Learning to Generate Industrial SAT Instances”

Haoze Wu

haozewu@stanford.edu

Abstract

In this paper, we present SAT-GEN, the first implicit genera-
tive model of real-world SAT formulas. We break down the
task of generating SAT formulas that resemble a real-world
formula into two sub-tasks. The first is to model certain graph
representation of the original formula and generated similar
graphs using existing implicit graph modelling techniques.
The second is to extract “reasonable” SAT formulas from the
generated graphs. For the first task, instead of modelling the
Literal-Clause Graph (LCG), a bipartite graph fully captur-
ing a SAT formula, we choose to model the Literal-Incidence
Graph (LIG), which is the one-mode projection of the LCG.
Our second task, therefore is made specific to be, given a
graph, generating a formula whose LIG is identical to the
graph. We show that generating such formula is equivalent
to finding a minimal clique edge cover of the given graph.
We tackle this task efficiently using a greedy hill-climbing
algorithm for the minimum clique edge cover (MCEC) prob-
lem. We verify experimentally that our approach generate
formulas that closely resemble a given real-world formula not
only in LIG-based properties, but in a wide range of impor-
tant properties. To our knowledge, this is the first model that
is able to do so.

1 Introduction

Conflict-driven clause learning (CDCL) SAT-solvers
(Marques-Silva, Lynce, and Malik 2009) nowadays are able
to solve large real-world instances of the Propositional
Boolean Satisfiability problem (SAT) under time limits far
below what theoretical estimation suggests. The further
development, testing, and understanding of the performance
of SAT-solvers benefit from a large amount of real-world
instances. However, the number of real-world formulas is
finite, and in many specific applications limited. Therefore,
the design of generators of random SAT formulas that
realistically capture features of real-world formulas is called
for and has been identified as one of the ten challenges in
propositional reasoning and search (Selman, Kautz, and
McAllester 1997).

Traditionally, this problem has been formulated as one of
modelling the graph representations of real-world SAT for-
mulas. This direction is promising because past research

“The source code is available at https://github.com/
anwul219/sat_gen/tree/map_lig

shows that the graph representation of a industrial SAT for-
mulas significantly differ from uniformly random formu-
las in features such as modularity and scale-free structures
(Newsham et al. 2014; Ansétegui, Bonet, and Levy 2009).
These differences are also used to explain the behavior of
CDCL solvers.

All the previous work in this direction has been dedicated
to developing prescribed models that can capture a sub-
set of the desired properties (Girdldez-Cru and Levy 2015;
Girdldez-Cru and Levy 2017). Despite the benefit of theoret-
ical tractability, this approach has two disadvantages. First,
it is questionable whether a hand-crafted model could cap-
ture all the essential characteristics of industrial SAT formu-
las. Second, there might be deep discrepancy between dif-
ferent families of industrial formulas (Katsirelos and Simon
2012), and a single prescribed model might not be able to
account for such diversity.

As an alternative, implicit graph models present the
promise that it could capture a wide range of essential (pos-
sibly yet unknown) graph-based features without specifi-
cally targeting at any one of them. Usually, an implicit graph
model learns the graph topology by learning certain suc-
cinct representation of the graph (i.e., sets of random walks)
(Leskovec et al. 2010; Bojchevski et al. 2018). This repre-
sentation is in turn used to reconstruct graphs. Naturally,
these implicit modelling techniques could be extended to
the context of generating pseudo-industrial SAT formulas,
though to our knowledge, no previous work has explored
this direction.

In this paper, we leverage a powerful graph modelling
technique (Bojchevski et al. 2018) to design the first implicit
generative model of pseudo-industrial SAT formulas.

Concretely, to model certain real-world formula, our
model first transforms it to its Literal-Incidence Graph
(LIG). Then, following the method proposed by Bojchevski
et al., we used a Generative Adversarial Net (GAN) (Good-
fellow et al. 2014) to generate biased random walks that
resemble the ones in the original LIG and synthesize new
graphs based on the generated random walks.

Given a synthesized graph, our task then is to construct a
“reasonable” formula whose LIG is identical to that graph.
Using the fact that each clause in a SAT formula corresponds
to a clique in the LIG of that formula, we extract a SAT for-
mula from the generated graph by approximate a minimum

clique edge cover using a greedy hill-climbing algorithm.
Each clique in the edge cover corresponds to a clause in the
resulting SAT-formula. Finally, the clique cover is expanded
in a preservative manner until the number of cliques equals
the number of clauses in the original formula, thus yielding
a new formula with the desired number of clauses.

Our model is able to generate formulas that differ “in ap-
pearance” from the original formula, but share with it a wide
range of graph-based properties, such as modularity, cluster-
ing coefficient, and scale-free structures.

Contributions

o Contribution I: We designed a pipeline for creating an
implicit model of a real-world SAT formula ¢: we first use
learning techniques to model the LIG of ¢ and then syn-
thesize SAT formulas based on the LIGs generated from
the model.

o Contribution II:: We implemented the pipeline and cre-
ated a pseudo-industrial SAT-formula generator, SAT-
GEN, which takes as input a real formula, and generates
formulas that mimics a wide range of properties of the
input formula.

o Contribution III: We proposed an efficient method to ex-
tract a SAT formula from an arbitrary graph such that the
LIG of the formula is identical to the graph. We show that
this approach results formulas with desirable properties.

2 Preliminaries

Propositional Boolean Satisfiability problem (SAT): a
SAT problem is a query over a Boolean formula, i.e., an ex-
pression that consists of Boolean variables connected by the
fundamental Boolean operators “and”, ”or” and “not”. The
query asks whether there is an assignment of true/false val-
ues to the variables such that the overall formula evaluates
to true.

Conjunctive Normal Form (CNF): a SAT formula in CNF
is one that is in the form C; A C, A --- A C,. Each
C;, which shall be refered to as a clause, is a disjunction
(i VI v --- V1), where [} is either a boolean variable or its
negation. We refer to /; as a literal. In short, a CNF formula
is a conjunction of disjunctions. In this paper, we are only
concerned with CNF formulas.

Graph Representation of SAT formulas: there are multi-
ple ways to represent a SAT formula using graphs. In this
paper we are concerned with four graphs:

e Literal-Clause Graph (LCG): variables and clauses both
as nodes, occurrences of literals in clauses as edges. A
LCG is bipartite and fully captures a SAT formula.

e Literal-Incidence Graph (LIG): literals as nodes, co-
occurrences of two literals in a clause as edges. LIG is
the one mode projection of literal nodes of the LCG;

e Variable-Clause Graph (VCG): variables and clauses both
as nodes, occurrences of variables in clauses as edges;

e Variable-Incidence Graph (VIG): variables as nodes, co-
occurrences of two variables in a clause as edges.

Figure 2: VCG of bmc-ibm-2

Graph-based properties of real-world SAT formulas: it
has been shown that the VIGs and VCGs of real-world SAT
formulas differ with those of uniformly random SAT for-
mulas in a wide range of properties. While the VIG and
VCG of random SAT formulas tend to have low modular-
ity (around 0.3), those of real world SAT formulas tend to
exhibit much stronger community structures (Newsham et
al. 2014). Moreover, in the VCG of a real-world SAT for-
mula, the degree distribution of variable nodes and that of
clause nodes both tend to follow a power-law distribution
(Ansétegui, Bonet, and Levy 2009).

Take a small benchmark bmc-ibm-2 from SAT-LIB (Hoos
and Stiitzle 2000) as an example. As demonstrated by Figure
1 and 2, community structures could be directly spotted both
in the VIG and the VCG of this benchmark.

3 The SAT-GEN Model

Figure 3 provides a high-level overview of our generator.
A formula is first mapped to its LIG, which is learned by
an implicit graph model. The graph model produces new
graphs interpreted as LIGs, from which new SAT formulas
are extracted.

Formula ¢ Formula ¢’
(.V.)A (..V.)A
(V) A G V) A

LN €. W)

! 1

LIG LIG’

Figure 3: A high level overview of SAT-GEN

Generating Graphs via Biased Random Walks

To model the graph representation of the SAT formula, we
have experimented with two implicit graph modelling tech-
niques, the Kronfit algorithm (Leskovec et al. 2010) and the
NetGAN algorithm (Bojchevski et al. 2018). We found that
compared with graphs generated by Kronfit, graphs gener-
ated by NetGAN are significantly more similar to the real
graph in our context.

NetGAN Bojchevski et al. formulated the problem of
learning the graph topology as learning the distribution of
biased random walks over the graph. In order to generate
graphs that mimic some graph S with N nodes, the follow-
ing four steps are performed:

1. Sample a set of biased random walks of fixed length 7" us-
ing a biased second-order random walk sampling strategy
same as the one used in Node2Vec (Grover and Leskovec
2016).

2. Train a GAN, where the generator G is aimed to gener-
ate synthetic random walks that emulate those on §, and
the discriminator D is aimed to distinguish the synthetic
random walks from the real one.!

3. After the training finishes, sample a set of random walks
with G, and construct a N X N score matrix M, where M, ;
denotes the number of occurrences of transitions between
i and j in the sampled random walks.

4. Sample edges without replacement, where the probability

of an edge (i, j) being chosen is T Mﬂfl -, until the desired

amount of edges (i.e., as many as in §) is reached.

"We use the same architecture as in the original work, where
both the generator and the discriminator use the Long Short-Term
Memory architecture (Hochreiter and Schmidhuber 1997), and the
training is conducted based on the Wasserstein GAN framework
(Arjovsky, Chintala, and Bottou 2017). Instead of constructing our
own model, We used the source code of NetGAN.

Stopping Criterion During the training, a graph is gen-
erated using the strategy described in step 3 and 4 periodi-
cally. The training is terminated if the edge-overlap between
the generated graph and the original graph reached certain
threshold e.

Post-processing the Score Matrix Since we chose to
model the LIG, we require that in the generated graphs
by NetGAN, no edge exists between nodes denoting con-
jugate literals: if an edge exists between literal [and / in
the LIG, the formulas that has such LIG must contain a
clause (I vV IV ..)), which is vacuously true. We must ex-
clude clauses like these as our goal is to generate non-trivial
formulas. Therefore, we post-process the score matrix pro-
duced in step 3 by setting scores between conjugate literals
to 0.

As we shall discuss later, it is possible to conduct more
extensive post-processing of the score matrix in order to
enforce stronger properties of the generated SAT formulas.
However, this is beyond the scope of this paper.

Why Learning LIG?

A natural choice of graph representation to learn is the LCG,
as it fully captures the SAT formula. However, we argue that
modelling LIG is a wiser choice.

A trade-off exists between the difficulty of modelling a
graph representation, and the complexity of extracting a for-
mula from the graph representation.

While it is relatively easy to map a LCG to a SAT formula
(the neighbors of each clause node form a clause), learning
the topology of a LCG is hard. We found that not only the
graph modelling techniques that we tried fail to fully capture
the bipartiteness of the LCG, the training time is also un-
affordable for large formulas.

On the other hand, while it is easier for NetGAN to model
LIG, it is not initially obvious how to extract a SAT formula
from a LIG. However, by leveraging the prior knowledge
about the structures of the generated LIG, we designed an
efficient method to extract from a generated LIG formulas
that have several desirable properties.

Extracting SAT Formulas from LIGs

Given a graph generated by NetGAN, our goal is to generate
formulas whose LIGs are identical to it. Moreover, the gen-
erated formulas must contain the same number of clauses as
the original formula.

The difficulty of achieving this goal is that a LIG, as a
one-mode projection from LCG, only contains information
about which literals occur in a same clause, but does not tell
us exactly what are the clauses in the formula. For instance,
both of the following two formulas have Figure 4 as their
LIG: ¢1 = (viVvaVvy3) and ¢y = (v VV2)A(v2 VI3)A (V1 VV3).
Moreover, ¢3 = ¢; A ¢, and ¢4 = ¢1 A (v1) also share the
same LIG as ¢; and ¢,.

Despite this “curse of freedom”, we could still design a
principled way to generate reasonable SAT formulas from
a LIG because we know a priori that any generated formu-
las of interests must have certain properties. In particular,
the generated formula cannot have duplicated clauses, unit

Figure 4: A simple LIG

clauses, or subsumable clauses. A clause C is subsumable if
there is a shorter clause, C’, in the formula, such that each
literal in C” is in C. If C is subsumable, then removing C
does not have any impact on the satisfiability of the formula.
These three properties are reasonable to enforce in the gen-
erated formulas because the formulas that we train on have
these properties. Fortunately, the problem of extracting from
the generated graphs formulas with those properties is equiv-
alent to finding minimal clique edge covers of the generated
graphs.

Lemma 1. The clauses of a SAT formula form a clique edge
cover of its LIG.

Proof. By the definition of LIG, there is an edge between
any two literals in the same clause. Therefore, each clause
corresponds to a clique in its LIG. The clique consists of
nodes corresponding to the literals in the clause. Similarly,
any edge (I, ;) in the LIG must be covered by some clause
that contains the two edges. O

Lemma 2. A formula does not have duplicated clauses, unit
clauses, or subsumable clauses if and only if its clauses form
a minimal clique edge cover® of its LIG.

Proof. Suppose the clauses form a minimal clique edge
cover. Then the formula cannot have duplicated clauses or
unit clauses, because removing those clauses do not reduce
the number of covered edges. Neither can the formula have
subsumable clauses, because removing the clauses that sub-
sumes the subsumable clauses also does not redue the num-
ber of covered edges.

In the other direction. Suppose a formulas does not have
those three kinds of clauses but is not a minimal clique edge
cover. In other words, we could remove some clause without
changing the number of edges in the LIG. This only possible
if the removed clause is a unit clause (which does not corre-
spond to any edges in the LIG), or a duplicated clauses, or a
clause that subsumes some other clause, a contradiction. 0O

What we have seen so far is that the question of extracting
a reasonable SAT formula from a LIG is equivalent to find-
ing a minimal clique edge cover of the graph. However, not
all minimal clique edge covers can be accepted as reasonable
formulas. There are two further constraints. First, the num-
ber of clauses in the generated formulas must be equal to
the original formula; second, the clause length distribution

2A clique edge cover S is minimal if and only if by removing
any clique in S, S would not be an edge cover.

of the generated formulas should mimic that of the original
formulas (recall that the clause degree often follow a power-
law distribution), which suggests that instead of only having
short clauses, the generated formulas should contain long
clauses.

To find a minimal edge cover of a fixed size, it is easy to
undershoot than to overshoot: if we have a smaller minimal
clique edge cover than what is required, it is easy to expand
it to a larger one of desired size. On the other hand, reduc-
ing a larger minimal edge cover to a smaller one is more
computationally expensive.

Lemma 3. In a SAT formula ¢, for any clause C of length
K (K > 2), there exists 3 clauses Ci, C,, and Cs, each of
length K — 1, such that if we replace C with the conjunction
of C1, Cy, and Cs in ¢, the LIG of ¢ remains unchanged.

Proof. We replace C with three of its sub-clauses of length
K — 1. Any two sub-clauses have K — 2 literals in common.
Without loss of generality, suppose literal /; is in C; and
not in C», and literal /, is in C, and not in C;. Let the set
of literals shared by C; and C, be L. In other words, C =
LU {;} U {L}. L itself forms a clique. Both /; and /, is
connected to each node in L. Thus, to construct the clique
corresponding to C, the only edge missing is (I, [»).

This edge is created by C3, since /; and /, must both be
present in C3. Otherwise C3 would be identical to one of C1
and C,. O

In order to find a minimal clique edge cover that contains
both a targeted number of cliques and long clauses, it is sen-
sible to start with a minimal clique edge cover as small as
possible and expand it if necessary. While deciding the min-
imum clique edge cover of a graph is NP-complete, we could
use an efficient technique to find relatively small clique edge
covers. This technique is greedy hill-climbing.

Admittedly, at this point we could only justify the usage of
this approach with intuitions and experimental results. The-
oretical analysis about the clique size (a.k.a. clause length)
distribution extracted using this approach is crucial but is left
as future work.

Algorithm 1 describes the method to generate a formula
with size n from a given graph G such that the formula’s LIG
is identical to G. Since the greedy hill-climbing algorithm
operates over a set of cliques in G, we first enumerate the set
of cliques in the original graph. While complete clique enu-
meration is again an NP-Complete problem, we found that
real-world formulas rarely contain clauses larger than 15. In
practice, a clique enumeration does not appear to be a run-
time bottleneck. After all cliques of size below 15 in G are
enumerated, greedy hill-climbing is conducted to approxi-
mate a minimum clique edge cover. Finally, this edge cover
is expanded by repeatedly breaking down a clique chosen at
uniform random in the way described in lemma 3, until the
desired number of clauses is reached.

In the next subsection, we take a closer look at the greedy
hill-climbing algorithm in our context.

Algorithm 1 LIG to SAT Formula

Algorithm 2 Lazy Hill-Climbing for MCEC

1: procedure LiG2sAT(G, n)

2: C « enumerate_all_cliques(G)
3: cover « GHC(C, num_edges(G))
4: return expand_to_n_clauses(cover, n_clauses)

5: end procedure

A Greedy Hill-Climbing Algorithm for Minimum
Clique Edge Cover (MCEC)

Recall that the MCEC problem is the task of finding the
smallest set of cliques in a given graph G, such that the union
of the set of cliques is identical to G. A greedy hill-climbing
algorithm takes in a set of cliques in the graph of interest,
and repeatedly finds the clique that results in the largest
marginal gain of edges, until all edges are covered. To ex-
pedite this process, we conduct lazy hill-climbing, where a
dictionary mapping a clique to its marginal gain from previ-
ous iterations is kept updated and used to prevent redundant
computation of marginal gains. Algorithm 2 is a sketch of
the implementation of the lazy hill-climbing for MCEC.

4 Experiment

In this section, we discuss in details the experiments we per-
formed to evaluate SAT-GEN.

Dataset

We used the industrial and academic SAT benchmarks from
the SAT-LIB (Hoos and Stiitzle 2000) and the past SAT
competitions 3. The two data sources contain thousands of
SAT formulas generated for various purposes (e.g., bounded
model checking, planning, cryptography).

We ran SAT-GEN on benchmarks of different applications
and sizes. We used the SatElite preprocesser (Eén and Biere
2005) to remove subsumable, unit, and duplicates clauses.
After pre-processing, we transformed a formula into its LIG
and apply NetGAN to it. The number of nodes in the LIGs
that we trained on ranges from 182 to 2244. The number of
edges ranges from 919 to 12582.

Hyper-parameters tuning

As a rather complex artifact, SAT-GEN has multiple hyper-
parameters. We found that most of them do not have sig-
nificant impacts on the quality of generated formulas. The
ones that matter the most are the stopping criterion and the
random-walk strategy.

We set the stopping threshold e to be 75%. That is, the
training is terminated when the generated graph and the
original graph has 75% edge-overlap. One might question
whether such a high edge-overlap threshold would yield any
positive results trivial as they might simply be explained by
the edge-overlap. As a sanity check, we measured the mod-
ularity of graphs generated in the following way: we first
took the intersection between the original graph and a graph
generated by SAT-GEN, and then added edges at uniform

3http://www.satcompetition.org/

1: procedure LHC(C, n_edges)

2s cover « 0 > The set of chosen cliques
3: E<0 > The set of covered edges
4: G < {} » A dictionary of previous marginal gains
5; m « oo > The previous marginal gain
6: while size(E) < n_edges do

7 clique, C, G, m <~ LARGEST_GAIN(C, E, G, m)
8: E < E U edges(clique)

9: cover « cover U {clique}

10: end while

11: return cover

12: end procedure

13:

14: procedure LARGEST_GAIN(C, E, G, m)
15: gain « 0 > The maximal gain seen so far

16: cur < C.next > [terating over the set of cliques
17: best « cur

18: while !has_key(cur, G) or gain < G[cur] do
19: new_gain = gain(cur, E)

20: Glcur] < new_gain

21; if new_gain == 0 then

22 remove(C, cur)

23: continue

24: end if

25: if new_gain > gain then

26: gain « new_gain

2 best_clique « cur_clique

28: if new_gain == m then break

29: end if

30: end if

31: cur = C.next

32: end while

33: reorder(G, C)

34: return best, C, G, gain
35: end procedure

> Reordering C based on G

random to the intersection graph until it has the same num-
ber of edges as the original graph. We found that graphs
generated in this way have much lower modularity than the
original graph. This suggests that the GAN was not simply
remembering edges in the original graph but actually learned
deeper structures of it.

On the other hand, we observed that when the random
walks are biased towards exploring local structures, Net-
GAN yields the optimal results. To enforce such bias, we
set the return parameter p of the biased random walks to be
1 and the in-out parameter ¢ to be 16 *.

Evaluation

To evaluate the adequacy of SAT-GEN in a comprehensive
manner, three kinds of experiments were conducted on the
generated formulas. First, we measured the closeness be-
tween the graph-based properties of the generated formulas
and the original formulas. Second, we measured the clause-
overlap between the generated formulas and the original for-

“For details, see Grover and Leskovec (2016).

mulas. Finally, we evaluated the SAT-solver performance on
the generated formulas.

Graph-based properties We mainly focused on the
graph-based properties mentioned in previous literature as
described in section 2. In particular, we measured modular-
ity (of VIG, LIG, VCG, and LCG), scale-free structures (in
VCG) and clustering coefficient (of LIG and VIG).

We used an implementation of the Louvain Algorithm >
to measure the modularities (Blondel et al. 2008).

To measure whether a formula has scale-free structures,
we must check whether the clause degrees and the variable
degrees in the VCG respectively follow a power-law distri-
bution. In other words, we must check whether there exists
a, and a,, such that the expected number of variables with
degree k in a VCG, f*!(k), is approximately ck~® and the
expected number of clauses with length k in a VCG, £/ (k),
is approximately ck™ (c is some normalizing factor). We
used an implementation of the maximum likelihood method
6 for computing an estimation of @, and a. (Clauset, Shal-
izi, and Newman 2009). To evaluate the fit, we computed the
distance d,,,, between the cumulative function of f’”l and
the cumulative function of ck™®. In addition, we also mea-
sured whether the variable degree and the clause degree of
a generated formula respectively follows a exponential dis-
tribution, by approximating two rate parameters, 4, and A,
and computing the distances between the experimental and
theoretical cumulative distribution functions, d,,.

Following the metric in the previous work (Ansoétegui,
Bonet, and Levy 2009), we consider a formula to have scale-
free structures if d,,, is less than both d;,, and 0.1, or d},,,,
is less than both d,,, and 0.1.

We also measured a wide range of other graph-based
properties using the python NetworkX module (Schult
2008). However, for simplicity, in this paper, we only report
the clustering coefficient of the LIG and the VIG in addi-
tion to modularity and scale-free structures. Since VCG and
LCG are bi-partite, their clustering coefficients must be zero.
Therefore, we omit those two metrics from the statistics.

Clause-overlap We measured the percentage of overlap-
ping clauses, 0g4,, between the formulas generated by SAT-
GAN and their corresponding real-world formulas. This is
to demonstrate that despite sharing deeper properties with
the original formulas, the generated formulas are “appar-
ently” different from the original ones.

We also measured the clause-overlap, 0girec:, between for-
mulas generated by directly applying greedy hill-climbing
and cover-expansion on the LIG of the real-world formu-
las. We took a high oy as a sign that using greedy hill-

climbing to extract SAT formulas is an adequate method.
Moreover, for the same formula ¢, if oga,, << oﬁirm, we

could justified the usage of GAN by arguing that it con-
tributes to the diversity of generated formulas.

SAT-Solver Performance Past experiments have shown
that local-search SAT-solvers specialize in solving uni-
formly random SAT formulas, while CDCL SAT-solvers are

Shttps://github.com/taynaud/python-louvain
Shttp://www.iiia.csic.es/ levy/software/scalefree.cpp

better at solving industrial SAT formulas (Jarvisalo et al.
2012). To examine whether this trend holds for the formu-
las generated by SAT-GEN, We compared the performance
of the latest version of a local-search SAT-solver, walksat
(Selman, Kautz, and Cohen 1999) and a CDCL SAT-solver
Minisat (Eén and Sorensson 2004), both on the generated
formulas and on uniformly random formulas of the same
size. If walksat performs better on the random formulas and
worse on the generated formulas, we would take this as an
indicator that the generated formulas are realistic.

Baselines

We compared SAT-GEN with two state-of-the-art pseudo-
industrial SAT-formula generators. Both generators are pre-
scribed models designed to match a specific property.

Community Attachment The Community Attachment
(CA) model generates formula with a given VIG modular-
ity (Girdldez-Cru and Levy 2015). The model takes in five
inputs n,m, k, c, Q, where n is the desired number of vari-
ables, m the desired number of clauses, k the desired length
of each clause, c the size of a partition of the VIG, and Q is
the desired VIG modularity. The output of the algorithm is
a SAT formula that has n variables, m clauses each of length
k. The optimal modularity for any c-partition of the formula
is approximately Q.

In order to use CA to generate formulas mimicking a real-
world formula ¢, we need to compute the statistics of the five
values above in ¢ and use them as input to CA.

The Popularity-Similarity Model The Popularity-
Similarity model (PS) generates formula with a given «,
and a, (Giradldez-Cru and Levy 2017). In addition, the
formulas generated by PS are guaranteed to have high mod-
ularity. The model takes in seven inputs n,m, k, K, @, a., T,
where n is the desired number of variables, m the desired
number of clauses, k the minimum clause length, K the
average clause length, and 7" a hyper-parameter that reduces
modularity at the cost of drifting away from scale-free
structures. While the optimal value of T is different for
different formulas, we found that 7 = 0.5 is adequate in
most cases.

Remark Since SAT-GEN has a different flavor from any
of the previous SAT-formula generators, we must take com-
parison between SAT-GEN, CA, and PS with a grain of salt.
SAT-GEN is designed to mimic one specific formula, while
CA and PS are designed to match one specific property.

5 Results

We first conduct a comprehensive case study on a relatively
small benchmark from the SATLIB, namely ssa2670-141.
Then we outline and discuss the experimental results for four
other benchmarks.

Case study: A Circuit Fault Analysis Benchmark

Benchmark ssa2670-141 originally contains 986 variables
and 2315 clauses. After pre-processing using SatElite, the
benchmark contains 91 variables and 377 clauses. The
clause length ranges from 2 to 8 and the average clause

num clauses | VIG clust. | LIG clust. | VIG mod. | LIG mod. | VCG mod. | LCG mod.
$sa2670-141 377 0.582 0.351 0.520 0.559 0.647 0.584
SAT-GEN 377.5 0.513 0.340 0.477 0.542 0.632 0.537
PS (T=0) 273.75 0.818 0.616 0.678 0.732 0.832 0.588
PS (T=1.5) 352 0.572 0.464 0.482 0.584 0.731 0.552
CA 375 0.368 0.247 0.412 0.499 0.629 0.502

@y d;()w /lV d:xp @ d;;ow /IC dgxp
ssa2670-141 | 4.84 | 0.052 | 0.265 | 0.094 | 3.56 | 0.054 | 0.783 | 0.024
SAT-GEN | 4.64 | 0.070 | 0.183 | 0.079 | 5.28 | 0.053 | 1.012 | 0.024
PS (T=0) 4.14 | 0.086 | 0.190 | 0.060 | 3.61 | 0.042 | 0.525 | 0.038
PS (T=1.5) | 439 | 0.083 | 0.210 | 0.060 | 4.07 | 0.042 | 0.693 | 0.023
CA 7.06 | 0.078 | 0.394 | 0.068 - - - -

Table 1: Median Clustering coefficients and modularities of formulas generated to mimic benchmark 2670-141. For each
property, the model with the closest statistics to the original formula is bolded.

Table 2: Most likelihood values of @ and A for a power-low and an exponential distribution for the formulas generated to mimic

benchmark 2670-141.

length is about 3. The LIG of the benchmark contains 182
nodes and 1062 edges.

Graph-based properties We consider 4 models, SAT-
GEN, PS with T = 0 and 1.5, and CA. For each model, we
generated 100 formulas and computed their median cluster-
ing coefficient, modularity, and scale-free structures.

Table 1 summarizes the median clustering coefficient and
modularity of the generated formulas.

Overall, SAT-GEN is the only generator that can capture
all of the modularity and cluster coefficient statistics. Since
SAT-GEN learns the LIG of the original formulas, it is not
surprising that the formulas generated by SAT-GEN has sim-
ilar LIG statistics as the original formula. What is interesting
is that those formulas also have similar VIG, LCG, and VCG
statistics as the original formula. Another noteworthy obser-
vation is that the original LIG has low clustering coefficient
and high modularity, which is only captured by SAT-GEN
and CA.

Table 2 summarizes the statistics for the scale-free struc-
tures of the generated formulas. The last four metrics are not
applicable to CA because it can only generate formulas with
uniform clause length.

In the original formula, while the variable degree follows
a power-law distribution, the clause degree does not (as d,,,,,
is smaller than dg,,). SAT-GEN is the only generator able
to capture this property, while the variable degree in the for-
mulas generated by PS fits a exponential distribution better.

In short, in terms of capturing the graph topology of a
given SAT-formula, SAT-GEN significantly outperforms the
other two generators on this benchmark.

Clause-overlap In this subsection, we show that while
SAT-GEN is able to capture a wide range of graph-based
properties, it also generates a diverse set of formulas.

The average clause-overlap between a formula generated
by SAT-GEN and the original formula is only 14%. The
average clause-overlap between two generated formulas is
only about 12%. By contrast, if we generate formulas by ap-

SAT | Conflicts | Flips
ssa2670-141 0 166 -
SAT-GEN 0.3 6.72 268.5
PS (T=0) 0 227 -
PS (T=1.5) 0 2.15 -
CA 0.57 53.73 708

Table 3: Average proportion of Satisfiable instances, average
number of conflicts, and average number of flips.

plying greedy-hill climbing and cover-expansion directly on
the LIG of the original graph, the average clause-overlap be-
tween a generated formula and the original formula is 40%.
And the average clause-overlap between two generated for-
mulas is 58%.

This suggests that a direct clique edge cover extraction on
the original LIG fails to generate diverse formulas, which
justifies the usage of GAN.

SAT-solver performance In this section we report the per-
formance of a CDCL-solver, Minisat, and a local-search
solver, walksat, on the generated formulas by SAT-GEN.
Since the size of the formula is relatively small, instead mea-
suring the runtime of the solver, we measured the number
of conflicts generated by the Minisat, and the number of
flips generated by walksat, which are both linearly corre-
lated with the runtime.

Table 3 shows the SAT-solver performance on the formu-
las generated by the four models as well as the original for-
mula. SAT-GEN and CA are able to generate both satisfiable
and unsatisfiable formulas while the formulas generated by
PS are always trivially unsatisfiable. In general, the gener-
ated formulas appear to be much easier than the original for-
mula. Since comparing the number of conflicts and flips is
itself meaningless, we compared their relative growth when
the solvers are tasked to solve uniformly random formulas
of the same size.

10 e o

Number of CDCL conflicts

0 500 1000 1500 2000
Number of local-search flips

Figure 5: SAT-solver performance on generated formu-

las
400

350 .
.
© 300
2
S 250 .
o
Q L]
S 200 . v e 9
k] = < *
@ 150
. o« e .
3> ° Ll
Z 100 b
°s 8 . °
50
®e %
0 LY) . L]

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of local-search flip

Figure 6: SAT-solver performance on uniformly random
formulas

Figure 5 is the scatter plot of the number of CDCL con-
flicts and local-serarch flips for solving each formula gen-
erated by SAT-GEN. Figure 6 is the same plot for solving
uniformly random 3-SAT formulas with the same number of
variables and clauses as the original benchmark.

As demonstrated by the two plots, although for both
solvers, random instances took longer to solve, the CDCL
SAT-solver appears to struggle more. This is consistent with
the observation that CDCL SAT-solvers are better at solving
real-world formulas, and local-search SAT-solvers are better
at solving uniformly random formulas. However, from the
experimental results obtained so far, we could not conclude
that the CDCL solver outperformed the local-search solver
on the formulas generated by SAT-GEN.

Other benchmarks and Further Discussion

Graph-based properties Table 4 demonstrates the graph-
based properties of formulas generated to mimic 4 other for-
mulas. Here we only consider PS with T set to 0.5. We found
that overall, SAT-GEN is able to closely capture a signifi-
cantly wider range of graph-based properties than the other
two methods.

The only property that SAT-GEN sometimes fails to cap-
ture is the power-law distribution of clause degrees. We
found that in those cases the clause length distribution of a
SAT-GEN formula often better fits an exponential distribu-
tion. This suggests that the way we extracted a SAT formula
from a LIG has limitations. In particular, during the cover-
expansion process, currently we are breaking down cliques
selected at uniform random. This might be replaced by more
sophisticated methods to enforce a power-law distribution of
clique size in the resulting clique edge cover.

Clause-overlap We found that with the current setting,
most formulas generated by SAT-GEN have low clause-
overlap (below 20%) with the original formulas.

SAT-solver performance One difficulty yet to be tackled
is that the formulas generated by SAT-GEN, though not triv-
ially UNSAT as the ones generated by PS, are significantly
easier than the original formulas. This makes comparison
of Minisat and walksat difficult, as most instances can be
solved within 0.01 seconds by both solvers, regardless of
the size of the formula.

We have identified the cause of this problem: many gen-
erated formulas can be directly solved or reduced to much
smaller problems by simply olving their binary constraints,
which can be done in polynomial times. Therefore, to gen-
erate harder instances, we believe it might be necessary to
enforce stronger properties of the 2-SAT sub-structure in the
generated formulas. This might be achieved either during
the cover-expansion process, or earlier, when a graph is syn-
thesized from the score matrix.

6 Conclusions

In this paper, we introduced SAT-GEN, the first implicit gen-
erative model of real-world SAT formulas. In contrast to
the previous pseudo-industrial SAT-formula generators such
as the Community Attachment (CA) and the Popularity-
Similarity model (PS), SAT-GEN is aimed to capture all the
graph-based properties of a given SAT formula without tar-
geting at any specific one.

At the highest level, SAT-GEN reads a real-world SAT-
formula and generates random formulas that mimic it. In-
ternally, SAT-GEN first transforms the formula to its LIG,
then uses an implicit graph modelling technique, NetGAN,
to generate realistic biased random walks on the LIG. Next,
using the generated random walks, the model constructs
new graphs that are interpreted as LIGs. Finally, running
a greedy hill-climbing algorithm for minimum clique edge
cover, followed by an cover-expansion process, SAT-GEN
extracts SAT-formulas from the generated graphs.

We have shown that SAT-GEN captures a wider range of
properties of real-world SAT formulas than any of the pre-
vious generators. In particular, properties that have been
shown to be important, such as modularity and scale-free
structures are captured.

We have encountered two difficulties. First, our way of
extracting SAT formulas from an LIG sometimes fails to
capture the power-law distribution of the clause degree. Sec-
ond, the generated formulas are often much easier than the

Table 4: Graph-based properties of 4 other benchmarks from different families. The first one is a Multi-robot Path Planning
problem, the second one Circult Fault Analysis, the third one Bounded Model Checking, and the last one Bit Verification.

num. num. VIG LIG VIG LIG VCG LCG
vars clauses clust. clust. mod. mod. mod. mod.
mrpp4_4#4 5 309 2517.0 0.428 0.357 0.468 0.520 0.783 0.716
SAT-GEN 309 2517.45 0.397 0.331 0.433 0.524 0.695 0.607
PS 309 2361.45 0.658 0.579 0.439 0.526 0.755 0.592
CA 309 2515.50 0.234 0.120 0.401 0.454 0.601 0.525
@y drmw /lV d:xp Qe d;mw /lC dgxp
mrpp4_4#4 5 2.591 0.092 0.056 0.050 5.796 0.092 1.369 0.059
SAT-GEN 2.374 0.179 0.048 0.082 8.292 0.058 1.549 0.027
PS 2.489 0.052 0.038 0.125 3.971 0.023 0.466 0.029
CA 6.072 0.132 0.198 0.107
num. num. VIG LIG VIG LIG VCG LCG
vars clauses clust. clust. mod. mod. mod. mod.
bf0432-007 473 2038.0 0.493 0.327 0.666 0.784 0.766 0.763
SAT-GEN 473 2038.6 0.417 0.342 0.604 0.772 0.758 0.674
PS 473 1887.5 0.562 0.467 0.718 0.776 0.860 0.624
CA 473 2036.5 0.249 0.177 0.614 0.649 0.746 0.561
@y d}}mw /lV d;xp Qe d;mw /lf dgxp
bf0432-007 4.061 0.067 0.178 0.070 3.616 0.088 0.725 0.096
SAT-GEN 3.989 0.051 0.156 0.050 6.265 0.050 1.007 0.035
PS 3.602 0.069 0.154 0.045 4.210 0.030 0.704 0.024
CA 6.367 0.090 0.350 0.067 - - - -
num. num. VIG LIG VIG LIG VCG LCG
vars clauses clust. clust. mod. mod. mod. mod.
bmc-ibm-7 860 4797.0 0.609 0.341 0.715 0.719 0.782 0.715
SAT-GEN 860 4797.4 0.470 0.321 0.671 0.707 0.754 0.649
PS 860 4324.5 0.636 0.535 0.646 0.718 0.858 0.633
CA 860 4796.6 0.185 0.119 0.700 0.711 0.762 0.610
Ay d;’()w Ay dzxp e dlc’”W Ac dgxl’
bmc-ibm-7 2.796 0.064 0.066 0.092 3.216 0.035 0.669 0.042
SAT-GEN 2.734 0.029 0.066 0.118 9.440 0.036 1.128 0.019
PS 2.705 0.050 0.075 0.095 3.781 0.025 0.693 0.034
CA 5.530 0.126 0.252 0.098
num. num. VIG LIG VIG LIG VCG LCG
vars clauses clust. clust. mod. mod. mod. mod.
countbitsrotate(016 1122 4555 0.469 0.421 0.688 0.673 0.796 0.690
SAT-GEN 1122 4555.564 0.302 0.272 0.563 0.618 0.736 0.607
PS 1122 4276.5 0.504 0.426 0.832 0.869 0.912 0.663
CA 1122 4554.5 0.167 0.154 0.668 0.683 0.768 0.543
@y d;)ow /lV d:xp Qe dfmw /IC dgxp
countbitsrotate(016 5.158 0.103 0.334 0.124 5.168 0.092 1.737 0.029
SAT-GEN 4518 0.070 0.204 0.114 6.692 0.069 1.846 0.007
PS 4.126 0.076 0.210 0.027 6.021 0.033 0.867 0.010
CA 5.684 0.102 0.336 0.075 - - - -

real-world formulas. We have discussed potential ways to
tackle these two problems, which will be left as future work.

Nevertheless, we believe that our preliminary exploration
of a graph-based implicit SAT-formula generator shows that
it is a promising direction to explore.

7 Acknowledgements

This project extends from a summer research project under
the supervision of Dr. Raghuram Ramanujan. In that project,
we used NetGAN to directly learn the LCG of a real for-
mula.

All the work related to learning LIG and extracting for-
mulas from it, were conducted for the purpose of this course.
We would like to thank Dr. Raghuram Ramanujan for pro-
viding helpful advice when this project was being con-
ducted.

References

[Ansétegui, Bonet, and Levy 2009] Ansétegui, C.; Bonet,
M. L.; and Levy, J. 2009. On the structure of industrial
sat instances. In Gent, 1. P., ed., Principles and Practice of
Constraint Programming - CP 2009, 127-141. Berlin, Hei-
delberg: Springer Berlin Heidelberg.

[Arjovsky, Chintala, and Bottou 2017] Arjovsky, M.; Chin-
tala, S.; and Bottou, L. 2017. Wasserstein generative ad-
versarial networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, 214-223.

[Blondel et al. 2008] Blondel, V. D.; Guillaume, J.-L.; Lam-
biotte, R.; and Lefebvre, E. 2008. Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics:
Theory and Experiment 2008(10):P10008.

[Bojchevski et al. 2018] Bojchevski, A.; Shchur, O.; Ziigner,
D.; and Giinnemann, S. 2018. NetGAN: Generating graphs
via random walks. In Dy, J., and Krause, A., eds., Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 609-618. Stockholmsmaissan, Stockholm Swe-
den: PMLR.

[Clauset, Shalizi, and Newman 2009] Clauset, A.; Shalizi,
C. R.; and Newman, M. E. J. 2009. Power-law distribu-
tions in empirical data. SIAM Review 51:661-703.

[Eén and Biere 2005] Eén, N., and Biere, A. 2005. Effective
preprocessing in sat through variable and clause elimination.
In Bacchus, F., and Walsh, T., eds., Theory and Applications
of Satisfiability Testing, 61-75. Berlin, Heidelberg: Springer
Berlin Heidelberg.

[Eén and Sorensson 2004] Eén, N., and Sorensson, N. 2004.
An extensible sat-solver. In Giunchiglia, E., and Tacchella,
A., eds., Theory and Applications of Satisfiability Testing,
502-518. Berlin, Heidelberg: Springer Berlin Heidelberg.

[Girdldez-Cru and Levy 2015] Girdldez-Cru, J., and Levy, J.
2015. A modularity-based random sat instances generator.

In Proceedings of the 24th International Conference on Ar-
tificial Intelligence, IICAT’ 15, 1952-1958. AAAI Press.

[Giraldez-Cru and Levy 2017] Giraldez-Cru, J., and Levy, J.
2017. Locality in random sat instances. In Proceedings of

the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 638-644.

[Goodfellow et al. 2014] Goodfellow, 1. J.; Pouget-Abadie,
J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville,
A.; and Bengio, Y. 2014. Generative adversarial nets. In
Proceedings of the 27th International Conference on Neu-
ral Information Processing Systems - Volume 2, NIPS’14,
2672-2680. Cambridge, MA, USA: MIT Press.

[Grover and Leskovec 2016] Grover, A., and Leskovec, J.
2016. Node2vec: Scalable feature learning for networks. In
Proceedings of the 22Nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD
’16, 855-864. New York, NY, USA: ACM.

[Hochreiter and Schmidhuber 1997] Hochreiter, S., and
Schmidhuber, J. 1997. Long short-term memory. Neural
Comput. 9(8):1735-1780.

[Hoos and Stiitzle 2000] Hoos, H. H., and Stiitzle, T. 2000.
Satlib: An online resource for research on sat. 283-292. IOS
Press.

[Jarvisalo et al. 2012] Jarvisalo, M.; Berre, D. L.; Roussel,
O.; and Simon, L. 2012. The international sat solver com-
petitions. AI Magazine 33.

[Katsirelos and Simon 2012] Katsirelos, G., and Simon, L.
2012. Eigenvector centrality in industrial sat instances. In
Milano, M., ed., Principles and Practice of Constraint Pro-
gramming, 348-356. Berlin, Heidelberg: Springer Berlin
Heidelberg.

[Leskovec et al. 2010] Leskovec, J.; Chakrabarti, D.; Klein-
berg, J.; Faloutsos, C.; and Ghahramani, Z. 2010. Kronecker
graphs: An approach to modeling networks. J. Mach. Learn.
Res. 11:985-1042.

[Marques-Silva, Lynce, and Malik 2009] Marques-Silva, J.;
Lynce, I.; and Malik, S. 2009. Conflict-driven clause learn-
ing sat solvers. In Handbook of Satisfiability.

[Newsham et al. 2014] Newsham, Z.; Ganesh, V.; Fis-
chmeister, S.; Audemard, G.; and Simon, L. 2014. Impact of
community structure on sat solver performance. In Sinz, C.,
and Egly, U, eds., Theory and Applications of Satisfiability
Testing — SAT 2014, 252-268. Cham: Springer International
Publishing.

[Schult 2008] Schult, D. A. 2008. Exploring network struc-
ture, dynamics, and function using networkx. In In Proceed-
ings of the 7th Python in Science Conference (SciPy, 11-15.

[Selman, Kautz, and Cohen 1999] Selman, B.; Kautz, H.;
and Cohen, B. 1999. Local search strategies for satisfia-
bility testing. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge 26.

[Selman, Kautz, and McAllester 1997] Selman, B.; Kautz,
H.; and McAllester, D. 1997. Ten challenges in proposi-
tional reasoning and search. In Proceedings of the 15th In-
ternational Joint Conference on Artificial Intelligence - Vol-
ume 1, IJCATI’97, 50-54. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

