q^{\prime}\right) & =\operatorname{Cen}(q)+\operatorname{Cen}(r) \\
\operatorname{Off}\left(q^{\prime}\right) & =\operatorname{Off}(q)+\operatorname{Off}(r)
\end{aligned}
$$

Embed with Box Embedding

- Embed queries in vector space "Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Embedding Space

Embed with Box Embedding

- Embed queries in vector space "Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Embedding Space

Intersection Operator

- Geometric Intersection Operator J
- J : Box $\times \cdots \times$ Box \rightarrow Box
- The new center is a weighted average.
- The new offset shrinks.

Intersection Operator

- Geometric Intersection Operator J
$-\mathcal{J}$: Box $\times \cdots \times$ Box \rightarrow Box
dimension-wise product

Off $\left(q_{\text {inter }}\right)$
guarantees shrinking
$=\min \left(O f f\left(q_{1}\right), \ldots, O f f\left(q_{n}\right)\right)$
$\odot \sigma\left(\operatorname{Deepsets}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right)\right)$

Sigmoid function:
squashes output in $(0,1)$

Embed with Box Embedding

- Embed queries in vector space "Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Embedding Space

Embed with Box Embedding

- Embed queries in vector space "Where did Canadian citizens with Turing Award graduate?" Note that computation graph stays the same! Follow the computation graph:

Computation Graph

Embedding Space

Entity-to-Box Distance

Given a query box \mathbf{q} and entity vector \mathbf{v},

$$
d_{b o x}(\mathbf{q}, \mathbf{v})=d_{\text {out }}(\mathbf{q}, \mathbf{v})+\alpha \cdot d_{i n}(\mathbf{q}, \mathbf{v})
$$

where $0<\alpha<1$.

Training Queryzbox

- Given a set of queries and answers,

$$
\begin{aligned}
\mathcal{L}= & -\log \sigma\left(\gamma-d_{\text {box }}(q, v)\right)- \\
& \log \sigma\left(d_{\text {box }}\left(q, v_{i}^{\prime}\right)-\gamma\right)
\end{aligned}
$$

$-\log \sigma\left(\gamma-d_{\text {box }}(q, v)\right)$
minimize loss \rightarrow minimize $d_{\text {box }}(q, v) \quad$ minimize loss \rightarrow maximize $d_{\text {box }}\left(q, v^{\prime}\right)$

Relation Patterns

- Can query2box handle different relation patterns?

Embedding	Symmetry	Composition	One-to-many
TransE	x	\checkmark	x
TransH	\checkmark	x	\checkmark
Query2Box	\checkmark	\checkmark	\checkmark

For details please check the paper https://openreview.net/forum?id=BJgrakSFDS

N-ary Relations in query2box

- 1-to-N, N-to-1, N-to-N relations.
- Example: Both $\left(h, r, t_{1}\right)$ and $\left(h, r, t_{2}\right)$ exist.
- Box Embedding can handle since t_{1} and t_{2} will be mapped to different locations in the box of (h, r).

Symmetric Relations in queryzbox

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- Box Embedding

$$
\operatorname{Cen}(r)=0
$$

For symmetric relations r, we could assign Cen $(r)=0$. In this case, as long as t is in the box of (h, r), it is guaranteed that h is in the box of (t, r). So we have $r(h, t) \Rightarrow r(t, h)$

Composition Relations in query2box

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- Box Embedding

$$
\mathbf{r}_{3}=\mathbf{r}_{1}+\mathbf{r}_{2}
$$

EPFO queries

- Can we embed even more complex queries?
"Where did Canadians with Turing Award or Nobel graduate?"
- Conjunctive queries + disjunction is called Existential Positive First-order (EPFO) queries.
- Can we also design a disjunction operator and embed EPFO queries in low-dimensional vector space? YES!

[^0]
Experiments

- Datasets: FB15K, FB15K-237

Dataset	Entities	Relations	Training Edges	Validation Edges	Test Edges	Total Edges
FB15k	14,951	1,345	483,142	50,000	59,071	592,213
FB15k-237	14,505	237	272,115	17,526	20,438	310,079

- Goal: can the model discover true answers that cannot be achieved by traversing the KG?
- Training KG: Training Edges
- Validation KG: Training Edges + Validation Edges
- Test KG: Training Edges + Validation Edges + Test Edges
- Queries:

Training Conjunctive Queries

$\begin{array}{lllll}1 p & 2 p & 3 p & 2 i & 3 i\end{array}$

Unseen Conjunctive Queries

ip
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Union Queries

$2 u$

Query Generation

- Given a query structure, use pre-order traversal (traverse from root to leaves) to assign an entity/relation for every node/edge.

- We explicitly rule out degenerated queries.

Query Generation

- After instantiation, run post-order traversal (traverse from leaves v_{1}, v_{2} to root) to achieve all answers.

- For test queries, we guarantee that they cannot be fully answered on training/validation KG.

Query Statistics

Training Conjunctive Queries

Unseen Conjunctive Queries

ip

Union Queries

Queries	Training		Validation		Test	
Dataset	1 p	others	1 p	others	1 p	others
FB15k	273,710	273,710	59,097	8,000	67,016	8,000
FB15k-237	149,689	149,689	20,101	5,000	22,812	5,000

Visualization

- What does query2box actually learn?

Example: "List male instrumentalists who play string instruments"

- We use T-SNE to reduce the embedding space to a 2-dimensional space, in order to visualize the query results

Embedding Space

"List male instrumentalists who play string instruments"
String Instrument

Embedding Space

"List male instrumentalists who play string instruments"
String
Instrument

Embedding Space

Embedding Space

Embedding Space

"List male instrumentalists who play string instruments"

Embedding Space

"List male instrumentalists who play string instruments"

Embedding Space

[^0]: For details please check the paper https://openreview.net/forum?id=BJgr4kSFDS

