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1 Introduction

In this report we analyze the network structure of rock and jazz music. Most projects and research that
have conducted computational music analysis use lyrics (i.e. text-based methods) or the music itself (i.e.
audio-based methods) as inputs. Less literature has taken a computational approach to studying the
notes or chord progressions of a song. We hypothesize that modeling music as a network—where nodes
are chords and edges are between consecutive chords—will be an effective (and relatively novel) way to
analyze musical structure.

Our dataset consists of chord progressions from 149 jazz songs and 212 rock songs. We define two types
of graphs-the genre graph and the song graph—and analyze the basic network characteristics, communities,
motifs, and roles present in these graphs. We introduce genre classifiers based on motif counts and node2vec
walks. Finally, we experiment with using network-based properties to generate chord progressions in the
styles of both genres. We find, as expected, that the jazz and rock genres differ in terms of chords commonly
played. More interestingly, we find significant differences in the network structures of the genres.

2 Related Work

In “Recurring harmonic walks and network motifs in Western music”, Izkovitz et al. [1] analyze network
motifs in graphs constructed from chord progressions in classical and contemporary pop music. They
identify 13 consensus motifs, which occur in 60% of songs in their dataset, and develop a method for
classifying songs into one of 7 families based on the motifs present in the song’s chordal graph. This paper
provides strong motivation for applying network analysis to musical sequences and appears to be the first
to do so. The authors explain the music theory concepts underlying the common motifs they found. The
paper is lacking in analysis of the music graphs beyond the scope of motifs: the discussion of classification
is based solely on motifs and is limited by the lack of an evaluation criterion. We classify subgraphs (songs)
by genre and evaluate the classifier using extracted labels from our data source. We model our data using
the same basic approach: the nodes are chords and the edges indicate a transition from the origin chord
to the destination chord, weighted by frequency in the corpus. However, we use a different method for
grouping similar chord types. Izkovitz et al. left off added notes above the triad, but these notes are much
more common in jazz music and are indicative to the harmonic functioning of each chord. For Izkovitz et
al., “A, A6 and A/C were all considered A”. We would consider still consider A/C as A, since the inversion
of the chord doesn’t significantly affect its harmonic function. However, we would consider Amaj7 different
from A7, since these chords are common in jazz and function very differently. We also perform similar
network motif analysis on our corpus of rock and jazz chord progressions.

Building on Izkovitz’s ideas, “Guitar solos as networks” by Stefano Ferretti [2] discusses modeling music
as a network. In his paper he proposes the network model for music which Izkovitz also uses but with
notes as nodes, and analyzes some key network characteristics of famous guitar solos. Ferretti reports
some interesting facts on differences between the network structure of different songs, but the analysis



is limited to simple metrics like degree distribution and clustering coefficient. He does, however, show
that individual songs across different genres have dramatically different graph structures. He also suggests
the potential of the network model as a basis for music generation. Here, we build on Ferretti’s work by
comparing network structures across genres. Looking at more complex graph features like communities
and roles and motifs, as well as the basic features provides a more thorough and interesting comparison.
Feretti looks at the network structure of individual songs, which we incorporate into our motif analysis and
genre classification. Finally, we expand on Feretti’s music generation idea by building a random walker
that can generate songs in the style of different genres.

3 Dataset and Representation

3.1 Dataset

We extracted chord progressions from two sources: 1) 212 of the most popular chord tablatures posted on
ultimate-guitar.com in the "Rock” genre and 2) 149 song in Lilypond transcription format from openbook,
an open-source repository of jazz standards. Since we extracted from the most popular songs rock songs
on ultimate-guitar.com, and since jazz standards define the genre of jazz, we believe these datasets offer
a sample of the most canonical and influential in these genres. Song titles in the rock dataset include
“Hey Soul Sister” (Train), “Hotel California” (The Eagles), “Let It Be” (The Beatles), and “Wonderwall”
(Oasis). Song titles from the jazz dataset include “Giant Steps” (John Coltrane), “Ornithology” (Charlies
Parker), “St. Thomas” (Sonny Rollins), and “What a Wonderful World” (Louis Armstrong).
Chords tokens were extracted from text files and converted to a common schema:

[root note] [triad quality] [extension] . [alterations]

where triad quality is one of (maj/m/dim/aug) [maj is left off if the chord has no extension], extension
is zero or one of (6/7/9/11/13), and alterations is zero or any number of (5-/5+), (9-/9+), (11-/11+), or
(13-/13+). For example,

C (C-E-G)
Cmaj9 (C-E-G-B-D)
C7.5- (C-Eb-Gb-Bb)

represent C major triad, C major ninth, and C dominant seventh flat five, also called C half-diminished
seventh), respectively. Note that ninth chords and similar extension chords (elevenths, thirteenths) imply
the seventh note as well. The rock dataset additionally includes suspended second, suspended fourth, add9
chords, and power chords. With root note C, these chords are:

Csus2 (C-D-G)
Csus4 (C-F-G)
Cadd9 (C-E-G-D)
C5 (C-G)

We then used the key of each song, also extracted from the text files, to transpose all songs to C major
or the relative minor key A minor. In total, there are 139 distinct chords in the rock dataset and 241 in
the jazz dataset, with 87 chords appearing in both datasets. The most common rock and jazz chords are
shown in Figures 1 and 2.

3.2 Genre Graph

We define a multigraph G = (V, E') where V is the set of all chords present in any song in a genre and
FE is the set of all chord transitions occurring in the songs in the dataset. Multigraphs allow for edges
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Figure 1: Left: Frequency of the most common chords in rock music (left) and jazz music (right), as
measured by in-degree. Right: Degree distributions for rock and jazz music. Note that the distribution of
jazz chords a longer tail, indicating that most of rock music is composed of a few common chords, while
jazz music typically has a wider variety of chords.

between nodes to be added many times, helping to implicitly create edge weighting for our random walk
generation discussed below. Aggregating the chord changes from a large set of songs in a given genre allows
us to deduce canonical patterns of the genre from the properties of the genre graph. See Table 1 for basic
statistics about our genre graphs, and see Figures 2 and 3 for the degree distributions of each genre graphs
and their visualizations.

Figure 2: Visualizations of Genre Graphs for rock music (left) and jazz music (right).

3.3 Song Graph

For each song, we define a multigraph S = (V, E) where V' are the chords in the song and F are directed
edges corresponding to chord transitions within the song. Note that each Song Graph S is a subgraph of
that song’s genre’s Genre Graph . Analyzing individual songs as individual graphs is useful for motif
detection, as Itzkovitz et al. found [1], as the genre graphs are densely connected and have messier
motif structures due to interconnections between chords from across different songs. See Figure 4 for
visualizations of example song graphs from each genre.



Figure 3: Visualizations of example Song Graphs for rock music (left) and jazz music (right).

4 Methods

4.1 Community Detection

We use the Clauset-Newman-Moore (CNM) algorithm for community detection [4]. CNM is a greedy,
hierarchical algorithm that iteratively merges groups of nodes in search of a maximum network modularity
value. Community detection is performed on an undirected version of the genre graphs.

4.2 Motifs

Motifs play an important role in music in a figurative and literal sense. Here, we analyze our networks to
find recurring motifs, which identify the shapes of common chord progressions, abstracted away from the
chords themselves.

We perform motif analysis on the individual song networks instead of on the aggregate genre networks,
because some of original motif structure present in the original songs is lost in the aggregate networks.
For example, consider a square motif of four nodes present in a song; if any other song in the aggregate
network connected the square diagonally, the original square motif would not be counted. Thus, we iterate
through each song per genre and sum the motif counts of the individual networks. We consider all directed
motifs of size 3 (13 total) and of size 4 (198 total).

We implement the ESU algorithm presented in class to find subgraphs for motif detection. We then
generate z-scores by creating a series of configuration models with the same degree distributions as the songs
using edge re-wiring. The motif counts and z-scores per genre are reported in the Results and Analysis
section. The motif counts are also used as the feature vectors for a model in the genre classification section.

4.3 Role Detection

In order to analyze the roles various nodes play in our genre graphs, we extended the structural role
extraction algorithm Rolx and its recursive feature extraction method ReFex to accommodate our directed
multigraph structure. We found best results with a 10-core decomposition of the genre graphs. For basic
features, we use the degree of a node (sum of its in- and out-degrees), the number of edges in its egonet,
and the number of edges that connect its egonet to the rest of the graph. We then recursively append all
of a node’s neighbors features, mean of features, and sum of features onto each node’s feature vector for 2
iterations. We then compute the cosine similarity scores between two chords using their feature vectors x
and y as such:
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We can then find the most “similar” chords to a given reference chord by finding the chords with the
highest cosine similarities to the reference chord. Results of this analysis are shown in Table 7.

4.4 Genre Classification

Previous approaches have classified songs based on the notes or chords present using language methods like
Naive Bayes. We wanted to see if it is possible to classify songs based solely on their graphical structure
without any chord labels.

We propose two methods for creating features for genre classification: 1) using motif counts and 2) using
node2vec embeddings. For motif counts, we represent each song S as a vector x where x; is the number of
times motif ¢ appears in song S. We concatenate counts for 3-node motifs and counts for 4-node motifs.
We also trained embeddings for each song graph using node2vec [5]. Specifically, each song embedding in
the mean of all node embeddings within the song. For a song graph S = (V, E),

1
Tg = — Z embedding;,
L=

where embedding; is the node2vec embedding for node ¢ in the graph S.

We split our combined dataset (rock and jazz music together) into a training set and a test set. We train
a support vector machine to predict the genre of a song given its node2vec song embedding. We compare
our results to a simple baseline with single-dimensional embeddings using the number of unique chords in
the graph: = = |V|. We also compare our model to a chord-aware classifier; specifically, we implement a
Bernoulli Naive Bayes model, analogous to a document classifier with chords instead of tokens. Given a
feature vector xg for song S including an index for each chord type (across both datasets) and having a
1 for the indices of chords that appear in S and a 0 for all indices of chords that do not appear in S, the
output of the Naive Bayes classifier is:

arg m:?x Hp(y|$z) = arg m;mx Hp(y)p($i|y),

where p(y) is the probability of seeing label y (jazz or rock) in the training dataset and p(z;|y) is the
learned likelihood of seeing chord x; in genre y in the training set. We compare the performance of our
node2vec classifier to the simple baseline and the Naive Bayes model at training-to-test splits from 10%
to 90% intervals. We also evaluate our classifier using node2vec walk lengths from 10 to 100.

4.5 Generating Chord Progressions

We are also interested in using chord progressions modeled as networks to generate new chord progres-
sions. We crafted 3 different algorithms for this purpose. For every set, we kept SONG_LENGTH (or chord
progression length) and NUM_GENRE_SONGS constant, both at 100. As our first delve into this topic,
we used our graphs as MDPs and created 100 rock songs and 100 jazz songs by randomly walking from
the first node in each genre’s multigraph through chords via out edges until reaching either an end node
(i.e. a chord with no chords after it) or the maximum chord progression length. The directed multigraph
representation of each genre was the most appropriate model to use, as randomly choosing any edge from
a node implicitly adds more weight to duplicate edges. With the multigraph, the probability of choosing
an edge to a neighbor node is proportional to the popularity of that neighbor node.



Data: G = "rock”, 7jazz” genre MultiGraphs
Result: song, generated song of genre
node = first node of G,
song = [];
while length(song) < MAX_LENGTH and nodeOutDegree > 0 do
add node to song;
neighbors = neighbors(node);
dstI D = random.choice(neighbors);
node = getNode(dstID);
end
Algorithm 1: overview of Random Walk algorithm

Our second approach uses the biased walks from the Node2Vec algorithm. We hypothesized that such
biased random walks on our genre graphs could potentially generate realistic genre-based chord progres-
sions; biased random walks are like another approach to the local-search versus exploratory search ratios
aimed for by our second approach.

Data: G = "rock”, "jazz” genre graphs
Result: song, generated song of genre
probs = [list of node ids xtheir out-degree]
node = random.choice(probs)
p,q = 5,100
song = runNode2VecWalk(MAX_LENGTH, node)

Algorithm 2: overview of Biased Walk algorithm

The third approach built off of our community detection algorithm, which takes an undirected graph as
input and outputs a list of community sets. For each genre set, we extracted communities and then chose a
random chord from the largest community to begin our song. With some probability OUT_THRESHOLD,
we step exclusively to neighbors within the cluster, and otherwise, we step to any neighbor or any
previously-visited node. The idea was, like songs moving between choruses and verses, to stay mostly
within communities, and every now and again return to a previously-explored community. See Algorithm
3 in the appendix for the detailed pseudocode.

5 Results & Analysis

5.1 Graph Characteristics and Genre Comparison

rock jazz
number of nodes 139 241
number of edges 20281 6520
clustering coefficient | 0.1269 | 0.064171
density 2.1146 | 0.2254

Table 1: Comparison of basic statistics between rock and jazz Genre Graphs.

According to Table 1, the jazz graph has more nodes, fewer edges, a lower clustering coefficient, and
significantly lower density. This confirms our intuition that jazz music features a wider variety of chords
arranged in more complex patterns in comparison to rock music.

6



C G Am C GT7 Am7
Am F Em Dm7 | Ebdim7 | A7
c6 | G7 Dm Cmaj7 G9- Em

D7 | Am7 D7 C6 A9- F
Em | Dm7 | Fadd9 || Dm7.5- G9 A9-
C7 D D Dm A7 Fo6

Table 2: Most similar chords based on Rolx features for rock music (left) and jazz music (right). The
chords used for comparison are in the heading. The five chords with the highest cosine similarity to the
comparison chord are under the heading. For the rock chords, we notice that chords similar to C are often
“home” chords in C major/A minor in both the rock and jazz graphs. Chords similar to G in the rock
graph are chords that could be one step away from a home chord. Chords similar to G7 (the most common
dominant form in jazz music) are all highly unstable and would be expected to resolve to a home chord.

Table 2 contains role detection analysis for 3 common chords from each genre. We see that the notes
in a chord clearly influence that chord’s role in the graph: looking at the first column, Am, C6, Em, and
C7 all share at have 2 of the 3 notes in the C chord, for instance. We also see that the predominant
tonic chords in the relative minor key (A minor and A minor seventh) are both very closely related to the
dominant in A minor, the E minor triad. Another interesting observation is that G7 is similar to G9- (G
dominant seventh flat nine) and G9 (G ninth), which both contain all four notes of G7 (G-B-D-F). We do
see some noise in our similarity measure; for example, Ebdim7 does not share any notes with G7 but is
most similar according to our features.

See Tables 1 and 2 in the appendix for communities in the rock and jazz genre graphs. We observe gen-
erally that communities rock music tend have similar number of accidentals (black keys), while communities
in jazz music have similar numbers of alterations and stacked notes.

In Table 3, we report a subset of the results of motif detection, showing motifs which had the highest
Z-scores in the jazz and rock genre groups. We observe significant Z-scores in both groups; however, the
Z-scores for jazz motifs are generally much higher than the rock motifs (especially among size four motifs),
signifying that motifs are over-represented to a higher degree in jazz. From a musical perspective, this
aligns with common perceptions of jazz as a genre with intricate, structured patterns and progressions. We
also observe that the motifs with the highest Z-scores (ie 3-7, 4-31, 4-50, 4-116, 4-159) involve bi-directional
edges, which suggests that songs often alternate between a small subset set of chords for a period of time
(ie during a chorus), another commonly held notion. Finally, we can also see that there are motifs that are
integral to the jazz genre but not the rock genre (ie 4-29, 4-50), and likewise, motifs that are integral to
the rock genre but not the jazz genre (ie 4-116, 4-159), suggesting that there are fundamental differences
in the patterns present in the genres. We leverage this insight to build a genre classification model based
on the motif counts in the next section

5.2 Genre Classification

As seen in Figure 4, the motif count-based SVM always slightly outperforms the unique chord count-based
SVM. As shown in Table 3, there are significant differences in the motif structures of the Jazz and Rock
genres, which is why using the motif counts as an input works effectively. The motif counts also roughly
capture the amount of chord variety present in the song, which is probably why these classifiers perform
similarly. The node2vec-based classifier performs nearly as well as Naive Bayes with sufficient training
data. This is noteworthy because the node2vec model is unaware to the chord types present in each song—
it learns features solely based on graph structure. This result is somewhat surprising and indicates that
the nature of chordal movement is perhaps as integral to a genre as the chords themselves.

Another noteworthy aspect of our node2vec+SVM classifier is that it requires at least 60% the training
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Table 3: Motif analysis.

data (about 200 songs) to outperform the simple unique chord counts-based classifier. We hypothesize
that there are a limited number of representative graph structures for the two genres, and that once the
classifier sees enough of these examples it can distinguish well between the two genres.

The effect of walk length on the node2vec classifier is also interesting. The average number of chords
per song is 7.26 for rock and 17.27 for jazz. However, in order for node2vec embeddings to be effective in
classifying an entire graph, it appears that the walk length needs to be 2-3 times longer than the number
of nodes in the graph. This long walk length relative to the size of the song subgraphs means that each
node2vec embedding captures information about the entire graph. In fact, using the max of the node2vec
node embeddings instead of the mean, or even choosing a random node embedding, works just as well
because all of the node embeddings capture similar information.
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Figure 4: Left: Classifier accuracy at various training/test data splits using walk length 80. Right:
Accuracy of the node2vec+SVM classifier with node2vec walk lengths ranging from 10 to 100 (using
training/test split 75%).

5.3 Music Generation

To test and compare the chord progressions generated with our three algorithms, we used the Lilypond
program to generate mp3 outputs and judged by ear. We also generated graphs for each of our chord pro-
gressions and passed these graphical representations through our genre classification model to see how well
our SVM predicted our randomly-generated songs’ genres. We found that our generated results reflect the
patterns typical to their respective genres, with minute differences resulting from the different algorithms,
which we compare below. For each music generation algorithm below, we select a randomly-generated
song from each genre.

5.3.1 Results: Random Walk Algorithm
Random Walk rock song #19 (left) and jazz song #18 (right):

C Dm Em G7 Cmaj7 E7 Am F
C Dm C Dm B7 Em A7 D9

CGFG Dm7 G7 Em7 A7
FGFC D7 G7 C6 Am7

Dm7 G7 Cmaj7

These progressions exhibit some of the characteristic features of each genre: the rock song utilizes
mostly simple triads, with a lot of movement around the I-IV-V chords (C-F-G). The jazz song uses
“jazzier” seventh chords and extensive circle of fifths movement (VI-II-V-I). Specifically, the second line
(Dm7-G7-Em7-A7) and the last four chords (Am7-Dm7-G7-Cmaj7) are both VI-II-V-I progressions—the
first being a modulation to D major and the second returning to the home key of C major. This sort of
movement along the circle of fifths, especially involving modulations to different keys, is a cornerstone of
jazz chordal theory.

5.3.2 Results: Biased Walk Algorithm
Biased Walk rock song #2 (left) and jazz song #92 (right):
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CF G Am Am F C Em F

Em CDG Fmaj7 Cmaj7 G7 Dm7 C
F CDmF Am7 D7 Dm7 G7 C
G CBb Gm F F Gbdim7 G7 C

These excerpts exhibit more consistent harmonic movement than the Markov-generated excerpts and
also fewer out-of-place chords than the Smart Walks. Some cool aspects include modulation to F major
in the last line of the rock example and a chromatic F-Gbdim7-G7 movement in the last line of the jazz
example. Though sometimes producing very un-song-like chord progressions, this algorithm also produces
the most unique and song-like chord progressions.

5.3.3 Results: Smart Walk Algorithm
Smart Walk rock song #11 (left) and jazz song #98 (right):

Fmaj7 C Am G Fm6 Em7 Am Fm6
CAm C G G7 C G9 Cmaj7
Am G CF Cm7 F9 Bm7.5- Cmaj7

This algorithm performed slightly worse than we expected it to as more highly unusual chords and
sequences were played than in the random walk. This is probably because of our community detection
algorithm: since we are grouping nodes into only two very large clusters, the cluster assignments are likely
to be less nuanced than those in a graph with many possible cluster assignments. This algorithm also
incorporates another level of randomness that the random walk does not: teleportation is possible, which
means chord sequences unseen in the genre graph can be formulated, which can causes performance in
genre classification methods to suffer.

6 Conclusions

In this report, we show that modeling songs and genres as networks is an effective and novel approach to
music analysis.

In general, we found that motif analysis gives better results than community- or role-detection in
musical graphs. This possibly reflects the fact that a chord’s meaning changes depending on the chords
around it, leading to highly overlapping communities and roles. However, motif structures are common
because they capture the rules and patterns associated with chord changes.

We were surprised to find that a classifier based on the structure of song’s chord graph alone, without
actual chord labels, could perform about as well as a classifier using chord types. More research is needed
to assess graph-based classifiers of music on larger, more diverse datasets.

We were not surprised that song generation proved to be difficult. We also struggled due to the lack of a
scientific evaluation metric for generated songs. In our opinions, however, we were successful in generating
unique songs using graph-traversal techniques like biased random walks. By encouraging BF'S over DFS
at an approximate ratio, we can return to old chord clusters the same way real songs do.

A limitation of our dataset is that we have no sense of time between each chord change. Our data
captures chord progressions but does not give any indication of how long each chord should be played.
Thus, when we model our randomly generated songs, each chord is by default played for the same amount
of time, which is unlike most real songs. A dataset with information about each chord’s length would allow
us to generate far more realistic and potentially enjoyable songs. Further, we chose to work with chord
progressions for this report, but the same work could easily be extended to note progressions. Future work
could build upon the presented results by taking advantage of these two limitations.
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7 Repository

https://github.com/neelril/cs224w
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Appendix
#1: 41 nodes | #2: 28 nodes | #3: 13 nodes | #4 29 nodes | #5: 24 nodes | #6: 4 nodes
C F G7 Eb Bm B5
GT7sus4 D D7 Bb A Bbb5
G Dm B7 Bbm Gbm7 G5
Am Em7 Em Ab Gb Gb5
Cadd9 Em9 Gm?7.5- A5 Gbsus4

Table 4: Chord communities in rock music.
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#1: 55 nodes | #2: 60 nodes | #3: 55 nodes | #4 60 nodes | #5: 2 nodes | #6: 9 nodes
Cmaj7 Em7 Ebdim7 Bb13 Gm?7.9 G
Dm7 Am G7 Am7.5+ Gb7.5-.9+ Abdim
Eb7 C7 C6 Am7 Al13
Am9 Fmaj7 C A7 Ab13
D7 Gbdim7 D9 Bm?7 G13

Table 5: Chord communities in jazz music.

Data: G = "rock”, "jazz” genre UnDirected Graph
Result: song, generated song of genre

clusters = get_communities(G);

song, visited = [ ], [ ;
cluster_indexr = index of largest cluster in clusters;

node = random choice in clusters|cluster_indez];
while song length < MAXLENGTH do

else

end

end

add node to song;

add node to visited;

neighbors = neighbors(node);

probs, possible_next = [ ], [ [;

rand = random float between 0 and 1;

if rand < OUT_-THRESHOLD then
‘ possible_next = neighbors N clusters|cluster_index] ;

for x in possible_next do
‘ probs.append(z X x.outdegree) end

‘ possible_next = neighbors U visited ;

dstI D = random.choice(probs);
cluster_indexr = index of dstID in clusters;
nodel D = dstID ;

Algorithm 3: overview of Smart Walk algorithm
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