Recommendation Systems for the Netflix Network

Aleksander Dash, Jason Lin, Nolan Handali
{adash, jason0, nolanh }@stanford.edu

December 2018

Abstract

In this project, we explore creating a rec-
ommendation system for Netflix users in
a variety of ways, such as item-item and
user-user collaborative filtering, as well as
various ways to create projections to aid
with recommender systems. Of all the
methods tested, a hybrid approach involv-
ing a graph projection of movies based on
the Pearson Correlation coefficient has the
best performance, followed by user-user
collaborative filtering. We also explore
multiple ways of clustering nodes together
that have ratings that correlate with each
other, which could provide useful exter-
nal information to improve the accuracy
of future recommender systems.

1 Introduction

Recommendation systems and link prediction are clas-
sic problems when a wealth of content is provided
to users and one needs to know what content users
have not yet seen but are most likely to enjoy. They
are some of the most common problems seen in to-
day’s world. Recommender systems are used to sug-
gest friends on Facebook, products you might like on
Amazon, the next video on Youtube, more shows on
Netflix, etc.

Our project is to build a recommender system for
users based on the Netflix network, which is a bipar-
tite graph consisting of users and movies, with edges
between movies that users rated (on a discrete scale
from 1 to 5). Specifically, we will try to recommend
movies a user has not seen that they may enjoy, based
on the previous movies they saw and rated. We plan
to use the methods from the papers we surveyed as
a baseline and improve upon them, by taking advan-
tage of the unique structures of our network. For in-
stance, there is some granularity to the ratings users
give movies instead of a binary recommend or not

2 Prior Work

A recommender system is a system that attempts to
predict the rating a user would give an item, and sug-
gest items that the user would enjoy, whether this
be movies, books, music, or people. They have wide
ranging usages, and show up from our Google searches,
to our friends on Facebook.

In this section, we will discuss several papers re-
lated to recommendation system in order to under-
stand what they discuss. We present a brief summary
of the paper, and then a critique of the papers, leading
into a discussion on directions for further exploration,
and a brainstorm on the extensions we can pursue.

2.1 Analysing Bipartite Graphs

There has been significant work[1] that deals with
projection of bipartite graphs, while being able to
maintain information about the original graph, as a
naive approach results in an undirected, unweighted
network that loses significant information.

Tao Zhou et al.[1] deals with a better method of
projection of a bipartite graph that invovles a weight-
ing method that can be applied to extract the hidden
information of networks, leading to a personal rec-
ommendation. In their approach, given a bipartite
graph G(X,Y, E), they assign each node in X (or
Y, depending on which you are projecting) a weight,
which then ”flows” to the neighboring nodes in equal
weight. Then, this weight flows back to the original
set, giving it its weight in the projection graph. Fig-
ure 1 shows how weight flows, leading to the final
weight of the nodes.

i x/3+y/2+2/3 yI2+2/3 x/3+2/3
x/9+5y/12+52/18
11x/18+y/6+52/18 5x/18+5y/12+42/9

(c)

Figure 1: weight flow in bipartite network

The advantage of this method is that weights are not
symmetric, and represent some internal structure of
the bipartite graph. For example, in a collaboration
network, the weight of a single collaboration paper
between two researchers is fairly low if one scientist
has published many papers, and vice versa.

Building off of this, Zhou and his team suggest
a recommendation algorithm, which proceeds as fol-
lows. First, for a given user u;, assign some weight
on each object node as f(z;) = aj;, where aj; is bi-
nary, representing if an edge exists between object x;
and user u;. Then perform object-projection on the
graph according to above. Then, sort all the objects
that the user had not seen before, and recommend
the ones with highest value. They demonstrate that
this performed better than both collaborative filtering
and global ranking method.

Critique: The proposed framework assumes equal
weight to each node at the start, and disregards the
case in which the original graph has weighted edges.
Furthermore, this approach considers similarities be-
tween the users, but does not explicitly consider sim-
ilarities between the objects themselves. Finally, this
approach may suffer from the same issues as other
recommender systems, as it may give stronger weight
to more popular objects, as they have more incoming
edges.

2.2 Building Recommender Systems
with Node2Vec

Typically, when building a recommender system from
a graph, there are two kinds of approaches you can
use: The first, is to use the features of nodes in the

graph to measure similarity between different nodes,
and from that make a recommendation based on other
nodes that are similar to the ones the user has already
interacted with. The second approach is to look at
the edges between nodes, and try to deduce with what
probability there should be an edge between two pairs
of nodes that currently are not connected. Node2Vec
(3] is a scalable algorithm for networks that aims to
accomplish both those objectives.

Enrico Palumbo et al. [2] used the first ap-
proach outlined above. They used a knowledge graph
where for every node N they had a feature extractor
which, in the case of users, was able to extract the
movies they had given feedback on, and for movies,
was able to extract details such as lead actors, produc-
tion company, genre, and directors. Using the Movie-
lens knowledge graph they were able to achieve a more
than 10% increase over baseline performance.

Critique. Something they did not seem to ex-
plore in their paper was whether they were able to
build a recommender system without a significant
knowledge graph, instead leveraging the structure of
the edge connections in the graph they had (i.e. which
users recommended which movies, and which movies
were watched by which users) to make recommen-
dations. We wonder if it is possible to develop rec-
ommender systems that do not rely on that kind of
specialised domain knowledge, and what the perfor-
mance differences are between the two approaches,
and will explore that in our project.

2.3 The Netflix Recommender System:
Algorithms, Business Value, and
Innovation

Unsurprisingly, Netflix themselves have put a large
amount of work into building and optimizing their
own recommendation system. Their recommendation
system is very complex with several key components.
Carlos A. Gomez-Uribe and Neil Hunt detail
the various approaches. First is a Personalized Video
Ranker (PVR) that gives recommendations based on
genre, such as horror or comedy. It works by blending
personalized recommendations with the popularity of
content. Next, is a Top-N Video Ranker, which pro-
vides a user a ranking of all content Netflix has, across
all possible genres. It recommends videos similarly
to how the PVR gives recommendations. There is
also a Trending Now section that ranks videos solely
on temporal popularity. Finally, there is a Video-
Video similarity ranker, which computes similarities
between content a user has watched and other con-
tent in Netflix’s catalog, and returns the most similar

other content. Each algorithm uses both statistical
methods and machine learning techniques, including
classification, regression, clustering, and matrix fac-
torization.

This paper relates to topics taught in CS224W be-
cause it deals with the various ways in which Netflix
deals with applying algorithms to their vast network
of user data in order to create a effective recommen-
dation system. This connects with other papers we
are discussing because it gives concrete ways in which
Netflix is currently attempting to tackle the recom-
mendation problem. With this knowledge, we will
be able to brainstorm better ideas to tackle the same
problem using information from other papers, such as
through bipartite graph analysis or using Node2Vec.
The strengths of the paper are how it breaks down the
complex task of recommending Netflix content into
four simpler categories. This allows us to comprehen-
sively understand the various ways in which Netflix
approaches this problem.

The weaknesses of the paper include how it doesn’t
detail ways in which their current approaches to rec-
ommendation can be improved; they only mention
ways in which their approach to A/B testing can be
improved, since they mention their current methodol-
ogy of A/B testing can lead to skewed results. How-
ever, I argue that nominal differences in A/B testing
results are overshadowed by improving the overall ap-
proach to recommendation.

3 Dataset

We will analyse the Netflix dataset [4] provided by
Netflix in a competition to design a better recom-
mender system for movies than they had managed
internally. The dataset is a bipartite graph and con-
sists of the following:

e Users: There are more than 480,000 users in
the dataset.

e Movies: There are 17,770 movies in the dataset.

For each movie, the English title and year of re-
lease is provided.

e Ratings: Ratings are represented as an edge
between a user and a movie if the user rated that
movie. The rating has a weight corresponding
to the number of stars the user gave the movie,
from 1 to 5 stars. There are over 100 million
ratings in the dataset.

3.1 About the Dataset

We begin by analysing graphs showcasing the distri-
bution of ratings, degree distributions of users and
degree distributions of movies for the whole data set.

As we can see from Figure 2, most of the ratings
are on the positive end of the spectrum. This suggests
that users who watch movies they end up disliking
often stop watching the movie before they finish it
and get a chance to rate it.

35000000 Distribution of user ratings for movies

30000000

25000000

20000000

ratings

15000000

10000000

5000000

0

1 2 3 4 5
Rating

Figure 2: distribution of movie ratings

102 Log-log plot of # ratings each movie has received

movies
-
U
o

]
$ "- "o-l-‘Q,.
°

100 5 T 2 3 4 5 6
10 10 10 10 10 10 10
ratings a movie has received

Figure 3: distribution of number of movies which
have been rated a certain number of times

As displayed in Figure 3, we computed the de-
gree distributions for users and movies. We did this
to see if the Netflix network followed the power law,
where the number of nodes with a given degree is in-
versely exponentially proportional to the degree of the
nodes. We can see that is not quite true for the de-
gree distribution for movies. After about 100 ratings,
the degree distribution for movies visually appears to
follow the power law, however, between 1 and 100
ratings, there is a relative dearth of movies. This
suggests that the movies that receive less than 100
reviews are so unpopular that users actively decide
not to engage with them, or that the existing Net-
flix recommender systems think these movies should
not be recommended to any users. It is likely not

the case that these movies are particularly new, since
Netflix always promotes new movies when they are
made available on the platform. In any case, it sug-
gests that it is probably not worth it to recommend
these movies to other users.

By examining Figure 4, we can see that the dis-
tribution over the number of ratings each user has
given compared to the number of users who have
given that many ratings more closely follows the power
law. Again, there is some irregularity for users who
have rated less than 30 movies, so for algorithms like
collaborative filtering, it is more useful to focus on
users who have rated more than 30 movies - this also
allows us to create a normal distribution over that
user’s specific preferences, so that we can compare
users who rate movies differently with each other bet-
ter. On the other hand, the users who have only rated
a few movies might be newer to the service, which
presents a unique opportunity as those users are the
ones Netflix wants to spend most of their attention on
retaining, so it is perhaps worth looking at algorithms
to recommend movies to users when those users have
not engaged much with the service yet.

104 Log-log plot of # ratings each user has made

10*

100 L L
10° 10* 10° 10° 10 10°
ratings a user has made

Figure 4: distribution of number of how many
users have rated a certain number of movies

4 Algorithms Used

4.1 User-User Collaborative Filtering

To perform user-user collaborative filtering on the
graph, we extract a vector v for each user where the i-
th element of the vector is the user’s rating for movie
1. Since ratings for different users are drawn from dif-
ferent distributions, we then subtract the user’s mean
from each rating they have so as to be able to compare
them better. If we let v be a user’s rating vector, then
we have that the user’s adjusted rating vector u; =0
if the user did not rate movie ¢ and uv; = v; — v if

the user rated movie i, where v is the mean of all the
nonzero elements of v.

If we now have the adjusted rating vectors a and
b for two different users, we can calculate the cosine
similarity as follows:

a-b

sim(a,b) = ——7—
(@5 = LTl

In order to now find the most similar users to a spe-
cific user we are interested in, we can take the cosine
similarity between our user of interest and every other
user in the graph, and pick the users with the top n
cosine similarities to our target user in order to get a
source to make movie recommendations from.

In order to test the results of our similarity algo-
rithm, we picked a random user from the graph that
had rated 100 movies and plotted a histogram of the
cosine similarities between that user and the rest of
the users in the network, which can be seen in Figure
5.

108 User-user cosine similarities for user 1398909

10°

users

10°}F

10?

10*
-1.0 -0.5 0.0 0.5 10

Cosine similarity

Figure 5: distribution of cosine similarity between
user 1398909 and every other user in the network

The shape of this histogram almost perfectly re-
sembles a bell curve. This means there are plenty of
users who are both similar and dissimilar to our user
of choice. This, in turn, means that there are users we
can pick out whose movie ratings will correlate with
our user’s movie ratings.

4.2 Item-item collaborative filtering

Similar to user user filtering, we also attempted item-
item collaborative filtering, using both cosine and pear-
son similarity. For pearson similarity, we defined the
similarity between two movies i,j with common raters
U as

sim(i,§) =

Yot P — Ba) (B — By)
V(Rui — Ri)?\/(Ruj — R;j)?

where R represents the average rating for a given
item, and R, ; is the rating user u gave to item .
Cosine similarity was the same, except that we sub-
tracted the average rating from a user u, rather than
the average item rating. Finally, our prediction was
given by

Zallsimilam’tems,N(Simi,N * Ru,N)

Zallsimilaritems,N(”'Simi,N ||)

4.3 Community detection

We used several community detection algorithms in
an attempt to create communities of movies. The idea
was to use these communities of movies to recommend
similar movies to users, similar to Netflix’s own ” Be-
cause You Liked...” recommendation system, since re-
lated movies would likely be in the same communities.
We approached the problem by first contracting the
bipartite graph of movies and users to just a graph
of movies, with pairs of movies being connected if a
user watched both of those movies. Next, we used
Louvain community detection through greedy modu-
larity maximization, K-clique percolation, and K-way
spectral clustering in an attempt to find communities
within this contracted movie graph.

The Louvain algorithm used is exactly the same
as the one discussed in class: Each node is first as-
signed its own community, then we try moving each
node into a neighboring community and choose the
community that maximizes the modularity of the re-
sulting graph. The change in modularity that needs
to be maximized is defined as follows:

Din thiin (th +ki)2

2m 2m

AQ=
(Zin _ (Ztoryp (Ko yoy

2m 2m 2m
Where), is the sum of weighted edges inside the
community,), . is the sum of weighted edges going
into the community, k; is the weighted degree of i,
ki in is the sum of weighted edges between i and the
community, and m is the sum of the weights of all
edges in the network [8].

]_

The K-clique percolation method is another method

of community detection. First, all cliques in the graph
of size k (which is given by the user) are found, where
cliques are defined as a subgraph where every node is
connected to every other node. Next, adjacent cliques
are unioned into the same community, where adja-
cency is defined as two cliques having k-1 of the same
nodes. All adjacent cliques are unioned into super-
cliques, and the resulting super-cliques are presented
as communities.

The last algorithm we used was K-way spectral
clustering, which is a generalization of the spectral
partitioning algorithm shown in class and done in
Homework 3, and more explicitly described by Shi
and Malik[9]. To start, we calculate the adjacency
matrix A and sparse diagonal matrix D of our graph,
with the degree of node i being at DI[i][i]. Then, we
subtract the adjacency matrix from the diagonal ma-
trix to get the Laplacian matrix L. We proceed to
normalize the laplacian and get

z — D—1/2LD—1/2

Now, we calculate the top n eigenvectors of L to re-
ceive an M by n matrix, where M is the number of
nodes in the graph. We can now view this resulting
M by n matrix as M feature vectors of size n, meaning
each row is a feature vector for a certain node in the
graph. We used n=10 to represent feature vectors of
size 10 for this problem. Finally, we used the stan-
dard k-means clustering algorithm to partition these
feature vectors into clusters and returned those clus-
ters as communities.

4.4 Weighted Bipartite Graph Projec-
tion

Following the algorithms described in [7], we imple-
mented a recommendation system based on weighted
bipartite graph projection. By doing a weighted pro-
jection in the following manner, the weights of nodes
will capture more general information about the struc-
ture of the graph, where higher weight indicates a
stronger correlation with another movie. In the pa-
per, the recommendation system they prescribe is as
follows: perform a bipartite projection onto the ob-
jects. Then, for a given user u; we are trying to rec-
ommend to, assign initial resources on the objects
collected by w;. In our case, we took the user we
were trying to predict ratings, and split up the movies
they had seen into a train/test set with a 90/10 split.
This allows us to compare the predicted results to the
actual results. In the paper, they assigned a unit re-
source based on whether or not the user had collected
that object. In our case, we set the initial weight
equal to the rating of the movie, as we wanted to
give higher rated movies a higher score. Then, the
weight is distributed by flowing equally to the neigh-
bors, and then for each of the user nodes, distributed
equally among that user node’s neighbors. Mathe-
matically, if our initial resource if f(o;) = r;; where
r;; is the rating our user i gave to movie j, then the

final resource is

n
Z wjrf(or), wij =
=1

1 i a1 51
R(uy) 2= (o)
where k is the degree of a node, and a represents if
there is an edge between those two nodes.

Finally, once we have the distributed weights, we
can take the weight on the movie we are interested
in, and scale it based on the min/max weight of the

movies the user already rated. Then, based on this
scale, we assign it a score of 1-5.

were interested in, we look at all the neighbors of the
movie in the projected graph. Because of how we did
the projection, the ratings for these neighbor movies
should be strongly correlated with the rating for our
query movie. As a result, we can look at the neigh-
bor movies that our chosen user rated, and average
those ratings to estimate what the user would rate
that movie. If we are using the weighted projected
graph, we look at if the edge is 1 or -1. If 1, we do
as previously, but if the edge weight is -1, then what
we can do is add (6-rating) instead, as it is negatively
correlated. We tried both of these approaches sepa-

4.5 A Different Approach to Graph Pro-rately to see if there would be a significant difference.

jection

When doing our original projection to detect commu-
nities, we created an edge between two movies when-
ever there was a user that had rated both of the two
movies. We didn’t take into account how many users
had rated both movies, nor did we take into account
if users tended to rate both movies the same way. We
wanted to incorporate more information in our pro-
jection, similar to what Zhou, et al, did in their paper,
but captures more about how users rated these two
movies.

In order to do this, we wanted to create an edge in
the graph if ratings of two movie were correlated. To
test for correlation, we used the pearson correlation
coefficient, defined as follows. The Pearson correla-
tion coefficient, r when given paired data X,Y, and

{(z1,91...}:
_ i (@i —2)(yi — §
r=
\/2?21(931' - E)Q\/Z?:1(yi - 9)?
where n is the sample size, x;, y; are the individual
indexed sample points, and Z.y are the sample means.
In our approach, we added an edge between two
movies if the Pearson correlation coefficient of the rat-
ings of both movies were positively correlated with
each other. We considered ratings for only users that
rated both movies. Then, we added an edge between
movies if their Pearson coefficient was greater than
.75. We wanted there to be significant correlation, as
that would imply that these two movies are generally
rated similarly by both users. In addition, we cre-
ated a second graph, in which we created an edge of
weight 1 if the coefficient was greater than .75, and
an edge of weight —1 if they were strongly negatively
correlated, i.e. a coefficient of less than —.75.

4.5.1 Predicting Ratings

We then used this projected graph to predict ratings
in the following fashion. For a user,movie pair that we

4.5.2 Community Detection Part 2

Furthermore, we used this projected graph with our
community detection algorithms. We simply replaced
the original projected graph (with an edge between
two movies if a user watched both) with this new
projected graph containing correlated edges, and ran
the Louvain, K-clique, and K-way spectral clustering
algorithms.

4.6 Node2Vec

Now that we had a better movie projection graph,
we were interested in seeing if we could apply the
Node2Vec algorithm to this Pearson projection and
learn embeddings for every movie in the projection
in order to make better item-item recommendations.
Since Node2Vec learns the role of a node in a net-
work based on the surrounding network structure,
we decided to run node2vec while varying the out-
parameter ¢ in order to not only measure the perfor-
mance of node2vec as a method for item-item recom-
mendation, but also to see if varying the exploration
parameter has a measured effect on the performance
of the algorithm.

Once we had the embeddings, then for each user-
movie pair in our test set, we would get the node em-
beddings for all the other movies the user had rated,
order them by cosine similarity to the embedding for
the movie of interest, and then give an average of
the most similar other n movies the user had rated,
where we also varied n to see if that had an effect on
the accuracy of our algorithm.

5 Results and Analysis

5.1 Community Detection

When running the Louvain algorithm on the orig-
inal projected movie graph, where an edge exists if

two users rated the same movie, the algorithm com-
bined the entire movie graph into just two communi-
ties, with each community having around half of the
movies in our test dataset. Furthermore, when run-
ning Louvain on the Pearson correlation graph from
section 4.5, it still only discovered 3 optimal commu-
nities. This implies that Louvain community detec-
tion is not a good algorithm for community detection
on our dataset. This could be due to the fact that
there exist many edges in both versions of our graphs,
which adds noise to modularity calculations.

After running the K-clique percolation algo-
rithm with various parameters of K ranging from 5
to 20 on the original projected movie graph, we were
only able to ever get a single community containing
all nodes from the algorithm. In addition, after run-
ning the K-clique percolation algorithm on the Pear-
son correlation graph from section 4.5, we were still
only able to get a maximum of 2 separate communi-
ties. This suggests to us that users commonly watch
many movies that are dissimilar from each other, even
ones that they may not necessarily be interested in.
Furthermore, we calculated the clustering coefficient
of the contracted movie graph and got values higher
than .99, which further highlights our initial belief.
Thus, given our dataset and its overall structure, we
determined community detection through modularity
optimization and K-clique percolation to be insuffi-
cient.

With K-way spectral clustering, things defi-
nitely looked better. When running the algorithm on
the original projected movie graph with k = 50, we
were able to find 50 communities with somewhat rea-
sonable groupings. However, since it’s overwhelming
for a user to see 50 groups with hundreds of movies
each, we wanted to increase the number of commu-
nities. With k = 100, on the original graph, unfor-
tunately, the algorithm again only gave us one com-
munity containing every single movie, which was a
problem. Finally, we turned to using K-way spec-
tral clustering on the Pearson correlation graph from
section 4.5, which succeeded and gave us reasonable
results with any number of clusters, including 100. To
validate our results, we calculated the Pearson corre-
lation of user ratings between every pair of nodes in
a cluster and averaged this over every pair to give
us the average Pearson correlation for a cluster. We
then averaged this correlation value over every cluster
to get the within-cluster Pearson correlation value of
0.6261. To get a baseline Pearson correlation for the
entire graph, we treated the graph as a single cluster
and calculated the Pearson correlation, which gave us
a value of 0.4597. This shows that our K-way spectral

clustering algorithm gave us a significantly improved
cluster set than no clustering at all.

Here is an example cluster of movies given by the
algorithm: ["Pink Floyd: Inside Pink Floyd: A
Critical Review 1975-1996°, >Automotive Se-
ries: Porsche’, 'Backstreet Boys: Backstreet
Stories’, ’Opinion’, ’Suze Orman: The Courage
to be Rich’, 'Meat Loaf: VH1 Storytellers’,
’Animal Attraction 3’, "Howard Hughes: The
Real Aviator’, ”Tina Turner: Rio ’88”, 'But-
thole Surfers: Blind Eye See All: Live 1985,
’The Drifter’, 'Dogs and More Dogs’, "The Jazz
Channel: Chaka Khan’, "Mr. Ice Cream Man’,
’Todd Rundgren: Live in San Francisco’, *The
Witness Files’, 'MacArthur’, ’Diane Schuur the
Count Basie Orchestra’, 'Red Shoe Diaries:
Hotline’, 2000 Years of Christianity’, *Fighter
Jets and Attack Aircraft’, 'Pink Floyd: Inside
Pink Floyd: A Critical Review 1967-1974°, "The
Mafia: An Expose - Coming to America/Al
Capone’, ’Sopranos Unauthorized: Shooting
Sites Uncovered’, "Trial’, "Pop and Me’, ’Emerso’,
’Alanis Morissette: Jagged Little Pil’, ’Com-
bat Vietnam: To Hell and Beyond’]. This clus-
ter seems to contain movies related to music and mu-
sicians, with movies about Pink Floyd, the Backstreet
Boys, the Count Basie Orchestra, The Jazz Channel,
Todd Rundgren, and Alanis Morissette. There are
definitely a couple of outliers, such as Combat Viet-
nam, but the overall clustering seems solid.

5.2 Rating prediction
5.2.1 Evaluation Metric

For our rating prediction, we tested to see how close
our prediction got to the true value. In order to quan-
titatively measure this, we used mean-squared error.
Ideally, we want to minimize the mean squared er-
ror, as that represents how close we are to the ground
truth. For rating predictions g, ground truth values
y, and n samples, we have

n

MSE= 135~ y)?

=1

5.2.2 Results

We compare the mean-square error of all our predic-
tion methods with a random predictor that predicts a
random integer between 1-5 for each user. This ran-
dom predictor has a mean squared error on the user
ratings of approximately 3.63, so any error we get

Approach MSE
User-user 0.803
Item-item 0.872
Weighted bipartite projection 1.73
Pearson Correlation similarity(4.5.1) 0.543
Node2Vec 1.08

Table 1: All Methods Mean Squared Error

that is significantly less than this number represents
an improvement.

For user-user filtering, we picked 30 of our cho-
sen user’s most similar users, and for all the users
movies, we used the similar users’ adjusted ratings for
that movie to predict what the current user’s rating
would be. This was done using a baseline algorithm
by simply averaging the users’ ratings for that movie
together, then adding our chosen user’s average movie
rating to that result. Using this approach, we were
able to predict the chosen user’s movie ratings with
an average mean-squared-error of = 0.803, which is
quite good for a baseline algorithm. We made sure to
remove bias by not considering the user’s movie score
we were estimating in any of the calculations outlined
above (we basically temporarily pretended they had
never rated that movie, and found similar users based
on that assumption, etc.).

To test item-item filtering, we proceeded the same
as in user-user filtering, except we compared the sim-
ilarity between the test movie and the other movies
the user had rated previously. Our pearson similarity
performed slightly better than cosine similarity, with
pearson having a mean squared error of .872, and co-
sine similarity having a mean-squared error of 1.473.
Both performed worse than user-user, largely due to
the issues of the cold start problem, as there is not
sufficient information about the movies.

Evaluating the weighted bipartite graph projec-
tion on our dataset by performing the algorithm from
4.4, we found that this unfortunately had a mean-
squared-error of 1.73, worse than our collaborative
filtering efforts. It seems like without additional fea-
tures, this is not a good approach for rating predic-
tion. This is likely due to the fact that the model
in the paper assumed an unweighted graph, whereas
our original graph is unweighted. Furthermore, they
had the weight flow equally, and although we tried
to account for this by having weight flow proportion-
ally to how a movie was rated, because many movies
were rated by many users, and many users rated a
lot of movies, the overall weight across movies ended
up being relatively even, which led to many of our
predictions being between 2.5 and 3.5, leading to the

mean squared error as stated above.

For the method suggested in 4.5.1, we selected
1000 different users that had rated more than 50 movies.
For each user, we split up their movie set into train/test
with a 90/10 split. We then tested on the 10% of
movies in our test set. We compared the predicted
value from both the unweighted projected graph, as
well as the weighted projected graph, and we found
that on average, the mean squared error for the un-
weighted graph was .54495, and the mean squared
error for the weighted graph is .5427. These results
make sense, as both graphs were created with the
assumption that edges between movies exist if their
ratings are strongly correlated. Thus, the user’s rat-
ing on the similar movies is strongly correlated with
their rating on the test movie. We could improve the
values by increasing the bound we require to create an
edge, but we found that higher values led to too little
data. Additionally, it makes sense that the weighted
graph would have higher performance, as it is simply
just more information. Since we flip the rating, it is
essentially another data point that is strongly corre-
lated. As we can see, although there is a difference,
it is very minimal.

For Node2Vec, we decided to vary the exploration
parameter ¢ between 0.3 and 2.0, to see if the different
values would have an impact on the accuracy of the
recommendation algorithm. We also varied the total
number of similar movies’ ratings to average. Here
are the results for a small subset of 100 movies of the
entire graph:

25 MSE tiny, > 10 ratings

— q=0.3
— q=05
— qgq=1.0

201\ q=15]|]
— q=20

Mean squared error

0.5 n L L L L L L
1 2 3 4 5 6 7 8 9
Top # movies to average

Figure 6: Node2Vec rating performance on 100
movie dataset

As we can see, there does not appear to be a signif-
icant difference depending on the value ¢ we choose.
This could be either because our values were not ex-
treme enough, or because other exploration parame-
ters in the algorithm have a bigger impact, or because

our data set is too small. So we tried calculating the
prediction error on a larger data set of 1000 movies:

124 MSE smer:ll, > 59 ratmgs

— q=0.3
q=05[
— qgq=1.0

q=15
— gq=20

L
N
N

e
N
o

o

=

)
T

Mean squared error
|t R o
b B e
o N = o

g
o
@

1.06
5

é % 8 S; 1b 1‘1 12 1‘3 14

Top # movies to average
Figure 7: Node2Vec rating performance on 1000
movie dataset

As we can see here, there does not appear to be
any effect on the prediction accuracy if we vary the
value for ¢ even when we have more data for Node2Vec
to generate better embeddings. In the end, the best
mean squared error for the Node2Vec algorithm on
the Pearson projection graph coupled with cosine sim-
ilarity between movie embeddings was 1.08 for the
larger dataset. Perhaps we need to run Node2Vec on
a different projection in order to better predict ratings
for movies, since perhaps by using the Pearson pro-
jected graph, too much of the underlying information
in the graph structure that the random walks would
have otherwise found was either lost or flattened so
that the predictions became sub-optimal. This would
be useful to look into in future research.

In summary, of all the methods we tested (listed
in Table 1), Pearson Correlation similarity had the
highest performance.

6 Difficulties and Challenges

One thing that was very difficult for us was choosing
the correct python library to handle our network anal-
ysis. Our first thought was to use Snap, since it was
what we had been using in class to analyze the given
networks. However, given the bipartite nature of our
graph, the large size of our data, and the need to con-
tract the graph efficiently, we ended up switching to
another network library. We had experience with the
NetworkX library from a different class, so we decided
to give that a shot to see if we would fare any better
in our attempts to make sense of this huge network.
We looked over the documentation [5] and discovered

many extremely useful features for our project, in-
cluding automatic graph contraction and community
detection.

This decision still led to difficulties. The graph
structure is so large that to load it in memory would
require about 40-50GB of RAM, which restricted the
size of the dataset we would work with while testing
and gathering initial data. As a result, we gathered
data on smaller subsets of the entire graph, using be-
tween 100-2500 movies instead of all 17770 for most of
our tests. On a positive note, even with this smaller
dataset, we still had ratings from all the 480000 users,
so it provided a good testbed for making sure our al-
gorithms were working well.

Our last problem was that the graph is relatively
sparse, as the density is only around 1.1%. This made
certain methods, like item-item collaborative filtering,
more difficult.

7 Conclusion

In the end, our approach to create a graph projection
based on the Pearson Correlation coefficient and use
a relatively simple algorithm to average a user’s rat-
ings on similar movies as defined as neighbors in this
graph projection performed quite well. We managed
to incorporate rating information in our projection
and it resulted in a fairly good predictor. As an im-
provement, we could perhaps try other techniques on
this projected graph, such as trying cosine similarity
or other measures to try and improve the predictions.
While all the techniques we tried to apply to the
original as well as the Pearson projection to detect
communities and perform clustering eventually bore
fruit and we were able to find clusters that both made
sense and had higher average correlation than the
graph as a whole, we did not get to use this infor-
mation to inform any of our rating prediction algo-
rithms. This, however, would be an excellent avenue
for future research, as one could potentially preferen-
tially weight movie recommendations that are in the
same clusters as movies the user has already seen.
Surprisingly, Node2Vec did not turn out to per-
form as well for this problem as we thought it would.
Our hypothesis for why this happened is that we ap-
plied the Node2Vec algorithm to a graph that had
already been extensively processed, that is, perhaps
in creating the Pearson Correlation coefficient movie
projection, we got rid of a lot of the underlying struc-
ture that could have improved the embeddings the
Node2Vec algorithm learned. Something that sup-
ports this hypothesis is that both changing the dataset
size by an order of magnitude as well as varying the

exploration parameters seemed to have little or no ef-
fect on the performance of this predictor. It would be
interesting for future research to compare the perfor-
mance of Node2Vec on different types of graph pro-
jections of bipartite graphs for the purpose of item
recommendation. It is certainly something we would
have wanted to explore ourselves, given more time.

8 Github

Here is a link to our github repository, containing all
the code we wrote for this assignment:
https://github.com/jason2249/cs224w

9 Individual Contributions

Aleksander did data set analysis, converted the movie
adjacency list to a user adjacency list for use in the
node2vec algorithms and performance of random se-
lector, and created section 3 in this report. He re-
searched the Node2Vec recommender systems paper
in section 2. He also implemented user-user filtering

References

[1]

and the recommendation system based on Node2Vec(4.6),

and measured their results, as well as results for base-
line random algorithms.

Jason researched the Netflix paper in section 2
and guided the exploration of various algorithms used
later in the paper. He did all community detection re-
lated work, including Louvain, K-clique, and K-way
spectral clustering on both the original movie graph
and the Pearson correlation graph. He calculated em-
pirical results to prove that the K-Way spectral clus-
tering algorithm worked well.

Nolan researched the bipartite graph paper, im-
plementing it along with item-item filtering. He also
created the movie graph projection based on the Pear-
son coefficient, and implemented the recommendation
system discussed in 4.5.1. Nolan also helped in gen-
erating various sized sample graphs for easy testing,
and worked on maintaining the code base.

All three group members collaborated on writing
this report.

10

https://journals.aps.org/pre/abstract/10.
1103/PhysRevE.76.046115

https://2018.eswc-conferences.org/files/
posters-demos/paper_265.pdf

https://arxiv.org/pdf/1607.00653.pdf

https://archive.org/details/nf_prize_dataset.
tar

https://networkx.github.io/documentation/
networkx-1.10/reference/algorithms.html

http://www.ra.ethz.ch/cdstore/wwwl0/papers/
pdf/p519.pdf

https://arxiv.org/pdf/0707.0540.pdf

https://en.wikipedia.org/wiki/Louvain_Modularity

https://people.eecs.berkeley.edu/~malik/
papers/SM-ncut . pdf

