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1. Introduction 
Product review and rating by customers are common 
features in many e-commerce systems, including Amazon 
and eBay. Customers use ratings to express their opinion 
about the products they purchased. Thus, e-commerce 
platforms can use product ratings to rank the product 
search results and to improve their recommendation 
system. As a result, the products with good ratings tend to 
rank higher in the search result as well as being more 
likely to be recommended to customers. Despite the 
effectiveness of this practice, new or less popular 
products are unfavored due to a lack sufficient number of 
reviews, which then results in a rich-get-richer 
phenomenon. This phenomenon would be offset if the 
ratings of the under-reviewed products can be predicted. 
In this work, we attempt to predict the ratings of these 
under-reviewed products using community clustering[1], 
RolX[2], and node2vec[3], and evaluate their efficacy 
using multi-label classification error as detailed in Section 
4. Furthermore, we investigate whether motif similarity of 
two co-purchased product networks implies rating 
similarity of products with similar community or role on 
both networks. 
 
In this study, we use the Amazon product rating data[4], 
the characteristics of which are described in Section 3. As 
illustrated in Fig.1, we model each product as a node, and 
products purchased by the same customers are deemed to 
be connected. We define these products to have been 
“co-purchased”, disregarding potential time gap between 
the purchases. While customers typically leave reviews 
only for a fraction of their purchases, we believe that a 
co-reviewed product network can be used to approximate 
a co-purchased product network. This belief holds under 
the following assumptions: the ratio between the number 
of ratings and the number of purchases for every product 

is the same, and there are insignificant number of fake 
reviews by non-purchasers. 

 
Fig. 1 Co-purchase example 

 
We hyp​othesize that a product and its neighbors in a 
co-purchased network receive similar ratings. For 
example, a fan of an author may buy all of the author’s 
books and rate most of them highly. We also hypothesize 
that products with similar roles in the co-purchased 
network receive similar ratings. There are products that 
often serve as complementary, but secondary items to 
different purchases. For example, wine and cheese are 
often bought as complementary items when planning 
meals regardless of recipes. We test our hypothesis in two 
main ways in this study. First, we ​will predict the ratings 
of under-reviewed products based on other reviewed 
products that are co-purchased by creating neighborhoods 
with community clustering[1], RolX[2], and node2vec[3]. 
Second, we will expand on the idea and predict the 
ratings of products in an unreviewed product network 
based on another fully-reviewed product network.  
 

2. Related Works 
The traditional ways of predicting online product ratings 
typically include incorporating text messages of the 
reviews[5][6]. However, when processing new products 
or inactive products with no associated reviews, these 
methods would be mostly limited. Additionally, the 
information about users is also commonly used in 
predicting the rating of products[5][6], but there are also 



 

concerns with user privacy. To retain privacy, some 
reviews are provided anonymously and thus the signals 
from users will be missing. There are also attempts at 
predicting the ratings based on computer vision, matching 
different product categories. However this approach is 
limited to products with rich visual elements[7][8]. 
 
The relationship of products that are co-purchased has not 
been fully explored. When user information and text 
reviews are missing, we propose to build a network of 
products based onco-purchasing information. Our project 
framework and intuitions are based on 4 highly relevant 
papers: “Fast unfolding of communities in large 
networks”, “RolX: Structural Role Extraction & Mining 
in Large Graphs”, “node2vec: Scalable Feature Learning 
for Networks”, and “Network Motifs: Simple Building 
Blocks of Complex Networks” [1][2][3][9]. For brevity in 
the rest of this proposal, these papers are referred by the 
following names - Louvain paper, RolX paper, node2vec 
paper, and motifs paper, respectively. 
 
The Louvain [1] and RolX [2] papers present two distinct 
methods of defining neighborhoods - by a node’s 
membership within a community based on edge 
connections and by its structural role within the network. 
node2vec [3] paper presents a method of considering both 
of these through a balance of exploration and 
exploitation. Furthermore, it provides a framework upon 
which machine learning algorithms can be applied, and 
has the added benefit of providing robustness against 
incorrect edge and label data. Finally, motifs paper[9] 
gives insight on finding similar networks based on their 
basic building blocks. 
 
There is difficulty in determining whether a prediction is 
accurate because ratings are continuous, rarely uniform in 
distribution, and have relative ordering. As further 
discussed in Section 4, work by Gupta et al.[10] and Chen 
et al.[11] provide insight on how to define prediction 
accuracy. 
Since co-purchased networks may have weighted or 
multiple parallel edges, the creation of a null model could 
not be done naively. Carstens and Horadam[12] provide a 

mathematical derivation of edge-switching methodology 
to create unbiased null models and Fosdick et al.[13] 
provide pseudocode of the switching model 
implementation. 
 

3. Datasets and Preprocessing 
We worked with Amazon product review datasets[4], 
which consists of dataset for many different categories of 
products. We used the “Office Products” category as the 
base dataset, on which we tuned our clustering algorithms 
to maximize prediction accuracy. As part of data 
preprocessing, we sampled the network, calculated 
fractional edge weights, and binned ratings and 
co-purchasing frequencies. 
 

3.1. Co-Purchased Network Creation 
The dataset contains <reviewer, product> pairs along with 
the rating given by the reviewer. This represents a 
bipartite graph, which we projected to <product, product> 
undirected network. We created both unigraph and 
multigraph to calculate the weight of each edge. 
Additionally, we collected aggregated rating per product. 
 
The original dataset contains ~​1.2M reviews​ with ~​130K 
unique products​ and ~​910K unique reviewers​. The 
<reviewer, product> bipartite graph contains ~45K 
disjoint components with largest connected components 
containing ​88% of all nodes​. We focus our experiments 
on the largest connected component given the majority of 
the nodes are contained in this component. Projection of 
the largest connected <reviewer, product> component to a 
<product, product> graph resulted in ​~80K nodes​ and 
~1M edges​ with average edge weight of ​1.23​ for the 
multigraph. Fig.2 illustrates histogram of number of 
product reviews with 20 bins. The rightmost bin count 
products with greater than 20 reviews for the largest 
connected components. Mean number of review is ​6.579 
while median is ​3.0​. There is a high discrepancy in mean 
and median because number of reviews have long-tail 
values with the largest number of reviews as high as 
4398. Fig.3 illustrates that the per product mean rating is 



 

skewed to higher range with an average of ​4.034​, 
indicating the necessity for better rating discrimination as 
discussed in Sections 3.3. 

 
Fig.2 Per product review counts histogram 

 
Fig.3 Mean rating per product histogram  

 

3.2. Fractional Weight Network 
Using the frequency of two products being co-purchased 
does not appropriately represent the proportion of times 
the products are co-purchased. For example, it cannot 
distinguish the following two scenarios: each product is 
purchased 1000 times but co-purchased 10 times vs each 
product is purchased just 10 times but always purchased 
together. We created fractional edge weight from the 
co-purchasing frequency and the number of product 
reviews of both products to deal with this issue. 

We define the fractional weight of edges with the 
following equation: 

cpCnt(P 1, P 2)
f (pCnt(P 1), pCnt(P 2))  

where cpCnt(P1,P2) = co-purchase count of P1 and P2; 
pCnt(P) = purchase count of P. We explored different f(x, 
y) to calculate the most effective fraction weight such as 
sum, min, and square root of product. 
 

3.3. Randomly Sampled Network 
3.3.1. True rating 
Since our work focuses on predicting ratings for 
under-reviewed products, it is important to define a 
sensible ‘true’ rating for such products to validate our 
predictors. However, an under-reviewed product, by 
definition, would have few reviews and these reviews 
could exhibit high variance. Even worse, if there is just a 
single review, the product’s ‘true’ rating would be at the 
mercy of that review. To circumvent this issue, we take a 
random subset of the data as described in Section 3.3.2 
during the creation of the co-purchased network. We 
define the ‘true rating’ of a product to be the rating of the 
product based on ​the original dataset​. By getting the 
rating of each product from the original data but creating 
the network and its edge weights only on the subset of 
data, we obtain ‘under-reviewed’ products with 
low-variance ratings. The rating aggregation method is 
discussed in Section 4.2. 
 
3.3.2. Random sampling 
First, ​we dropped products with less than 3 reviews​ to 
filter noisy data. Fig.4 on the next page shows the 
histogram of product with 3+ reviews with less skewed 
rating distribution compared to the original dataset (i.e. 
Fig. 3). Next, we ​randomly sampled 10% of reviewers​, 
created the bipartite graph from the reviews of sampled 
reviewers, and projected the largest connected component 
of this induced subgraph. 



 

 
Fig.4 Mean rating histogram for 3+ review products 

 
We make the assumption that the sampled graph is 
representative of the original graph in subgraph structures 
such as neighborhoods. Various simple analysis of the 
original and sampled graphs suggested the correctness of 
our assumption. For example, graph diameter, 90% 
effective diameter, and clustering coefficient remained 
similar between the original graph and sampled graphs of 
different sampling rates. Furthermore, as illustrated in 
Fig.5, we observed a linear relationship between the 
sampling rate and the sampled graph’s number of 
nodes/edges. Finally, we know that motif occurrences 
will remain approximately constant relative to network 
size as noted in the motif paper[9]. 

 
Fig.5 Reduced graph node/edge rate by sample rate 

 

4. Evaluation and Methods 
4.1. Prediction Error 

Since the ratings are discrete, ordered, integer values 
between 1 and 5 inclusive, the most obvious definition of 
prediction error is the sum of squared errors between the 

predicted ratings and the true ratings, i.e. .(R )∑
n

i=1
ti

− Rpi
2  

However, this definition is problematic in potentially 
causing the predictor to avoid values at the extremes of 
the range. Furthermore, since ratings of products are 
clumped above 4.5 as seen in Fig.4, always returning a 
prediction around 4.5 may result in minimum error. 
 
We define the prediction error as a multi-label 
classification error. This eliminates the concept of 
extremes in the rating range, but at the cost of losing the 
relative ordering of ratings. However, the work by Gupta 
et al.[10] also on rating prediction showed that the 
classification approach out-performed both linear 
regression and multi-threshold ordinal regression. A 
potentially better error definition we considered is the 
listwise ranking loss defined in equation 3 of Chen et 
al.[11]. We decided that this is much more advanced on 
machine learning side and out of scope of this course. 
Multi-label classification is also suitable for handling the 
skewed distribution of ratings. Instead of discretizing 
ratings by rounding to the nearest integer,we put products 
into bins of the same size according to their rating. 
Intuitively, this is fine since ratings are ordinal and the 
relative rating matters more than absolute rating. We 
found that 3 bins resulted in an even distribution of sizes; 
larger number of bins did not work due to tens or 
hundreds of products having the same average rating. 
 
In determining bin ranges, we initially considered binning 
all ratings rather than average product ratings (i.e. a 
product with 10 ratings contributes more to bin size than a 
product with 3 ratings). However, we realized this will 
not work as there are only 5 valid rating values, each 
rating appearing tens of thousands of times. Thus, we 
tried a 2-pass system: create initial bins based on average 



 

product ratings, then create final bins based on aggregate 
product bin values. Here, an aggregate product bin value 
was found by binning each rating of a product into the 
initial bins, then averaging the selected bin numbers. We 
ended up simply using the initial bins on average product 
ratings because two methods were different less than 1% 
of the time. 
 

4.2. Intra-network Analysis 
We test our hypothesis of the predictive power of 
neighbors by predicting the ratings of products within a 
partially-labeled product network. Specifically, we define 
products with just 1 rating in the sampled co-purchased 
network as the ​under-reviewed products​. Note that by 
construction as per Section 3.3.1, these products have 
‘true ratings’ which are based on 3 or more ratings.Then, 
depending on the neighborhood definition we use, we 
mask out some or all of the ratings of the under-reviewed 
products. This allows us to evaluate the performance of 
our models in predicting the ratings of under-reviewed 
products. For each of the methods, the ​aggregate rating 
of neighbors is defined as the mode rating bin of the 
neighbors. For example, if a neighborhood has 10 nodes 
in rating bin 0 (representing poor reviews), 20 nodes in 
rating bin 1, and 30 nodes in rating bin 2 (good reviews), 
then the mode bin would be bin 2. In the case that 
multiple bins had the same number of products, we 
selected one of the bins at random to keep the selection 
unbiased. Note that the rating bin of under-reviewed 
products in the neighborhood are not included when 
finding the mode.  
 
4.2.1. Homophily 
We apply Louvain algorithm [1] to our co-purchased 
product network, forming some ​k​ communities once the 
algorithm converges. For each community ​C​k​, we assign a 
rating ​R​k​ which represents that community’s aggregate 
rating. We mask out all under-reviewed products’ ratings 
in this method. For each under-reviewed product ​P​i 
belonging to some community ​C​j​, the predicted rating for 
that product ​R​i​ is simply ​R​j​. We applied the Louvain 

algorithm on both the weighted and unweighted Office 
Product network. 
 
4.2.2. Role 
We apply RolX algorithm [2] to our product network. We 
initially used simple egonet features as the basic feature 
set: degree of node, number of edges within the egonet, 
and the number of edges leaving the egonet. We 
normalized the base features by dividing each element by 
the max absolute value seen in the entire graph - this 
ensures that no single feature dominates the cosine 
similarity. We then explored other features to decrease 
prediction error: product purchase count, number of 
neighbors (different from degree since multigraph), 
average number of edges per neighbor, and the aggregate 
of node’s edges’ fractional weights. We also explored 
recursion depth in creating the feature vector. 
 
To evaluate the prediction error, we mask out 20% of the 
under-reviewed products’ ratings. To predict the rating of 
an under-reviewed product, we calculate the product’s 
role’s cosine similarity against that of other labelled 
products. We find 20 products with the highest similarity 
and a similarity value of at least 0.975, and use the 
aggregate of their ratings in predicting the 
under-reviewed product’s rating. 
 
4.2.3. node2vec 
We apply node2vec algorithm[3] on the product network 
to get node embeddings, which does not rely on product 
ratings. Similar to the role method, in predicting a 
product’s rating, we find 100 products with the most 
similar embeddings and used the mode rating bin as the 
prediction. We used 20% of under-reviewed products to 
find the return parameter ​p​ and in-out parameter ​q​ which 
minimize the multi-label classification error, and used a 
different 20% of under-reviewed products to determine 
the performance of this node2vec approach. 
 



 

4.3. Inter-network Analysis 
We extend the work in Section 4.2. to the prediction of 
ratings for one product category based on a different 
product category. For example, suppose that for three 
product networks with categories of “automotive”, 
“outdoors”, and “cooking”, “automotive” products are 
fully rated while the other two product categories are not. 
We might find that “automotive” and “outdoors” product 
networks have similar motif significance profile while 
“automotive” and “cooking” networks do not. Thus, we 
will use the “automotive” network ratings to predict the 
ratings of “outdoors” products. We refer to the labeled 
network as the ‘training’ network and the unlabeled 
network as the ‘test’ network. Note that we create a test 
network by simply masking out all rating information 
from a labeled network. 
 
4.3.1. Motif analysis 
We deem two co-purchased networks to be similar if their 
motif significance profile vectors have high cosine 
similarity. To make the detection of motifs tractable, we 
bin the fractional edge weights of the product networks 
into 3 groups - “usually purchased together”, “often 
purchased together” (less frequently than ‘usually’), and 
“sometimes purchased together”. This gives 16 possible 
3-node motifs as shown in Fig.6, where edge ​u​ denotes 
“usually purchased together”, edge ​o​ denotes “often 
purchased together”, and edge ​s​ denotes “sometimes 
purchased together”. 
  

 
Fig.6 Co-purchasing frequency motifs 

To determine the expected mean and standard deviation 
in the number of each motif, we create 10 null models per 
product category. The null model should reflect the 
likelihood of a pair of products being co-purchased if 
co-purchasing behavior is random. Thus, we keep 
constant the number of products and the number of times 
each product is purchased (i.e., constant degree) while we 
randomize the pairs of co-purchased products. This means 
the null model should be created from the unbinned 
multigraph where the edge weight represents the number 
of times products are co-purchased. Then, the null model 
can be preprocessed like the original co-purchased 
network to create frequency-binned networks. 
 
We cannot use configuration model nor simple edge 
switching to create our null models, as these methods do 
not allow for multiple edges. Even if we do not reject 
multiple edges using these methods, uniformity across 
possible null models is not guaranteed[12]. Based on the 
work by Carstens and Horadam[12] as well as the 
pseudocode by Fosdick et al.[13], we implemented 
modified edge-switching to create unbiased null modes. 
In particular, for a randomly chosen pair of edges, a 
switch is accepted with an acceptance probability 
inversely proportional to the product of the edges’ 
weights. 
 
4.3.2. Homophily 
As in Section 4.2.1., we apply Louvain algorithm to the 
test network. For each product ​P​i​ belonging to some 
community ​C​j​ in the test network, we try to find a similar 
community ​C​k​ from the training network. We will naively 
define two communities to be similar if they have similar 
clustering coefficient. Then, the predicted rating for ​P​i 
will be the aggregate rating of community ​C​k​. 
 
4.3.3. Role 
As in Section 4.2.2., we extract features for the test 
network using the same set of base features. For a product 
in the test network, we find 20 products in the training 
network with the highest cosine similarity. We use the 



 

aggregate rating of these 20 training network products to 
predict the rating of the test network product. 
 
4.3.4. node2vec 
node2vec algorithm was run on the test network to find 
the product embeddings. In this case, the validation set 
for use of hyperparameter tuning was selected from the 
test network rather than the training network (i.e. Office 
Products). Similar to Section 4.2.3., a test network 
product’s rating were predicted based on similar products 
from the training network. 
 

5. Results and Discussions 
We discuss our results as prediction rate or prediction 
accuracy, which is simply (1 - prediction error). 
 

5.1 Motif analysis 

The cosine similarity of motif significance profiles 
between Office products and other products are shown in 
Table.1. 
 

Product Auto Baby Beauty Food Pet Toys 

Cosine 
sim. 

0.893 0.985 0.48 0.54 0.96 0.847 

Table.1 Cosine similarity of products to office products 
 
Baby products had the highest cosine similarity, so the 
Baby product co-purchased network is chosen as the test 
network for inter-network analysis. 
 
As seen in Fig.7, motifs 9, 13 and 15 are overrepresented 
in both Office and Baby products. These three motifs are 
(s,s,u), (s,s) or (s,u) - both co-purchase networks have an 
overrepresentation of products being sometimes 
purchased together or usually purchased together, but not 
often (between sometimes and usually). 
 

 
Fig.7 Motif significance profiles 

 
Note that motif analysis was also run on 3-node motifs 
with 2 frequency bins (7 distinct motifs) and 4-node 
motifs with 2 frequency bins (62 distinct motifs). The 
3-node, 2 frequency motifs did not provide enough 
discrimination between networks. 4-node motifs were 
very computationally expensive and had very few 
occurrences for majority of the motif types in both our 
dataset and null model, thus this was not pursued. 
 

5.2. Homophily  

Fig.8 shows the distribution of the size of the 
communities detected by the Louvain algorithm on Office 
products. Table.2 illustrates the edge weighting methods 
we used and the accuracy of the corresponding prediction. 
The prediction accuracy of the unweighted network was 
0.413​, which is better than random, which would be 0.33 
with 3 rating bins. The prediction accuracy indicates the 
communities that products belong to have an impact on 
the ratings of products. There was no significant 
difference in prediction accuracy between weighted and 
unweighted networks, nor between different weighting 
mechanisms. Both weighted and unweighted office 
product networks have similar distributions of predicted 
ratings.  
 

Weight 
method 

unweighted min sum 

Prediction 
rate  

0.413 0.416 0.420 

Table.2 Louvain algorithm prediction accuracy 
 



 

We used the same intra-network prediction method on 
Baby product network. The prediction accuracy for baby 
products on the unweighted network was ​0.443​, which is 
more accurate than the office product network. Fig.9 
shows the distribution of the size of the communities 
detected in the baby product network. The higher 
prediction accuracy for baby product network is because, 
dissimilar to the community distribution in the Office 
Product network, which has many small communities 
composing only 2 or 3 nodes, the distribution of baby 
products is close to normal distribution.  

 
Fig.8 Office product community size distribution 

 
Fig.9 Baby product community size distribution 

 
For Inter-network analysis, we calculated the clustering 
coefficient for each community in the office product 

network and the baby product network. We found ten 
pairs of communities (one from each network) with the 
most similar clustering coefficient. We used the most 
frequent rating bin in every ten communities in the office 
product network to predict the most frequent rating bin in 
corresponding communities in the baby product network. 
Out of ​10 pairs​ of communities, ​three pairs​ were a 
correct prediction, which is close to random prediction. 
Though office product network and baby product network 
have high motif similarity, that does not mean they have 
similar communities. 
 

5.3. Role 

Table.3 summarizes the prediction rate of role-based 
clustering for different base features. Base set refers to 
degree of node, number of edges within the egonet, and 
the number of edges leaving the egonet as defined in 
Section 4.2.2.  
 

Feature 
set 

Base 
set 

Set 1 Set 2 Set 3 

Recursion 
depth 

3 3 2 3 2 3 

Prediction 
rate  

0.356 0.358 0.383 0.371 0.367 0.404 

Table.3 Prediction rate on Office products 
 
In feature set 1, features related to absolute purchase 
count were added: the number of purchases of the 
product, the number of neighbors, and the average 
number of co-purchases with a neighbor. This did not 
improve the prediction rate compared to the base set; both 
base set and set 1 have just slightly higher than random 
prediction rates. 
 
In set 2, the average number of co-purchases with a 
neighbor ​minus 1​ and the number of purchases of the 
product were added to the base set. The reason for not 
adding some features from set 1 is that many of them 
were highly correlated when we looked at the recursive 
features. The value 1 was subtracted from the average 



 

because we recognized that in a co-purchased network, 
every pair of products is co-purchased at least once. The 
subtraction increased the discrimination ability 
significantly and resulted in a prediction rate increase. 
 
Finally, set 3 adds in the frequency of co-purchase on top 
of set 2. Specifically, we take the logarithm of the product 
of the node’s frequency edge weights to maximize 
discrimination between different values. We also tried the 
average frequency edge weight, but that gave much 
poorer results. With set 3, recursive feature extraction of 
depth 3 gave better results than using depth 2 - this 
suggests that the role of a node in a larger subset of the 
graph is better at finding nodes with similar true ratings. 
Given that the diameter of our network is around 6 and 
that higher recursion depth incurs a great computational 
cost, we did not try out higher recursion depths. 
 
RolX was ineffective at prediction ratings across 
networks - finding Office products with high role 
similarity to Baby products resulted in ​0.335​ prediction 
rate. From looking at the predicted rating bin versus the 
actual rating bin shown in Table.4, it is clear that a large 
portion of Baby products had high role similarity to a 
small portion of office products. This means that role 
similarity does not work across networks. 
 

Rating bin [0, 3.92) [3.92, 4.41) [4.41, 5.0] 

Predicted 
count 

132 188 454 

Real count 253 235 256 

Table.4 Predicted rating bin for Baby products 
 

5.4. node2vec 

In node2vec, our best sampling strategy was with low ​q 
value (=​0.3​) and ​p​ value (=​0.9​). Min fraction weight edge 
performed prediction better than unweighted by 3% 
(~0.415) and sum fraction weight edge by 4.5% (~0.405) 
with train set accuracy of ​0.452​. Compared to high (i.e. 
>1) ​p​ and ​q​ values, prediction performed better by 

approximately 5%. Tuning other node2vec parameters 
(e.g. dimensions, number of walk) from default value 
provided by Grover et al.[3] did not significantly 
influence the prediction accuracy. Intra-network test set 
accuracy was ​0.450​ while inter-network test set prediction 
accuracy with the Baby product network had result of 
0.306​. 
 
The node2vec prediction, which indirectly combiness 
DFS (i.e structural roles of nodes) and BFS (i.e., network 
communities), had the best accuracy out of the three 
methods we experimented. The best sampling strategy 
with low ​q​ value indicates that structural equivalence had 
played a more significant role than the homophily despite 
the fact that our results in Sections 5.2. and 5.3. did not 
indicate significant difference. Given that we observed 
role mattered more than community in node2vec, we may 
be able to achieve better prediction with RolX with 
different feature selection or increased recursion depth. 
We may have ended with low prediction rate for 
inter-network analysis because we identified the 
similarity based on local structure (i.e. motify) of the 
network. 
 

6. Conclusion 
Table.5 summarizes the tuned prediction rates of different 
predictors using intra-network and intra-network analysis. 
 

 Louvain RolX node2vec 

Intra-Network 0.413 0.404 0.450 

Inter-Network 0.3 0.335 0.306 

Table.5 Summary of prediction rates 
 
For all prediction methods for intra-network analysis, we 
see prediction rates that are meaningfully higher than 
random prediction rate of 0.333. This indicates that the 
ratings of products in the neighborhood of an 
under-reviewed product can give a hint on its own rating. 
 



 

All prediction methods indicated that neighborhood 
clustering to predict ratings does not work across 
networks - at least not when networks are chosen based 
on motif similarity. Even though Office and Baby product 
co-purchase networks had similar motif significance 
profiles, other network characteristics seemed very 
different. With homophily, we observed that the 
community size distributions are very different, as shown 
in Fig.8 and Fig.9. With roles, a large portion of Office 
products had a similar role as a small portion of Baby 
products, as shown in Table.4. 
 

7. Contributions 
annezhen - homophily 
mattskl - roles, motifs 
yamamura - dataset preprocessing, node2vec 
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