
CS224W Project: Graph-based node feature prediction system
using structural features and incomplete node metadata

Yang Fang
yangfang@stanford.edu

Kaylie Zhu
kayliez@stanford.edu

Kylan Sakata
kylan@stanford.edu

December 11, 2019

Abstract

A myriad of recent machine learning endeavours are devoted towards missing node feature prediction using
large-scale graphical datasets. In this paper, we experiment with the GNN, GraphSage, and GCN models using using
node2vec embeddings and incomplete node and edge features from the Flickr dataset. We use ablation studies to
explore the effectiveness of both portions of the input by running a series of experiments on both input forms on its
own as well as combined. We also implement, train and tune each of the three models and compare their performance
on image missing tag prediction. We find that GCN is best able to tackle the acute class imbalance deep-seated in the
dataset and demonstrates most efficacious graphical structure learning in our research.

1 Introduction
With the explosive growth of social media platforms and e-commerce, massive graphical datasets have become
increasingly prevalent and valuable, inspiring a plethora of algorithm research endeavours into node property prediction
on graphical data in the field of machine learning. Many early efforts in the domain were hindered by the challenge
of encoding graph structures to be easily exploited by machine learning models, and traditional machine learning
approaches were reliant on user-defined heuristics to extract features encoding graphical structural information such
as degree statistics. In recent years, however, we have witnessed a surge of deep learning techniques and nonlinear
dimensionality reduction approaches, including matrix factorisation-based methods, random-walk based algorithms and
graph convolutional networks [Hamilton et al., 2017], many of which have inspired us to build a graph-based image
node feature prediction system using structural features and node metadata as follows. We implement and perform
various experiments comparing GNN, GraphSage and GCN models on the Flickr dataset, before executing ablation
studies to demonstrate the efficacies of using Node2Vec embeddings, incomplete node feature sets, and a concatenation
of both in performing missing label prediction.

2 Task Definition
This project aims to leverage the graphical structure of the Flickr dataset to improve feature prediction. Specifically,
given a target image, we would like to utilize the graphical relationships as well as node and edge features to perform a
multi-class classification in order to predict any missing features or labels.

One natural extension and application of this task that was experimented with is in improving image recommendation,
especially in the partial or full absence of node and/or edge features. For example, given partially or fully unlabelled

1



edges or nodes (whether due to incomplete data, privacy requirements, etc.), a ”pre-recommendation” step could
generate predictions for missing features, with its results being pipelined to traditional recommendation systems or
networks for improved recommendation.

3 Related Work
Many modern machine learning models extract and leverage image features and metadata in order to accurately
perform prediction and classification tasks, but most choose to independently process each image, despite the fact
that the very co-existence of images within a collection (e.g. same author, same location) provides some inherently
relational data that can be used to augment these models. In ”Image Labeling on a Network: Using Social-Network
Metadata for Image Classification,”[Cheng et al., 2018] McAuley and Leskovec explore how this relational data can
be modeled and harnessed to perform tasks such as image classification and labeling [McAuley and Leskovec, 2012].
They argue that by extension, a graphical model best captures the relationships between images. Using an image and
metadata dataset collected from Flickr, McAuley and Leskovec found that the graphical model, compared against
”standard” machine learning approaches, generally produced significant performance improvements in prediction tasks.
Interestingly, McAuley and Leskovec only take the approach of applying a graphical model to prediction tasks in an
attempt to out-perform other machine learning models, and do not discuss the fact that there are certain tasks that are
difficult or impossible to formulate as anything but a graph problem. For example, a graphical model can be leveraged
to generate node groupings for a graph of fully or partially anonymized nodes and edges, where an anonymized
edge indicates some unknown relationship between two nodes. This could lead to useful applications such as image
recommendations in the event that there are legal regulations against retaining or accessing the actual metadata of images.

More recently, Sun et al [Sun et al., 2015] explores how to generate efficient and similar recommendations on a user-item
basis using a social network to refine recommendations and give a better approach to interpreting the recommendations
generated from close friends. They begin by using a biclustering algorithm, which is based on CTWC (Coupled
Two-Way Clustering), which aims to group friends together to best help with their recommendations. Next, they
interpolate collaborative filtering recommendations along with measures generated via the social network. If two users
are in the same cluster, they use cosine similarity between the assigned tags to items of both users and otherwise
use an interpolated cosine similarity formula. With this approach, Sun et al [Sun et al., 2015] were able to achieve
improvements of by 25.88%, 9.26%, 19.95% and 39.63% relative to P@1, P@3, P@5 and R@5. This was tested on the
Del.icio.us dataset [Zubiaga et al., 2013], which contains 437,593 <USER, URL, Tags> entries, 64,305 tags, 69,225
items (URLs) and 1867 users. This algorithm is highly scalable, as the overall runtime from clustering to running
gradient ascent is O(mlogn), where m is the number of stable user clusters and n is the number of stable item clusters.

Now, when it comes to scalability of graphical models on data with tremendous scale, Ying et al. [Ying et al., 2018]
presents a large-scale deep recommendation engine with a data-efficient Graph Convolutional Network (GCN) algorithm
PinSage that they developed and deployed at Pinterest. The novel model they introduce consists of efficient random
walks and graph convolutions to generate node embeddings that incorporate both graph structure and node feature
information. Their work is particularly remarkable due to the model’s robustness, convergence and in particular high
scalability and performance on a 7.5 billion example dataset with 3 billion nodes and 18 billion edges, culminating in
the largest deep graph embedding application to date. By using on-the-fly convolutions, producer-consumer minibatch
constructions, highly efficient MapReduce inference, convolution construction via random walks, importance pooling
of neighboring node features and curriculum harder-and-harder examples training scheme [Ying et al., 2018], the
paper achieves groundbreaking results for the magnitude of its scale. The model, whilst built on top of GraphSAGE,
is modified to avoid operating on the entire graph Laplacian. Moreover, the limitation that the whole graph must
be stored in GPU memory is overcome by using low-latency random walks to sample graph neighbourhoods in a
producer-consumer architecture. The authors use quantitative performance comparisons with content-based deep
learning baselines with hit-rate and Mean Reciprocal Rank (MRR) as well as qualitative comparison using user studies
and production A/B tests [Ying et al., 2018]. The paper also cleverly circumvents the prohibitive nature of node2vec
[Grover and Leskovec, 2016] and Deepwalk [Perozzi et al., 2014] as they cannot include node feature information and
directly learn embeddings of nodes therefore entails linearity between number of model parameters and graph size.

2



One weakness spotted in the paper is that its means of sampling is prone to high variance in certain datasets, which is
overcome in later research including FastGCN [Chen et al., 2018a] and Chen et al. [Chen et al., 2018b] where different
sampling strategies are proposed to reduce variance and improve performance. More specifically, FastGCN [Chen et al.,
2018a] samples nodes in each convlutional layer by interpreting nodes as i.i.d. samples and graph convolutions as
integral transforms under probability measures. It also demonstrates that variance can be further reduced by sampling
nodes via their normalised degrees. Chen et al., [Chen et al., 2018b] on the other hand, uses historical activations
of nodes as a control variate, and allows for arbitrarily samll sample sizes [Zhang et al., 2018]. While our dataset is
foreseeably much smaller than the billion-example Pinterest dataset and may not benefit as much from the magnitude of
scalability, we are inspired by many of the introduced strategies to incorporate node features and metadata as well as
improve computation efficiency, which is crucial given our resources, time and memory limitations.

4 Dataset
In this project, we explore the same Flickr image datasets 1 that McAuley and Leskovec use in their paper, “Image
Labeling on a Network: Using Social-Network Metadata for Image Classification” [McAuley and Leskovec, 2012]. It
is important to note, however, that each of these four datasets were collected and labelled using different methods, and
thus differ, quite significantly in some cases, in certain characteristics - for the purposes of our project, we shuffle all
photos before partitioning into training, validation, and test sets to best ensure a consistent distribution.

During pre-processing, we directly parse the XML of each dataset to obtain the metadata for each photo, and extract a
subset of feature values for each photo. The currently extracted feature values include only metadata from potentially
relational categories such as photo location, owner, and so on, but do not include feature values that likely pertain less
to the actual photo itself, such as license and image format. This feature selection or feature engineering is slightly
subjective, but is needed to limit our project scope and to account for limited computational resources. Next, we
aggregate the set of extracted features for each photo and then filter the extracted features for each photo to only contain
the top 2,000 most common feature values - this is needed to limit computational scope since, for example, there are
over 450,000 unique values for just tags alone.

Finally, we build our project dataset by randomly removing each feature value of each node with some small probability
(0.2 in this case). Then, the node features are embedded into feature vectors - i.e. an element is 1 if the node has the
feature, or 0 otherwise; for some models, we also concatenate the corresponding generated Node2Vec embeddings to
the feature embeddings for each node (discussed in section 6.1). Our final dataset consists of examples and labels of the
partial-feature node embeddings and the true full-feature node embeddings, respectively. During model training and
evaluation, the dataset examples are partitioned into train, validation, and test sets using a 70 / 20 / 10 split.

5 Baseline
As a reminder, the task that we are currently exploring is that, for a given photo, we would like to predict any missing
feature values (i.e. photo labels). For our baseline algorithm, we take the approach of using a Naive Bayes classifier
with Laplacian smoothing (specifically, add-one smoothing).

At a high level, using the photos in the training set, our implementation builds a dictionary of the total count of
each co-existing pair of feature values (pairs of feature values that occur on the same photo) as well as the total
count of each feature value. During evaluation (i.e. classification), for each test photo, we use these dictionaries
as well as the test photo’s remaining feature values to compute the conditional probability of each of the 2,000
possible features as a log likelihood, and then return the top n most likely features as the predictions (see below for
the discussion on how to determine n). Any ties are broken by a secondary sort on the feature values (strings) themselves.

1http://snap.stanford.edu/data/web-flickr.html

3



We use exact match as a simple, binary correctness indicator - in other words, a classification is correct if and only
if the combined set of the predicted labels as well as the input image’s labels exactly matches the image’s true set of
feature values. Since this loss function definition dramatically increases or, in this case, maximizes the difficulty of the
prediction task, we make a simplification and provide the exact number of missing labels as an input to the classifier (n
in the paragraph above). This simplification reduces the problem space to a feasible dimension, but still leaves us with a
non-trivial, meaningful task in trying to predict the most likely labels out of 2,000 possibilities. Formally, we define the
baseline’s classification loss to be:

L(itest) = ∑
f∈P(test,n)

( f 6∈ labels(itrue))

Where itest is the test image, n is the number of missing labels, P(test,n) is the predicted missing labels, and ( f ∈
itrue.labels) is 1 if f is a true label or 0 otherwise. Note that we do not need to examine all of the photo’s true labels since
we are provided the exact number of missing labels for each test image. As discussed above, a test photo classification
is correct if and only if L(itest) = 0.

6 Methods

6.1 Methodology overview
As a first step, to capture graphical structure, we generated structural node embeddings using the node2vec algorithm
(see section 6.2) for each node / photo, and then concatenated each node embedding along with its corresponding
photo’s extracted feature vector. This concatenation serves as an input to each of the Graphical Neural Networks
(GNNs) that we build, train, and evaluate below; the three GNN models that were selected for this experiment were a
simple 4-layer neural network, the GraphSage GNN model, and a Graphical Convolutional Network (GCN) model.
Each of these models takes as input a photo feature vector with missing labels and/or a form of graphical structure
information (e.g. node2vec embeddings, adjacency list) and learns to output a prediction of the missing features or,
specifically, a prediction of the ground-truth full feature vector.

6.2 Feature extraction: node2vec
To train a set of embeddings on the graph, we use SNAP’s node2vec program, retrieved from ttps://github.com/snap-
stanford/snap/. We created 128-dim embeddings, the results of which are visualized in Figures 1 and 2 below. One
problem we encountered was that the node IDs in the SNAP dataset correspond directly to Flickr’s image IDs. Since
many of these numbers contain 10+ digits, we were experiencing integer overflow with the SNAP library. To accomodate
this, we assigned new IDs to each node, starting from 0 and maintaining the mappings to and from the IDs to these
indices.

We’ve greatly improved our node2vec embeddings since the milestone, as the dot product of a pair of embeddings has
been a good indicator of similar images. This time, we trained the new set of embeddings with dimension d = 128,
walks per node r = 10, and walk length l = 40. After training a new set of embeddings on the Flickr graph, we tested
them by taking random images and finding the most similar image by computing the dot product across all other nodes
and sorting them.

Again, to visualize the node embeddings, we computed similarity scores for each pair of nodes, (n1,n2), as vT
1 v2 where

vi is the embedding for node ni. Since the underlying structure of the graph relates images by tag and label similarity, we
hypothesized that images with similar node embeddings would be of similar content, style, and so on. As an illustration,
we fetched the following query image from Flickr [de Wit, 2007] (See figure 1):

4



Figure 1: Original query image

The top 3 closest images returned by our initial embeddings are:

Figure 2: Retrieved top 3 images

Qualitatively, we see that this set of embeddings performs much better than our previous; all of our candidate images
are all very similar to the query photo. The original picture, containing only two horses was chosen since it is relatively
easy to tell if an image is a good recommendation or not: if it has a horse, and perhaps if the horse is the main focus of
the image. Moreover, all 10 of the top 10 nearest images are also good recommendations of horses, showing a strong
improvement from the milestone (not shown to save space). We tested this with other animals–pigeon and cat–and
found similar, good results from these. We also tested this on a French building (inanimate object) and found that this
returned good results as well in the form of other European buildings, but was not able to be as precise with the top
images as the animal images, sometimes choosing images from Europe, just not of buildings.

6.3 Model architecture
6.3.1 GNN

We first created a 4-layer neural network to predict missing features. The layers are as follows:

Dense(128)→ Dropout(0.2)→ Dense(32)→ Dropout(0.2)→ Dense(8)→ Dense(2000)→ sigmoid

After each Dense layer except the last, we use a hidden LeakyReLU(α = 0.3) activation function. We chose to use two
hidden dropout layers to regularize the weights, using a dropout probability of 0.2 and used an Adam optimizer with
the default hyperparameter values. This model’s output layer is a 2000-node, densely connected layer with a sigmoid
activation for multi-label classification.

Since we are doing multi-label classification, we used a binary cross entropy loss function with a weighted variation.
Since our feature data is very sparse (around 0.1% 1s, 99.9% 0s), we adjusted the loss function to penalize picking

5



0’s for every prediction. In the new loss function, there is a large penalty for picking 0 when the ground truth label is
a 1. To offset this, we also used a higher threshold for the sigmoid output to balance the new preference for picking
1s (0.95). We settled on a decaying learning rate, which is initialized at η = 0.08 and also used early stopping on our
model to prevent overfitting the train set, stopping after about 50 epochs.

6.3.2 GraphSage

Next, we explored using a GraphSage GNN model to perform missing label prediction. First, we further pre-processed
the dataset of examples and labels to construct an edge list, where an edge exists between two examples if and only
if the two examples share at least one feature and are within the same partition (i.e. train, val, or test). Using this
adjacency list as well as the training examples as input and the corresponding ground-truth feature vectors as labels,
we built a GraphSage GNN model consisted of two message passing (i.e. aggregation and convolutional) layers using
mean aggregations and convolutions, as illustrated in Figure 3 below. The model was trained with an ADAM optimizer,
a learning rate of 0.1, a dropout of 0.5, and using the standard PyTorch binary cross-entropy loss with logits as an
objective function.

Figure 3: Architecture of a (two-layer) GraphSage GNN model.

6.3.3 GCN

We also explore using a Graph Convolutional Network [Kipf and Welling, 2016] (See Fig. 4 ) to predict the full feature
labels for each node. GCN contains the word “convolutional” since it has filter parameters typically shared over all
locations in the graph. We implement a GCN model that learns a function of features on the graph on our extracted data
G = (V ,E ) which takes as input:

• a feature description xi for every node i in the form of a N×D feature matrix X (N being number of nodes and D
being number of input features)

• an adjacency matrix A that represents the graph structure

and produces a node-level output Z (an N×F feature matrix, F being the number of output features per node). For each
neural network layer, we can write it as a non-linear function with a layer-wise propagation rule, for instance:

H(l+1) = σ(AH(l)W (l))

where W (l) is a weight matrix for the l-th neural network layer and σ(·) is a non-linear activation function, such as
ReLU. We also add a tunable dropout layer (optimal at 0.1) in between the graph convolution layers where we set
hidden dimension as 128 units. We use binary cross entropy with logits loss (weighted by class ratio, positive : negative
= 9993:7), and Adam optimiser using 5e-4 weight decay and a starting learning rate of 0.01.

6



Figure 4: Multi-layer Graph Convolutional Network (GCN) with first-order filters.

7 Results and findings

7.1 Evaluation metrics
To evaluate a missing labels prediction, we will calculate the accuracy as the ratio of the total number of matching
labels to the total number of all labels. Formally, let Fpred be the combined set of the input image’s labels as well as the
predicted labels, let Ftrue be the set of all of the image’s true labels and let Fall be the set of all labels in the scope of
consideration. Then, each missing label prediction accuracy can be calculated as:

acc =
∑ f∈Fpred

f ∈ Ftrue

|Fall|
Since the dataset is rather imbalanced, we also use F1 Score, which is a weighted average of the precision and recall
[Goutte and Gaussier, 2005].

2 · precision · recall
precision+ recall

Both metrics reach their best values at 1 and worst scores at 0.

For future extensions of closest neighbour recommendations, we can consider hit-rate as means of evaluating a closest
image neighbour prediction [Ying et al., 2018]. For each positive pair of data instances (q, i) in the test set, we use q as
a query instances before computing its top K nearest neighbors NNq from a sample of test instances. Hit-rate is defined
as the fraction of queries q where i(i ∈ NNq) was ranked among the top K of the test sample. And to determine the
true closest neighbours, we can use Jaccard similarity to compute the differences between image metadata by [Johnson
et al., 2015]:

d(x,x′) = 1− |tx∩ tx′ |
|tx∪ tx′ |

In the following subsections, we will present quantitative results of our final models and techniques, and relevant
ablation studies, in comparison with baseline results on the same dataset and in a controlled environment.

7.2 Baseline results
Our baseline Naive Bayes classifier, as described in Section 5, was trained and evaluated on a dataset of 24,647 photos,
with a feature value removal probability of 0.2. After filtering to only use the top 2,000 most common feature values, we
counted 305,846 unique feature-value pairs, and over 1 million pairs in total. Evaluating on our test set of approximately
2500 photos, we achieved a test accuracy of approximately 35.8%. However, since the feature value removal probability
was relatively small (0.2), many test images were missing 0 labels, and so there corresponding predictions were trivial
in the sense that the input image was correctly returned as the fully labelled image. Accounting for this by filtering out
the trivial test cases, we find that the non-trivial test accuracy in this case was around 8.7% on average.

7



While an accuracy of 8.7% may initially seem rather low, the image feature value prediction task is quite difficult, as
there are 2,000 distinct possibilities and only a relatively small training set of less than 20,000 images. We expect the
baseline classification accuracy to significantly increase with the introduction of the larger, full training set (for example,
around 200,000 images). As is, we will still be able to derive some value from our baseline algorithm by using it as a
qualifying metric for the performance of our project’s model during development and iteration.

7.3 Model results
We tune and train all three models: GNN, GraphSage, GCN, and select the epoch with the lowest BCEwithLogits
loss on the validation set, and report the accuracy and F1 scores on train, val and test test splits (See Table 1), and
class-wise performances by GNN in Table 2 (whose training curve is plotted in Figure 5). We also do run ablation
studies experiments using GCN using a) only node2vec embeddings; b) only incomplete features as inputs; and c) both
node2vec embeddings and incomplete features as inputs (See Table 3 below).

Figure 5: GNN Training Curve

Scores GNN GraphSage GCN
Train Val Test Train Val Test Train Val Test

Acc. 0.991 0.991 0.991 0.991 0.989 0.988 0.992 0.988 0.984
F1 0.991 0.991 0.991 0.990 0.989 0.988 0.921 0.887 0.813

Table 1: Results for using both node2vec embeddings and incomplete features as input

Scores Class 0 Class 1
Train Val Test Train Val Test

Acc. 0.996 0.996 0.997 0.505 0.425 0.176
Rec. 0.995 0.995 0.994 0.530 0.454 0.276

Table 2: Class-specific results for using GNN on both inputs

8



Scores Only node2vec Only incomplete Both
Train Val Test Train Val Test Train Val Test

Acc. 0.752 0.711 0.689 0.872 0.834 0.799 0.992 0.988 0.984
F1 0.703 0.664 0.613 0.842 0.808 0.777 0.921 0.887 0.813

Table 3: Results for using GCN on all 3 types of inputs (ablation studies)

8 Discussion and Analysis
Overall, training a neural network to perform multi-class classification predictions was difficult due to the sparsity of
the data (each image tended to have only a very few features - on average, around 7 out of a possible 2000). As a result,
our models tended to skew towards learning to make predictions of near-zero for all classes, which yielded extremely
good accuracy. Out of the three models we built, the GCN was the most adept at actually learning graph structure and
leveraging both feature and node embeddings to make predictions, rather than trivially predicting 0 for almost all classes;
this can be evidenced by its relatively lower F1 scores, which indicate that it is making many (erroneous) non-zero
classifications, whereas the high F1 scores for the other two models indicate a low number of non-zero predictions.

Another likely issue we observed - especially for both the GNN and GraphSage models - was the distribution of the
train/val/test sets. The fraction of 1s (features) in the test set turned out to be 0.46%, less than half of the already
infrequent 0.99% of 1s in the train set and 0.95% in the val set. This could explain the severe drop-off in accuracy and
precision per-class in Table 2; by having much less 1s in the test set, the GNN model tends to predict more than this,
producing a poor accuracy on 1s while increasing the accuracy of 1s in the train set. Even with 1s being so sparse, the
model was still able to achieve 0.28 recall, so we see the potential in that the simple GNN model is able to reasonably
be cautious predicting 1s but see that the sparsity makes high-accuracy and high-recall for 1s extremely difficult.

Many of the challenges we encountered were necessitated or magnified by the scale and sparsity of the dataset. For
example, the large size and sparseness of the dataset (there are 450,000 unique values for just tags alone) required us to
perform a significant amount of data preprocessing and filtering, in order to limit computational burden and complexity.
A challenge that arose from the sparsity of features - i.e. each image tends to have a low number of tags and labels -
was how to represent image features; we decided to encode features as 2000-dimensional feature vectors, for the lack of
a better method, which was sub-optimal, considering the extreme sparsity of the vectors.

9 Conclusions
Inspired by the recent surge in machine learning endeavours devoted towards node feature and linkage prediction
in large-scale graphical datasets, we implement GNN, GraphSage and GCN on the Flickr dataset using node2vec
embeddings and incomplete node and edge features to predict full image node features. We trained and tuned each of
the three models to compare their performance on image complete feature prediction.

We then use ablation studies to further explore the effectiveness of both portions of the inputs (trained node2vec
embeddings and incomplete set of node and edge features) by running a series of experiments on them both separately
and combined. Through ablation studies (see Table 3 for ablation studies using GCN model), we were able to directly
examine the impact of the raw partial-feature vectors and the node2vec embeddings in improving model performance.
We find that GCN is best able to tackle the acute class imbalance deep-seated in the dataset and demonstrates most
efficacious graphical structure learning on our dataset. On the GCN model, we saw that using the graphical structure
(captured using node2vec embeddings) in addition to the features yielded a 12% increase in missing label prediction
accuracy, when compared against using features only. Given this significant improvement in performance, we may
conclude that graphical convolutional model structure yields itself to make the relatively most significant improvements
in the task of missing feature or label prediction.

9



10 Contributions
All members of the team contributed equally towards model, paper writing and research.

References
[Chen et al., 2018a] Chen, J., Ma, T., and Xiao, C. (2018a). Fastgcn: Fast learning with graph convolutional networks

via importance sampling. CoRR, abs/1801.10247.

[Chen et al., 2018b] Chen, J., Zhu, J., and Song, L. (2018b). Stochastic training of graph convolutional networks with
variance reduction. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 942–950, Stockholmsmässan, Stockholm
Sweden. PMLR.

[Cheng et al., 2018] Cheng, Y., Tu, Z., Meng, F., Zhai, J., and Liu, Y. (2018). Towards robust neural machine translation.
CoRR, abs/1805.06130.

[de Wit, 2007] de Wit, F. (2007). Tour de france.

[Goutte and Gaussier, 2005] Goutte, C. and Gaussier, E. (2005). A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation. In Losada, D. E. and Fernández-Luna, J. M., editors, Advances in
Information Retrieval, pages 345–359, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
CoRR, abs/1607.00653.

[Hamilton et al., 2017] Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on graphs:
Methods and applications. CoRR, abs/1709.05584.

[Johnson et al., 2015] Johnson, J., Ballan, L., and Li, F. (2015). Love thy neighbors: Image annotation by exploiting
image metadata. CoRR, abs/1508.07647.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907.

[McAuley and Leskovec, 2012] McAuley, J. J. and Leskovec, J. (2012). Image labeling on a network: Using social-
network metadata for image classification. CoRR, abs/1207.3809.

[Perozzi et al., 2014] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social representa-
tions. CoRR, abs/1403.6652.

[Sun et al., 2015] Sun, Z., Han, L., Huang, W., Wang, X., Zeng, X., Wang, M., and Yan, H. (2015). Recommender
systems based on social networks. Journal of Systems and Software, 99:109 – 119.

[Ying et al., 2018] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018). Graph
convolutional neural networks for web-scale recommender systems. CoRR, abs/1806.01973.

[Zhang et al., 2018] Zhang, Z., Cui, P., and Zhu, W. (2018). Deep learning on graphs: A survey. CoRR, abs/1812.04202.

[Zubiaga et al., 2013] Zubiaga, A., Fresno, V., Martinez, R., and Garcia-Plaza, A. P. (2013). Harnessing folksonomies
to produce a social classification of resources. IEEE Transactions on Knowledge and Data Engineering, 25(8):1801–
1813.

10


	Introduction
	Task Definition
	Related Work
	Dataset
	Baseline
	Methods
	Methodology overview
	Feature extraction: node2vec
	Model architecture
	GNN
	GraphSage
	GCN


	Results and findings
	Evaluation metrics
	Baseline results
	Model results

	Discussion and Analysis
	Conclusions
	Contributions

