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Abstract

As deep learning approaches for com-
puter vision have evolved, they have been
applied to progressively harder classifi-
cation tasks. One such task is fine-
grained visual categorization, as for distin-
guishing between sub-species. This study
seeks to leverage a similarity network
representation of butterfly sub-species to
gain traction on this difficult task. We
apply a Graph Convolutional Network
(GCN), Graph Attention Network (GAT),
and GraphSAGE Network for classifica-
tion. We find that all 3 models achieve
strong performance, but are limited by the
size and lack of rich features of the dataset.

1 Introduction

Over the past decade, the field of computer vision
has been transformed by the deep learning revo-
lution. However, the task of fine-grained visual
categorization - that is, distinguishing between
subordinate-level categories such as bird species
or dog species - remains a significant challenge.
This is due to properties of the data, namely high
levels of variance between images of the same
class and relatively low levels of variance between
images of different classes, particularly as com-
pared to standard image classification tasks such
as ImageNet in which the classes are distinct.
These properties make it difficult for even deep
learning models to achieve superior performance
on the fine-grained visual categorization task.
This context poses a challenge to reframe the
fine-grained visual categorization task in a man-
ner that is more tractable for deep learning ap-
proaches. In this paper, we seek to do that by ap-
plying Graph Neural Networks (GNNs) to the task
of fine-grained classification on a butterfly simi-

larity network with the goal of leveraging the net-
work information to make predictions on butter-
fly species. More specifically, our goal will be to
distinguish between 10 classes of butterfly species
based on similarity scores calculated from feature
vectors extracted from the images. In applying
Graph Convolutional Networks, GraphSAGE Net-
works, and Graph Attention Networks, we seek to
gain insight both on how GNNs perform on fine-
grained visual categorization compared to tradi-
tional deep learning methods as well as how these
GNN architectures compare to each other.

This classification problem is especially urgent
in the context of the ongoing environmental catas-
trophe. As climate change intensifies and is en-
hanced by the impact of such trends as pollu-
tion, deforestation, and overexploitation, world-
wide biodiversity is increasingly at risk. Preserv-
ing biodiversity is thus of central importance in
conservation efforts. A fundamental first step in
these efforts is fine-grained species identification
- such as the classification of the butterfly species
we conduct in this paper - so that biodiversity can
be identified and protected by environmentalists.

2 Related Work

While the advent of deep learning has been very
recent, the sub-field of deep graph neural networks
are especially recent, with most of the major ar-
chitectures and approaches having been defined
within the past 3 years. The literature on the appli-
cation of graph neural networks to similarity net-
works or for the purposes of fine-grained visual
categorization is thus very limited. We first review
the critical method for denoising biological net-
works that led to the creation of our dataset, pro-
ceed to cover the paper introducing Graph Convo-
lutional Network architecture, and close by exam-
ining past performance achieved on our dataset.



2.1 Network Enhancement as a General
Method to Denoise Weighted Biological
Networks

In this paper, Wang et al. (2018) propose a frame-
work to denoise biological networks using net-
work enhancement (NE). The algorithm is based
on the assumption that nodes connected through
paths with high-weight edges are more likely to
have a direct, high-weight edge between them.
Using a doubly stochastic matrix to diffuse the
network, it reassigns weight to each of the edges
so that edges with weak similarity are reassigned
lower weights or are removed, while edges with
high similarity get higher weights. The result is
an updated network that retains the original net-
work information while making the network more
sparse, thus increasing the network analysis ef-
ficiency downstream and enabling more accurate
detection of modules and clusters. When Wang
et. al. applied Network Enhancement to a sim-
ilarity network calculated on the Leeds Butter-
fly Dataset (which became the BioSNAP butterfly
similarity dataset we use in this study), they found
it substantially improved identification accuracy
and the ability of the network to be clustered by
species. Network Enhancement is thus likely an
essential pre-processing step for any GNN-based
fine-grained classification of a biological similar-
ity network, for without this step the network will
be too noisy to learn meaningful patterns.

2.2 Semi-Supervised Classification with
Graph Convolutional Networks

Kipf and Welling (2016) introduce a variant of
convolutional neural networks that operate di-
rectly on graph-structured data, known as Graph
Convolutional Networks (GCN). This approach is
derived from a first-order approximation of spec-
tral graph convolutions. It scales linearly in the
number of graph edges and thus transcends the
scaling obstacles that have impeded past efforts
to develop neural networks for graphs. The hid-
den layer representations encode both local graph
structure and features of nodes in a similar way to
how CNNs encode local image characteristics in
their lower layers (for deep networks). While effi-
cient, the GCNs do encounter memory limitations
because the memory requirement grows linearly in
the size of the dataset, so special provisions or ap-
proximations have to be made for especially large
or densely connected graph datasets.

This last note is particularly relevant for the
BioSNAP butterfly similarity network dataset we
use in this study. As is discussed in section 3, the
similarity network is originally extremely dense
because every node (corresponding to a butterfly
image) is connected to every other node for a total
of 345696 edges for only 832 nodes. Network en-
hancement processing, however, reduces the num-
ber of edges from 345696 to 86528, making the
application of the Graph Convolutional Networks
outlined by Kipf and Welling more feasible.

2.3 Finding Butterfly Species Pattern: A
Case Study on Butterfly Similarity
Networks

While this report is a previous CS224W project
report rather than a published paper, it is criti-
cal because it provides the only reference point
for analysis and performance of Graph Convolu-
tional Networks on the BioSNAP butterfly simi-
larity network. In their study, Wang (2018) obtain
embeddings for every node in the network by run-
ning the Node2Vec algorithm 3 times - once bi-
ased for BFS, once biased for DFS, and once bal-
anced between the two. They then evaluate the
GCN with each of the three embeddings, finding
that the GCN obtains best performance of 77.49%
with embeddings generated with BFS bias. We use
the results obtained by Wang as reference for our
models’ performances and adopt the approach of
generating Node2 Vec embeddings with BFS bias.

2.4 A Survey on Deep Learning-based
Fine-grained Object Classification and
Semantic Segmentation

In this survey, Zhao et al. (2017) review gen-
eral convolutional neural networks, part detec-
tion, ensemble of networks, and visual atten-
tion based fine-grained visual categorization ap-
proaches. They find that visual attention based
deep classifiers achieve best performance, fol-
lowed by ensemble of networks models. A com-
mon theme across all approaches reviewed is that
the key to strong performance is incorporating
some specific method for identifying fine-grained
details and differences. In some models this takes
place through direct part localization, in others
through added classification capacity by combin-
ing multiple networks, and still others through au-
tomatically learning which regions of the images
are most discriminative.



3 Dataset

Our dataset is derived from the Leeds Butterfly
Dataset as detailed by Wang et al. (2009). This
dataset consists of 832 images of 10 species. Each
species has 55-100 images in the dataset. This
dataset originally possessed no network structure.

3.1 BioSNAP Butterfly Similarity Network

The BioSNAP butterfly similarity network was
created from the Leeds dataset by using two en-
coding methods - Fisher Vector (FV) and Vector
of Linearly Aggregated Descriptors (VLAD) - to
generate two vector representations of each image.
These representations were then used to construct
two similarity networks for which nodes represent
the images and edges capture similarity between
pairs of images based on their vector representa-
tions. The two resulting networks were then com-
bined by taking their inner product via adjacency
matrices. Finally, Network Enhancement process-
ing - as described by Wang et al. and summarized
in section 2.1 - was applied to generate the final-
ized network. This finalized network is the graph
we leverage in this study. It consists of 832 nodes
and 86528 weighted, undirected edges.

3.2 Network Characterization

Butterfly Similarity Network - True Communities
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Figure 1: Clustering of species with true labels

As seen in Figure 1, while most of the clusters are
decently distinct, some of the clusters are not well
defined and/or seem merged with other clusters,
indicating potential difficulty for a classifier to dis-
tinguish between these species. In particular, the
pairs Nymphalis antiopa — Vanessa atalanta and
Lycaena phlaeas — Vanessa cardui exhibit heavy
overlap. The connection between these pairs is
validated in the distribution of their edge weights,
as demonstrated in Figure 2.
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Figure 2: Edge Weight Distribution Heatmap

Figure 2 displays a row-normalized heatmap for
the inter-species edge weight distribution of the
network. Let S; be the set of nodes in species 4,
N (@) be the set of neighbors of node 7, and wj;
be the weight of the edge between nodes 7 and j.
Each entry (i, j) above is then calculated as:
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Intuitively, entry (7, j) captures the percentage of
the total edge weight of nodes in species ¢ that
is derived from edges with nodes of species j.
A high score at (i, ) indicates that species 4 has
strong intra-species connections and is less sim-
ilar to other species while a low score indicates
that species 7 has weak intra-species connections
and is more similar to other species. Species with
high scores along the diagonal should thus be eas-
ier to distinguish from other species, and there-
fore easier to classify as well. Based on this crite-
ria, Danaus plexippus and Heliconius charitonius
should be the easiest to classify.
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Figure 3: Weighted Degree Distribution
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Figure 4: Unweighted Degree Distribution

In contrast, we see that Heliconius erato, Ly-
caena phlaeas, Vanessa atalanta, and Vanessa car-
dui have the lowest scores along the diagonal, so
these species will likely be the hardest to classify.
In particular, Lycaena phlaeas has a large portion
of its edge weight from edges with Vanessa cardui,
and vice versa. The same holds for Nymphalis
antiopa and Vanessa atalanta. The edge weight
distribution thus reinforces the overlap trends be-
tween communities in Figure 1.

Finally, we find that the network’s weighted de-
gree distribution follows a standard exponentially
decreasing trend. However, the unweighted de-
gree distribution is unusal. Figure 4 demonstrates
a wide spread of degree values from less than 10
to over 500, and significant numbers of nodes with
degree values everywhere in between. Looking at
Figure 5, we see that the 4 species with the low-
est scores along the diagonal have 4 of the high-
est average degree scores. Nymphalis antiopa, dis-
cussed above, also has a high average degree.
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Figure 5: Average Unweighted Degree By Species

In contrast, the 3 species with the highest scores
along the diagonal - Danaus plexippus, Helico-
nius charitonius, and Pieris rapae - have the 3 low-
est average degrees. This aligns with our ear-
lier observations from the edge weight distribu-
tion heatmap. Namely, the weaker a species’
intra-species connections, the higher the number
of inter-species edges. Tangibly, this means that
when a butterfly looks like many other butterflies,
it is going to have many edges to other species in
the similarity network.

3.3 Community Detection

The trends discussed above manifest in the re-
sults of the Louvain community detection algo-
rithm. This algorithm clusters nodes into commu-
nities with the heuristic of optimizing modularity.
The algorithm iteratively performs 2 steps: (1) For
each node ¢, the change in modularity is calculated
for removing ¢ from its own community and mov-
ing it into the community of each neighbor j of
7. and ¢ is then placed into the community that
yields the greatest modularity increase. (2) Nodes
in the same community are contracted into a ”su-
per” node, generating a new network composed of
the resulting super nodes.

Butterfly Similarity Network - Louvain Communities

Figure 6: Communities Identified with Louvain

Running this algorithm results in the identification
of 7 communities. Examining Figure 6, we see
that Nymphalis antiopa — Vanessa atalanta, Ly-
caena phlaeas — Vanessa cardui, and Heliconius
charitonius — Heliconius erato have been largely
merged together. This reinforces the intuition built
from Figures 2, 4, and 5 as these pairs of species
share a high proportion of edge weight compared
to other pairs. It is thus highly likely that these
pairs will be hardest to classify for our models.
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Figure 7: Visual Summary of Classification Pipeline

4 Model & Approach

As discussed in section 2.3, Wang (2018) achieved
strong performance on this dataset with a GCN
accuracy of 77.49% compared to 51.81% with a
Multilayer-Perceptron baseline. Looking to build
on this success, we implement a GCN, Graph-
SAGE, and Graph Attention Network (GAT) for
the task of node classification with our dataset.
Because the BIOSNAP dataset does not include
the original butterfly images nor a mapping of
node ids to images from the original Leeds dataset,
the similarity network does not contain any node
features. It only contains weighted edges post
Network Enhancement. Therefore we experiment
with 3 types of node features for our GNNs - the
identity matrix, the adjacency matrix, and a matrix
of Node2Vec embeddings. We also evaluate the
performance of a SVM classifier on the Node2Vec
embeddings to provide a reference point for the
performance of the GNN models. A visual sum-
mary of this pipeline is given in figure 7.

4.1 Node2Vec

Node2Vec is an algorithm developed by Grover
and Leskovec (2016) that encodes nodes in a graph
to a low-dimensional embedding space via ran-
dom walks on the graph such that the similarity
of nodes in the embedding space approximates
similarity of nodes in the graph. The key prop-
erty of Node2Vec is the expressivity it allows
for in the types of random walks that determine
a node’s “neighborhood” (and consequently the
similarity between 2 nodes in the graph). Specif-

ically, Node2Vec allows for trade-off between lo-
cal and global views of the network via 2 param-
eters: the return parameter p and the in-out pa-
rameter q. A low value of p and high value of
q corresponds to a "BFS” (Breadth-first search)
like random walk that provides a more local def-
inition of a node’s neighborhood. In contrast, a
high value of p and low value of ¢ corresponds
to a "DFS” (Depth-first search) like random walk
that provides a more global definition of a node’s
neighborhood, capturing the structure of the node
in the network. In our approach, we generate a
range of 128-dimensional BFS-like and DFS-like
embeddings to evaluate how the different types of
information captured impact performance.

4.2 Node Features

We experiment with 3 options for GNN node fea-
tures: an identity matrix, the similarity network
adjacency matrix, and a matrix of Node2Vec em-
beddings. The identity matrix will have size 832
x 832 and provides no node information, so the
GNNs must learn embeddings using only the edge
list. The adjacency matrix has size 832 x 832 as
well and provides the GNNs with all edge weights.
Lastly, the Node2Vec embedding matrices will
have size 832 x 128 and provide the GNNs with
the local or global information learned about each
node. Because the identity and adjacency matrix
have size n x n, they scale exponentially with the
number of nodes in the graph. Thus with larger
graphs, the much smaller size of the embedding
matrix is an advantage, as it scales linearly with
the number of nodes in the graph n.



4.3 Support Vector Classifier

We utilize a Support Vector Classifier (SVC) for
classifying the Node2Vec embeddings because
support vector machines are considered by many
to be the best “off-the-shelf” machine learning
classifiers. Unlike simple artificial neural net-
works (ANN), SVCs have only a few parameters,
clear convergence criterion, and are guaranteed to
train quickly for small datasets. The simple but
effective nature of SVCs thus makes them a good
candidate for a reference model against which to
evaluate the performance of the GNN models.

4.4 Graph Neural Networks

Finally, the main area of our evaluation in this
study is the performance of 3 models of graph neu-
ral networks on the BIOSNAP data. The Graph
Convolutional Network (GCN) was introduced in
section 2.2. GraphSAGE, developed by Hamilton
et al. (2017), built on GCN by generalizing the
aggregation of node features during the neighbor-
hood aggregation phase of the GCN learning pro-
cess beyond weighted average, allowing for ap-
proaches such as pooling, applying a LSTM to
learn how to aggregate node features, etc. The
Graph Attention Network (GAT) from Veli¢kovic¢
et al. (2017) further augmented the basic idea
of the GCN by introducing an attention strategy
into the learning process. Through the attention
strategy, weights are implicitly specified for the
node features in a node’s neighborhood, allow-
ing a node to learn the importance of each of its
neighbor’s information. We hypothesize that the
GAT will achieve best performance on the dataset
given the weighted nature of the BIOSNAP simi-
larity network. While the other GNN models can
likely learn the relative importance of each node’s
neighbors with time, the ability to directly model
weights seems like it grants the GAT expressive
power that is particularly relevant for this task.
The 3 models increase in expressive power in
the order of GCN, GraphSAGE, and GAT. We
chose these models to evaluate (as opposed to
other graph convolutional layer types) because we
hope that this variation in expressive power al-
lows for a fuller understanding of the performance
and limitations of GNNs on our fine-grained visual
categorization task. It is also important to recog-
nize that 832 nodes is a small amount of data for
a deep learning model. Future work could explore
augmentation of the dataset for better learning.
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Figure 8: GCN Model Architecture (credit for the image to
https://www.experoinc.com/)

5 Experiments & Results

5.1 Evaluation

For our evaluation metrics, we report the accuracy
and confusion matrix. Accuracy provides a high-
level overview while a confusion matrix provides
a nuanced insight into per-class performance.

5.2 Baseline

Our baseline model uses the Louvain communi-
ties in Figure 9. We make predictions by using the
majority label in each community as the predicted
species for every node in that community. This
approach yields an accuracy of 66.23%. Notably,
this accuracy is nearly 15% better than the MLP
baseline reported by Wang (2018).

Danaus plexippus
Heliconius charitonius -
Heliconius erato -
Junonia coenia -

Lycaena phlacas -

True Label

Nymphalis antiopa -

Papilio cresphontes -

Pieris rapae -

Vanessa atalanta -

‘Vanessa cardui -

Predicted Label

Figure 9: Majority-Label Louvain Classifications

From figure 9, the majority-label Louvain classi-
fier makes predictable errors. As discussed in sec-
tion 3.3, the algorithm merges 3 pairs of species,
so understandably there are no classifications for
Vanessa atalanta, Vanessa cardui, and Heliconius
erato. Additionally, in line with the heatmap
in Figure 2, the misclassifications occur exactly
where expect them to - between pairs of species
with high levels of shared edge weight.



p q | SVC | GCN | GraphSAGE | GAT Identity | Adjacency | Embedding
0.2 | 5.0 | 9581 | .9281 9341 9162 GCN 0.9759 0.9398 0.9277
0.5 | 2.0 | .9521 | .9042 9222 9042 GraphSAGE | 0.9639 0.9277 0.9036
1.0 | 1.0 | .9461 | .9341 9222 .9042 GAT 0.8554 0.9398 0.9398
2.0 | 0.5 ] .9281 | .9161 9281 8862 -

501021 9222 | 8862 8922 3802 Table 2: GNN Eval Accuracies with Various Node Features

10 | 0.1 | .8922 | .8982 .8802 .8443 Identity | Adjacency | Embedding

Table 1: SVC and GNN Test Accuracies with Balanced, BFS- GCN 0.9281 0.9162 0.9341
Biased and DFS-Biased Node2Vec Embeddings GraphSAGE | 0.9281 0.9222 0.9341
GAT 0.9042 0.9102 0.9162

5.3 Training Splits

We create a 70/10/20 train/validation/test split of
the data. We also set the random seed so that the
set of test nodes for SVC and GNN models is the
same. When training the SVC, we combine the
train and evaluation sets because during develop-
ment we utilize cross-validation as our optimiz-
ing metric. For GNN training, the validation set
is used to determine appropriate hyperparameters.

5.4 Support Vector Classifier
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Figure 10: SVC Classifications when p = 0.2,¢ = 5.0

For the SVC, our input is a 832 x 128 matrix of
Node2Vec embeddings. We standardize the in-
put embeddings to zero mean and unit variance
and optimize over a small hyperparameter space
of SVM kernels and regularization strengths us-
ing 5-fold cross-validation as our optimizing met-
ric. The test accuracy of the best estimator ob-
tained from hyperparameter search for each of the
Node2Vec embeddings generated from different p
and q values is provided in Table 1. The best SVC
performance is achieved with p = 0.2, ¢ = 5.0.

Table 3: GNN Test Accuracies with Various Node Features

5.5 Graph Neural Networks

As specified in section 4, the input to our GNNs
is a node feature matrix that is either the iden-
tity matrix, BIOSNAP butterfly similarity network
graph adjacency matrix, or a matrix of Node2Vec
embeddings. Each GNN is trained with 1 layer,
32 hidden dimensions, 0.2 dropout rate, and early
stopping. We conducted hyperparameter search
with higher numbers of layers and hidden dimen-
sions, but found that these values resulted in over-
fitting while the minimal choices above still pro-
vided sufficient expressive power to achieve strong
performance on the dataset. The evaluation and
testing accuracies of the GCN, GraphSAGE, and
GAT models using identity, adjacency, and em-
bedding features are given in tables 2 and 3, re-
spectively. The score for the embedding column
in these tables corresponds to the best accuracy
achieved by the model from the embedding param-
eters of p and ¢ in table 1. In addition, confusion
matrices for the top performing GNN models are
given in Figure 11. For all models, we find that
training converges between 100 to 200 epochs.
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Figure 12: Learning Curves for Top GNN Models
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Figure 11: Confusion Matrices for Top-Performing GNN Models

6 Discussion

6.1 Node2Vec Embeddings

From table 1, we see that the models achieve
better performance with BFS-biased than DFS-
biased embeddings, with over 6% better perfor-
mance with the most BFS-biased (p=0.2, q=5.0) as
compared to the most DFS-biased (p=10, q=0.1)
embeddings. These findings make sense given the
structure of our network. As discussed in section
3.1, Network Enhancement processing removes or
reassigns weak edges lower weight while reassign-
ing strong edges higher weight. Thus the pres-
ence of an edge between 2 nodes means they had a
high similarity score and is a strong indicator those
nodes belong to the same class. As BFS-biased
walks enable a local, micro-view of the network,
they emphasize the 1-2 hop neighborhood. This
is well-suited for our network, as nearly all nodes
of a given class are likely to be within 1-2 hops of
each other due to Network Enhancement.

DFS-biased walks, in contrast, capture a global,
macro-view of the network, more strongly em-
phasizing the structural role of a node such as a
bridge between communities or a fringe member
of a group. However, our network does not nec-
essarily have “roles” in the way other networks do
because edges do not signify real-world relation-
ships (ie friendship, follows, etc.), but rather sim-
ilarity scores between nodes. After Network En-
hancement, the structure of each node is similar,
with many connections to nodes of the same class
and a few to moderate number of edges to nodes
of other classes. Therefore outward-oriented ex-
ploration won’t find meaningful structural signif-
icance because there is little variation in structure
between nodes of different classes. This means a
global view of a node in our network does not offer
useful information for node classification.

6.2 Node Features

From table 3, we see that there is little variation
in test accuracies among the GNNs for node fea-
tures of identity, adjacency matrix, and Node2Vec
embeddings, with all test accuracies falling with-
ing a range between 90% - 94%. The Node2Vec
embeddings result in the highest scores for all 3
models, but only slightly. In conversation with
the results in table 1, this tells us 2 things. The
first is a reinforcement of GNNs remarkable abil-
ity to generate high-quality embeddings. Specifi-
cally, for the identity node features, the GCN and
GraphSAGE models achieve 92.81% test accuracy
to the 95.81% test accuracy of the SVC with the
best BFS-biased embeddings (p=0.2, q=5.0). The
fact that GCN and GraphSAGE achieve compara-
ble performance despite having no node features
and no access to the edge weights of the simi-
larity network means that these models are able
to generate node embeddings of similar quality
to Node2Vec from scratch, leveraging only the
neighbors of each node and 32 dimensions instead
of the 128 dimensions of the Node2Vec embed-
dings (because we set the number layers to 1 and
number hidden dimensions to 32 during training).

However, the fact that the best-performing SVC
was able to achieve 95.81% accuracy indicates
that it almost perfectly learned the problem space
despite its relative simplicity. This finding is re-
inforced by the fact that the GNNs do not per-
form meaningfully better with the adjacency ma-
trix or Node2Vec embeddings. Even though the
GNNs are able to generate high-quality embed-
dings with no node features (ie the identity ma-
trix), the information from the adjacency matrix
and Node2Vec embeddings should only improve
learning and classification performance. The fact
that performance does not improve significantly
- combined with the low number of layers (1)
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Figure 13: Images of Butterfly Species Commonly Confused by Classifiers

and hidden dimensions (32) needed to achieve the
scores reported - indicates that the performance
of the GNNs is capped by the simplicity of the
dataset as reflected by its small size (832 nodes)
and lack of node features. The similarity network
is derived from the Leeds Butterfly Dataset which
contains images for all 832 data points. However,
the mapping from the original images to the nodes
they are associated with is not provided in the
BIOSNAP dataset. If the GNNs were able to take
advantage of the images and an expanded dataset,
their expressive power could be better leveraged.

6.3 GNN Comparison

It is somewhat surprising to note from table 3 that
there is little variation in performance among the
GCN, GraphSAGE, and GAT models. Particu-
larly, it is intriguing that the GAT achieves the
lowest performance among the three models by
about 1% - 2% depending on what node features
are utilized. We had expected GAT to perform
the best among the 3 models because our sim-
ilarity network is weighted, so we hypothesized
that the GAT would be able to automatically learn
the importance of each neighbor according to its
edge weight via the attention mechanism. How-
ever, this hypothesis was not upheld in our exper-
iments. It is important to note that we also ex-
plored a large hyperparameter space of number of
epochs, number of layers, number of hidden di-
mensions, and dropout rates, so the low perfor-
mance of the GAT models is not due to lack of
expressive power or failure to train long enough.
Rather, related to the preceding discussion around
capped GNN performance due to dataset limita-
tions, it is likely that there is little variation in
performance between GNN types due to the sim-
plicity of the dataset. Specifically, if each model
type is powerful enough to learn the problem space
well, then none of the GNN types have the oppor-
tunity to distinguish themselves.

6.4 Error Analysis

In section 3.3, we predicted that the majority
of misclassifications would occur on the species
Nymphalis antiopa, Vanessa atalanta, Lycaena
phlaeas, Vanessa cardui. We find that this hy-
pothesis holds in our results. In the confusion
matrix for the top-performing SVC (figure 10),
we see that misclassifications involving pairs of
these species accounted for 6 of the 7 errors made
by the model. In the confusion matrices in fig-
ure 11, misclassifications involving pairs of these
species account for over 50% of the errors made
by the top GCN, GraphSAGE and GAT models.
Given the strong visual similarity between these
species as showcased in figure 13, the predomi-
nance of misclassifications involving pairs of these
species makes sense. However, the persistence
of these errors informs us that while the graph-
based classification techniques we have explored
have achieved substantial success on the dataset,
the most challenging fine-grained visual catego-
rization tasks are still not perfectly mastered by
our approaches.

7 Conclusion & Future Work

In this study, we sought to gain traction on the
difficult task of fine-grained visual categoriza-
tion through leveraging graph classification tech-
niques. Working with the BIOSNAP butterfly sim-
ilarity network dataset, we first ran Node2Vec to
generate balanced, BFS-biased, and DFS-biased
embeddings, then leveraged these embeddings in
downstream SVC and GNN models. In addition
to using these embeddings as node features for
our GNN models, we also developed GNN mod-
els with no node features and with the similarity
network edge weights as features. We find that
both our SVC and GNN models are able to achieve
excellent accuracy in the range of 90% - 95% on
our test set - an improvement of more than 17%



as compared to the top GNN model reported by
Wang (2018) - with accurate predictions across
all species. Regarding Node2Vec embeddings, we
find that BFS-biased embeddings are optimal for
this task due to the characteristics of our network,
namely a lack of distinctive global structure that
could contribute to the identification of “roles” in
the network. Our GCN, GraphSAGE, and GAT
models achieve similar performance even with dif-
ferent node features (identity, adjacency, and em-
beddings), indicating that the expressive power of
our GNN models is not able to be fully exercised
due to the lack of node features (e.g., original but-
terfly images) and small size of the dataset.

Future work on this task would benefit greatly
from an expanded dataset and a mapping of the
node ids in the BIOSNAP dataset to the original
images in the Leeds Butterfly Dataset so that the
Graph Neural Networks could take advantage of
much richer node features. In addition, it would
be worthwhile to further explore GAT architecture
choices, as the GAT attention mechanism should
in theory be able to better model the weights of
the network than other GNN models.

Contributions

As I am the only member of my team, I completed
all of the work detailed above for this project, in-
cluding writing all code as well as this report.
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