Improving New Editor Retention on Wikipedia

Jonathan Hollenbeck
jonoh @stanford.edu

Abstract— We consider impacts to continued participa-
tion by new Wikipedia editors. We frame this as a predic-
tion problem, where we model whether a new user will
become an established member of the community based
on their initial activity. This is a proxy; we are primarily
interested in determining positive and negative impacts
to new user retention. To derive a base model, we draw
inspiration from previous work, especially analysis[2][3]
of the site’s administrative promotion process, to build
features from each user’s first quarter of activity. We
compute target values based on contribution level in their
second quarter, then regress to evaluate a baseline model.
We then compare the base model against an extended
feature set with role and community attributes. Finally,
we draw conclusions about the importance of network
features by comparing the extended and base models,
and observe which individual metrics matter most.

I. INTRODUCTION

Large open source projects need to recruit new
volunteers to sustain and grow. However, user
retention often clashes with established cultures
and the maintenance of community norms. As
an example of this, Wikipedia meta-lore[11] de-
scribes scenarios where prospective editors struggle
to understand standards and clash with diligent
maintainers, eventually leaving the project after
a series of negative experiences. Nobody enjoys
seeing their good-faith contribution reverted, even
when justified by community guidelines. In this
project, we explore the interactions experienced by
new Wikipedia editors in terms of graph properties,
and evaluate them by regressing against a retention
metric. We hoped to suggest concrete guidelines
and actionable tools for the site to improve recruit-
ment of new prospective editors, but in general did
not discover significant novel observations.

II. RELATED WORK

Wikipedia promotes established, self-nominated
editors to administrators through a Request for Ad-
minship (RfA), an open community voting process

Anthony Miyaguchi
acmiyaguchi@stanford.edu

concluded by an arbiter. Drawing on community
guidelines for prospective admins[12], Burke[2]
builds diverse feature sets to represent specific
criterion from the guidelines, then regresses against
a probit model to predict the outcomes of historical
promotion processes. The paper focuses on utilizing
this as a tool for editors to gauge readiness, and for
the community to automatically discover candidates,
but also notes feature significance. Leskovec[3]
models the same problem, but focuses on candidate-
voter similarity and notes a strong correlation
between high similarity and ’yes’ votes.

Observing the Q&A site StackOverflow, Ander-
son[6] tackles two separate problems: predicting
whether a question has been sufficiently answered,
and whether it has long-term value. Suggesting a
change of mindset, they focus on the significant
features instead of model performance, emphasizing
a motivation to improve the general design of Q&A
sites. We find this approach compelling, since we
are primarily interested in making recommenda-
tions based on significant features. Furthermore,
generating features from network analysis of the
Q&A process proved fruitful, suggesting that con-
sidering interactions can be critical to understanding
community behavior.

Structural signatures and behavior have been
used to analyze social roles[5] within the Wikipedia
ecosystem. The interactions between roles and the
composition of communities may provide context
around user retention. RolX[7] achieves role assign-
ments that can improve classification accuracy on
various tasks by recursively aggregating features
of the local network and clustering through non-
negative matrix factorization.

Community detection may also play a role
in predicting new user outcomes, particularly as
a normalizing factor. AGMfit[10] seems promis-
ing for this task, since it generates probabilistic
community memberships. We also utilize various

binary classification algorithms, especially Spectral
Clustering and Louvain[1].

III. DATA

We utilize the parsed Wikipedia edit history data
available in the SNAP repository. The compressed
metadata is 8GB with 116M edits over 7 years and
includes 11M users and 2.9M articles. Each edits
maps to a row with the following columns:

TABLE I
EDIT DATA EXAMPLES

Atticle | User | Words | Minor |
10 99 8
454 600 663

Timestamp |

false | 2001-01-20 18:12:21
false | 2001-01-22 05:09:05

We represent the contribution network as a
series of time-delimited snapshots. Each snapshot
is a bipartite user-article graph built up from all
included edits, where an edit creates an edge
between the user and article. A given snapshot
p € P includes all data with timestamp t such that
t, <t <t,+T1. We choose a period of a quarter (or
three calendar months) since it provides a balance
between the length of the entire data-set and the
number of events that occur within the snapshot.

To clean the set of users we make predictions
on, we removed all users with ’ip:” in the User
ID, since these denote unregistered users whom
we cannot reliably identify over time. We also
remove all users with case-insensitive ’Bot’ in their
username, since this marks automated accounts
by convention. This second condition is not a
comprehensive filter, since bots can register under
any name, operate anonymously, or run within an
established user account. This exclusion was only
done for the prediction task: we did not exclude
any data from the bipartite graph or its projections,
since interactions with anonymous users and robots
may impact the new user experience.

This representation has two major flaws. The first
is the inability to distinguish specific behaviors
from an unsigned word count of additions and
deletions. Second, the snapshot approach is an
approximation of a better temporal graph repre-
sentation. We would prefer to observe a new user
through an aligned snapshot from %, to ¢y + 7,
where % is their registration date.

Most Wikipedia distributions (Figure 1) follow
an approximate power-law distribution. Edit sizes
are one important exception that tend to peak
around 200-300 words, since common forms of
contributions add blocks of content or new articles.
This also causes the peak in total user words that
is not observed in the user edit counts. We suspect
that the registration process also impacts the total
word count — users may be more likely to register
when they want to get credit for new work.

Article Edits Edit Words

1e+05-
1e+03-

1e+01-

count

Total User Words User Edits

1e+05-

1e+03- °

e
1e+01- \

1e+02 1e+05 1e+08 1e+02 1e+05 1e+08
X

Fig. 1. Edit Data Distributions

We use uni-modal projections of network snap-
shots to build features. The user-user network is
constructed by adding edges between users if they
both contribute to the same article. Likewise, edges
in the article-article network represent shared con-
tributors. A projection captures indirect interactions
between entities by proximity, compensating for the
lack of direct relationships between nodes of one
type. Formally, given an n X m adjacency matrix
A of n users and m articles, the user projection is
AAT and the article projection is AT A. The entry
Ui; of the user network is an edge between user 7
and user j. The baseline projection (Table II) is a
densely connected graph.

The base projections generate a large number
of edges, causing high clustering among active
users. In the article-article case, this generates an
intractable number of edges (over 1 trillion by
weight). Cliques are the root cause of this issue —
if 1000 users edit the same article, we will form

TABLE 11
USER PROJECTION GRAPH (2007-Q1)

Graph | Nodes | Edges | Density | C
Bipartite | 1.35m U, 1.8m A | 7.53m 2.39 0
User-User 116k U 7.56m | 65.33 | 0.67

a 1000-clique with almost half a million edges.
However, even minimal thresholding techniques
(see section on Null Results) disconnect most of
the new contributors with low levels of participa-
tion, and simultaneously create very dense cliques
between active editors. Other standard thresholds,
such as Jaccard similarity, faced similar issues.
To resolve this tradeoff, we propose two sampling
techniques, which operate directly on cliques. Given
some probability p, the chance of any user in a

clique of size k staying connected (retaining at least
one edge) is:

P(Xey>0)=1—-(1—-p)* YV >1-¢ (1)

Similarly, the chance that all users in a clique of
size k will retain at least one edge is:

P(Xar = 0)=(1—-(1—=p)*)W >1—-¢€ (2)

The first bound tends to generate edges roughly
proportional to the number of edges in the original
projection, and the latter places greater weight on
larger cliques (see Table III). Also note the logical
similarity to S-curves from LSH-clustering.[9]

k | Dany | Dol | Edges/User (any) | Edges/User (all)

2 .99 .995 .99 .995
5 .602 122 3.01 3.61
10 .369 .505 3.69 5.05
100 .045 .088 4.5 8.8
1000 | .0046 | .0155 4.6 15.5
TABLE III

BOUNDED CLIQUE SAMPLING FOR € = 0.01

To run projection sampling, we first group edits
into sets of users who contributed to a common
article during a snapshot (for articles, we group
edits within a snapshot by articles with common
users). These form cliques in the user-user projec-
tion. This results in a strictly smaller list, since any
one contribution can only appear in one set. Then,

we generate a portion of the edges in the clique,
based on its size (see III). Implementing this is

straightforward in SQL, Spark, or any MapReduce
framework.

Graph | Nodes | Edges | cc
Bipartite 53.6m | 1.52m U, 2.92m A 0
User 1.52m 282m -
User (Sampling) 1.52m 34.8m 0.40
Article 2.92m 47.0b -
Article (Sampling) | 2.92m 89.7m 0.028
TABLE IV

UNIMODAL GRAPH PROJECTIONS

The unimodal projections roughly follow the
degree distribution of the original projections (see
Figure 2). This is expected, but definitely not guar-
anteed for the general case. For both projections,
we note a curvature near the top of the graph. This
happens because we generate 3-4 edges per user
or article for most cliques (see Table III), so even
if a node only has one edge in the bipartite graph,
they tend to have a few edges in the projections.

Article User

1e+05-

1e+03-

Count

1e+01-

1e+01

1e+05 1e+01 1e+03 1e+05

Node Degree

graph Bipartite - Projection

Fig. 2. Degree Distributions: Bipartite vs. Projection

IV. MODEL

We define the prediction problem as follows:
given information about a new user i in snapshot
p, predict their contribution level yz(p) in snapshot

p+1. We justify this by observing patterns in the

lifespan of an account: while large proportion of
users drop out quickly, retention is quite high for
users who stick around past 100 days (Figure 3).
Note that account lifespans are left-skewed because
users may continue to participate in the future.

num_users

10 1000
days + 1

Fig. 3. Account Lifespan

Based on the empirical distribution, we define
contribution for a user as follows:

Yu = Z lOg(l +ewords)

e€E(u)

3)

This is intended to smooth out contribution weight-
ing, while still somewhat favoring larger contribu-
tions. Without taking log(x), we found that single
large contributions were overemphasized, since a
1000 word article would equal 50 small 20 word
edits. We also regress and evaluate the model
against log(y), since this definition of contribution
follows a power law.

We then generate three blocks of data: baseline,
role, and community features (B + R + C). The
baseline features are built with SQL, drawing
inspiration from previous work[2][3][6]. We use
a variety of indicators for this, but specifically do
not consider graph interactions beyond the egonet.
Based on the user network, we compute roles in
each snapshot and average role interactions for each
new user. Finally, we compute a set of community
memberships from the article network, statistics
about each community, and build up in and out-
community interaction features for each user. We

regress each element of the power set of baseline,
role, and community features against the labels,
using gridsearch on an 12-regularized neural net
in scikit-learn. For a more formal description, see
Alg 1.

The results in all cases tend to follow a hedging
paradigm (Figure 11), where we consistently under-
predict user contribution, since there is a large
chance that users will not return, regardless of their
contribution level. This is analogous to predicting
house prices when the house may disappear at
random. Current ML models are perfectly capable
of calibrating to this problem, but we found it
extremely difficult to interpret.

For this reason, we broke the problem into
two parts: classification (will the user contribute
anything?) followed by regression (given that the
user contributed something, how much did they
contribute?). We can then multiply these together
to approximate the full model. Specifically:

j = Ely] = E[y|6]P(0) + E[y|6](P(0))

= Ely|0]P(0) 4)

The last step follows because E[y|6] = 0. We can
now iterate on classification (P(6)) and regression
(E[y|0]) separately, then use the results to improve
the original model. This is not guaranteed to find
the optimal solution, but in practice, this combined
model was extremely close in performance to the
independently built full model.

We evaluate with standard techniques: log-loss
for classification, and R? score for regression.

V. GENERAL APPROACH

We followed a general procedure (Alg 1) to
generate sets of Baseline, Role, and Community
features X, and compare their efficacy in predicting
a target variable y. We especially compare perfor-
mance with B to X (B + R + C) to evaluate the
added information from the graph-based approach.

VI. BASELINE FEATURES

First, we collected simple features to describe
individual users, roughly grouped into categories
(Table V).

We also build a set of features, A, defined for
each article over a quarter. For each user i and

Algorithm 1: A generic feature mining proce-
dure

input: K-partite Graph G € R™*™

foreach Period p € P(G) do
compute snapshot G) from G
compute baseline features B®) ¢ R™*?
foreach Node type k € G do

compute unimodal projection G,(f)
reduce G,(f) density with bounds
RP .= RoIX(GP)) € Rmx

Czp) = f(Louvain(G,(gp))) € R

end
R®P) .— Rgp) Rép) R,(f)
c® .= C«fp) C«z(p) C«Igp)
X® .— [Bp) R® C@)
end
X = [XOT x@T X(P)T}T
=[B R (]

compute y, where y® in B®+1
output : features X, target y

TABLE V
BASELINE USER FEATURES

Category | Features ‘ Example
Magnitude 6 Log of Total Word Count
Timing 4 Time since Last Active
Ratios 4 % Minor Revision
Type Counts 4 Distinct Articles

Total 18

article feature j, we average the feature over edits
e in the user’s edit set £(*):

Z A§earticle) (5)
)

@ _ 1
YT B9
ecE(

These are also grouped into categories (Table VI).

VII. ROLE FEATURES

We use graph role mining to generate mapping of
nodes to roles defined by local structural properties
of the network. Mining on the original contribution
network would require modifications to account
for the bipartite structure, so we instead work with
the user projection. Recursive feature extraction
on this captures each user’s relationship to others

TABLE VI
BASELINE ARTICLE FEATURES

Category | Features | Example
Magnitude 4 Total Edit Count
Average 4 Edits per Unique User
Ratio 5 % Edits from IP User
Type Count 5 Total Bot Edits
Total 18

in terms of local structure. Using Snap[10], we
collect a recursive feature-set V' € R™*/, where
n = number of users and f = number of features.
This ReFex feature vector [4] is then used within
our model after running a truncated SVD. We
then analyze the distribution of roles across users,
neighborhoods, and communities through RolX
sensing techniques.

We observe the properties of V' on the user
network for the first quarter of 2007 with 342k users
associated with a 44-dimensional ReFex vector.
Roles are found by finding a low-dimension space
such that G - F =~ V, where G is a mapping
of user to roles and F' is a mapping of roles to
features. A singular value decomposition (SVD)
finds a single dimension that captures 99.4% of
variance, which means that roles are primarily
encoding magnitude of contribution. We also run
a soft-clustering procedure through non-negative
matrix factorization (NMF) to interpret the vectors
separately from the model.

The number of roles in RolX is found by
balancing the number of roles against improvement
in a cost function. A grid-search tends to select
many roles, despite limited utility, so we fix the
number of roles at 8. We then assign users a
discrete role by magnitude and generate aggregate
statistics for each role. Most users are contained
in roles 0-2 (Figure 4). We run RoleSense to
determine the correlation between each role and
our contribution regression target in Figure 5;
roles 3 and 6 exhibit a higher contribution by
orders of magnitude. We found that these two
roles contain more administrators per capita at
9.6% and 5.2% respectively, compared to the next
highest role, 1, at 0.14%. This result aligns with
the significantly higher than average contribution
level of administrators in the network, and also
demonstrates a high level of indirect interactions

Roles vs User Count

200000 1
175000 -
150000 -
125000 -
100000 -
75000 1
50000 1
25000 1
0- sy
0 1 2 3 4 5 6 7
Fig. 4. User Network Roles (2007-Q1)
NodeSense: Roles vs Edit Contribution
0.014 >
& 0012 A
-]
2
€ 0010 1
c
S
~ 0008 1
&
£ 0006 -
v
Qo
< 0004 A
o
g
& 0.002
w
00001 ® . - * L 4 *
0 1 2 3 - 5 6
Role
Fig. 5. A plot of role-significance to edit contribution normalized

by contribution assuming a single role.

between admins.

We also analyze the distribution of roles across
neighborhoods by computing role interactions be-
tween neighbors. Specifically, given a role vector
r; for each user i, where 17, = 1, we calculate
the role interaction vector x; as follows:

1
TP IR

kEN (i)

(6)

The matrix N is composed of these averaged
neighborhood roles. We then compute a role affinity
matrix () € R™*" such that G-Q) ~ N. We find that
roles are primarily independent of each other by
observing that values lie along the diagonal axis in
Figure 6. This result aligns with a lack of increased
performance on the retention model. Because role
interactions do not improve performance on a single

NeighborhoodSense: Role Affinities

Fig. 6. Role affinities computed by decomposing averaged
neighborhood roles with user roles.

Fig. 7. Distribution of roles within the top 10 communities.

quarter, we use the truncated SVD ReFex features
directly in the model for all quarters.

VIII. COMMUNITY FEATURES

In order to justify community features, we must
first define a generic, viable clustering method for
each snapshot. Because users may contribute to
a diverse set of articles, and articles themselves
may not necessarily fall within a single community,
we think that a probabilistic representation of
community membership, such as AGM, makes
sense. Unfortunately, runtimes for, AGMfit[10]
were prohibitive, even for relatively small subsets
of our projection graphs. We also tried Spectral
Clustering, but ran into similar issues.

In contrast, the Louvain algorithm scales remark-
ably well (Table VII), even for sampled projections
with >100m edges. However, because bots and
admins are highly active and connected, they form a

Algorithm | Data | Nodes | Edges | Runtime
AGMfit User 437 436 9 minutes
Spectral (1 cut) | SSBM 20k 150k 1 hour
Louvain User 2.43m 35m 42 seconds
Louvain Article | 13.6m | 89.7m | 539 seconds
TABLE VII

RUNTIME FOR CLUSTERING ALGORITHMS

dense ball in the initial stages of clustering. Almost
all users, even those with low activity, will end
up assigned to the ball unless they have a clear
membership in some relatively dense community.
For the default and most modifications of the
Louvain algorithm, we mostly end up with a few
giant communities. However, by trying all the
options for modularity in the C++ implementation
(using a reference[8] for model explanation, since
the source is sparsely documented), we discovered
that the indeterminance model worked quite well,
and discovered a large number of nontrivial com-
munities.

For comparison, the original modularity defini-
tion from Blondel is:

Q=5 D (A - o 906)

i?j

(7

And the deviation to indeterminance[8] is:

1 ki + k;
Qor =5 > (Ay— =

i7j

2
+ n—T) (circ;) (8)

Given the above limitations, we run the Louvain
algorithm on both the user and article projections
for each snapshot. For users, communities corre-
spond to sets of editors who maintain a common
set of articles, and for articles, they represent pages
maintained by a common set of users.

To build community features u,. for a given
community in the user projection, simply average
over community members. M (c) is the set of all
users in community c.

1
e 2 B

i€M(c)

€))

Ue =

We then as51 n user features by community mem-
berships C’ = u., when user 1 belongs to
community c¢. This creates duplicate rows for

all members of the same community. We also
considered community interaction features, but in
practice the vast majority of out-community edges
link to the admin/robot cluster.

For a given article community, we compute
features v. by averaging over neighboring users
in the bipartite graph. This captures the average
user interacting with the community. M (c) is the
set of all articles in community c.

7 2 2. Bw

aEM (c) i€N(a)

(10)

Ve —

Z(IGM(C)

We then assign to articles by community member-
ship: a; = v, when article j belongs to community
c. Then, we average over neighboring articles for
each user i, again using the bipartite graph:

Cliy = Z a;

jGN(z

(11

Finally, we concatenate these together to form
the final community features:

C=[CcW C@)] (12)

Observe that this formulation is generic — we reuse
the baseline features.

IX. RESULTS

The baseline features improved significantly
on the null model, as expected. However, we
did not find formulations where our simple role
and community features add significant predictive
power. We averaged model scores over 5 runs, since
small deviations would impact these results.

TABLE VIII
FEATURE PERFORMANCE

Model | Classification | Regression | Full
Null Model 453 0 0

y®~D only | 408 301 213
Baseline .345 358 382
Roles 412 252 .190
Communities | .419 .083 .069
B+C .340 .361 .389
B+R .345 364 .386
R+C .390 269 227
B+R+C 339 .368 392

For the regression problem, the previous y-value
was extremely useful as a variable (see Figure 8).

extent due to the problems with our clustering
implementation.

log(count)
8

6-
.
2-
y (prediction) | ‘ ‘ | I I
0- I I . L S S EEEEEN
0.00 025

0.50 0.75 1.00
pred

o N & O

density

Fig. 8. Regression Performance, previous y value

Wase TRUE

However, we were still able to obtain significant
improvement in the R? with our other features (see
Figure 9). In general, many features added a small
amount of improvement to the model. For the full model, we observe a hedging
paradigm (Figure 11) because we cannot confi-
dently classify that a given new user will participate
in the next quarter, even if their contribution level
is high. Thus, the model strikes a balance between
underestimating users who do participate, and
overestimating those who do not.

Fig. 10. Classification Performance

log(count)
10.0

75
5.0
25

> ¥

® b

0.0

log(count)
125
10.0
75
5.0
25
0.0

8
y (prediction)

Fig. 9. Regression Performance, full model

For classification, the previous y-value was
much less useful, relatively speaking. Much of the
improvement from the baseline model stems from
capturing better statistics about the population at
a given time: for example, the retention rate is)
mfch higher in 2002 thfn in 2007. However, the il o FeChIRscntans
community features only helped here to a limited

y (prediction)

X. ANALYSIS

To determine the most important features, we ran
RFE for 12-regularized linear and logistic regression
on the regression (Table X) and classification
(Table IX) subproblems. This helps us roughly
estimate importance on the original neural net. Note
that the log loss and R? scores for these simple
models are fairly close to the best neural net model,
so this is not unreasonable.

Rank | Feature | Type | logloss
1 Time since Last Activity By 4088
2 y®= Bu 3800
3 Activity Interval Length By .3706
4 Article Community Size C .3682
5 Period Number Bu 3613
6 User Community Average C .3610
7 Article Community Average C .3607
13 SVD-1 R .0001
47 All Features B+ R+C | 3567

TABLE IX
ToP CLASSIFICATION FEATURES
Rank | Feature | Type | R?
1 y®= By | .1619
2 Percent Distinct Articles By 1961
3 Total Edits (Article) Ba 1972
4 Total Big Edits (Article) Ba 1974
5 Total Edits By 2382
18 Article Community Size C 2881
19 SVD-1 R .2881
20 User Community Size C .2883
47 All Features BRC | .2906
TABLE X

ToP REGRESSION FEATURES

For classification, we were able to construct a
good model by simply knowing how long it has
been since the user last logged in.

The ordering, outside of the top few features, is
fragile to small changes to any part of the model,
and addition of new features. However, the top
features are effective: just three, y(’"l), time since
last activity and activity interval length produced
a R? score of .355 on the full model. The top
five from each subproblem (9 total) scored .377.
The best model score was .392, so we can clearly
construct a near optimal model from a small feature
set.

We also observed that community features im-
proved classification. The article clustering mostly
binned articles into a giant community for each
snapshot, so the average community size correlates
strongly to the number of unique articles that quar-
ter. This indirectly indicates the time period, which
helps since Wikipedia retention rates decreased over
time. Clustering on the user projection created a
significant set of small, dense communities. These
contained low rates of new users, but assignment
outside of the ball strongly indicates future activity
beyond. As a test, replacing the feature with a "1"
for mid-sized communities and "0" otherwise lead
to a similar improvement. This contributed to about
half of the difference between B to B+C, and is
the most significant result that demands a graph
interpretation.

Role features were generally more effective than
community features by themselves, but did not rank
well in either RFE. The more sophisticated full
model improves only marginally in the regression
task. In order to improve the model significantly,
we would expect to observe affinities between roles.
For example, interactions between bots and new
users could imply negative experiences. While we
are able to distinguish between types of users in
differently sized communities (Figure 7), the types
of structural roles we discover in this network are
limited — the role features can be compressed into
two dimensions that explain 97% of the variance
across snapshots. Our model shows that these
dimensions closely map to contribution level (which
we already measure).

XI. NULL RESULTS

Our initial framing used a classification prob-
lem, with logistic regression for inseparability and
thresholding to separate contribution levels into
"0" or "1". However, this mapping was flagged as
unnatural since our variable is continuous. We also
switched to a less interpretable model (neural nets)
to allow for more complex models, since simple
linear or logistic regression did not capture behavior
well, and thus created an artificially easy baseline.

We also faced substantial difficulties while using
common neighbor thresholds, due to the high
degree of connectivity in natural projection graphs.
For example, in the user-user projection with a

threshold of >= 2, the K-Core decomposition of a
quarterly snapshot (Figure 12) finds a dense K=625
core. The snapshot also has an effective network
diameter is 2.8. This limits the usefulness of role
discovery, since users generally filter in two buckets
that roughly map to existing baseline features:
high connectivity for lots of contributions and low
connectivity otherwise. Similarly, in the community
case, large cliques obscure the borders between
neighborhoods where high activity users connect to
each other in one giant semi-clique (C>0.5). Thresh-
olding only accentuates the problem, since limited
activity users are often completely disconnected
from the network. This suggests that we cannot
resolve this issue by modifying the threshold, since
we will merely reduce the size of the ball.

1e+05-

1e+04 -

Count

1e+03-

KCore +1

Fig. 12. KCore Distribution, 2007-Q1

We also found that interactions within small
time windows poorly describe Wikipedia activity,
especially in comparison to other sites like Stack-
Overflow. Cleanup in particular tends to happen
either slowly over time, or during thematic exercises
for a topic. As evidence of this, we modified
the user-user projection so that users share an
edge if they edit the same article within a small
block of time. This generates a k-clique when k
users edit the same article within the block. We
intended to use this method to thin the high density
regions of the base user-user projection, and capture
actual interactions between users. However, even
for expansive definitions of "small", such as one

day, the vast majority of cliques were of size 1
(nobody else edited the article on the same day),
which generates no edges and disconnects most
New users.

For both roles and communities, we were in-
terested in looking at projections on the entire
graph, since this promised a better representation
of long term user types and community structures.
However, in both cases we ran into data leakage
issues that improperly improved the model. For
roles, running RolX over the whole graph somewhat
approximated the users total contribution. Given
their initial and total contributions, we can make
strong inferences about activity in their second
quarter. For communities, clustering on the whole
graph generated many dense groups with about
50-200 users. Membership in one of these groups
was a strong indicator of future contribution, since
being assigned to one requires substantial activity.
In both cases, we observed R? > .5 and extremely
poor performance on the combined model.

XII. FUTURE WORK

We think our general recipe (Algorithm 1)
has promise for generating nontrivial baseline
prediction models on large k-partite graphs, and
evaluating the information added by a graph-based
approach. It certainly worked in our case, by
rejecting most of our role and community feature
sets. However, community detection requires a lot
of custom modifications. Generalizing that process
for projections would certainly prove useful across
a wide variety of applications.

Also, our density reduction approach generalizes
well for graphs that naturally generate large cliques,
such as unimodal projections and citation networks.
We particularly note the theoretical results for
bounding the chance of disconnecting users. We
also roughly preserve the proportions of the original
degree distribution for projections, which may be
desirable.

XIII. SOURCE CODE

All source code for this report can
be found at https://github.com/
cs224w-fl18-wikipedia-retention/
wikipedia-retention

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of Sta-
tistical Mechanics: Theory and Experiment,
vol. 2008, no. 10, P10008, 2008.

M. Burke and R. Kraut, “Mopping up:
Modeling wikipedia promotion decisions,”
in Proceedings of the 2008 ACM conference
on Computer supported cooperative work,
ACM, 2008, pp. 27-36.

J. Leskovec, D. P. Huttenlocher, and J. M.
Kleinberg, “Governance in social media:
A case study of the wikipedia promotion
process.,” in ICWSM, 2010, pp. 98-105.

K. Henderson, B. Gallagher, L. Li, L.
Akoglu, T. Eliassi-Rad, H. Tong, and C.
Faloutsos, “It’s who you know: Graph min-
ing using recursive structural features,” in
Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery
and data mining, ACM, 2011, pp. 663-671.
H. T. Welser, D. Cosley, G. Kossinets, A.
Lin, F. Dokshin, G. Gay, and M. Smith,
“Finding social roles in wikipedia,” in Pro-
ceedings of the 2011 iConference, ACM,
2011, pp. 122-129.

A. Anderson, D. Huttenlocher, J. Kleinberg,
and J. Leskovec, “Discovering value from
community activity on focused question
answering sites: A case study of stack
overflow,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2012,
pp- 850-858.

K. Henderson, B. Gallagher, T. Eliassi-Rad,
H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos, and L. Li, “Rolx: Structural
role extraction & mining in large graphs,” in
Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery
and data mining, ACM, 2012, pp. 1231-
1239.

R. Campigotto, P. C. Céspedes, and J.-L.
Guillaume, “A generalized and adaptive
method for community detection,” arXiv
preprint arXiv:1406.2518, 2014.

[9]

[10]

[11]

[12]

J. Leskovec, A. Rajaraman, and J. D. Ull-
man, Mining of massive datasets. Cambridge
university press, 2014.

J. Leskovec and R. Sosi¢, “Snap: A general-
purpose network analysis and graph-mining
library,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, no. 1,
p. 1, 2016.

Wikipedia contributors, Deletionism.
2018. [Online]. Available: https

/ / meta . wikimedia . org / wiki /
Deletionism.

——, Wikipedia: Guide to requests for ad-
minship. 2018. [Online]. Available: https:
/ / en . wikipedia . org / wiki /
Wikipedia : Guide__to_requests_
for_adminship.

