Analyzing and Mitigating Phishing Outbreaks:

A Case Study on the 2016 DNC Email Network
Github: https://qgithub.com/ppsekhar/CS224W

Andrew Zhao(andrewzh@), Priyanka Sekhar (psekhar@), Sameer Merchant (smerchan@)

1. Introduction

1.1 Motivation

In this project, we take a perspective of a system administrator seeking to secure an
email network. Given a budget constraint in the form of number of detectors
(cybersecurity resources) available, how do we secure our email network by maximizing
likelihood of outbreak detection, minimizing detection time and reducing the population
affected? This project aims to optimally detect phishing outbreaks in an empirical email
network dataset that maps the communications of 2016 Democratic National Committee
[4]. We use CELF as a benchmark for choosing “detector” nodes in our outbreak. While
CELF is very effective in placing detector nodes, it can be computationally expensive
and its runtime can be prohibitive when simulating large numbers of outbreaks in a
dynamically changing email network. We investigate methods of speeding up CELF
through use of a node metric called Social Score [3], to assist CELF with node
selection. Our experimental results on the DNC email network show a 10x speed up in
selecting detector nodes. Based on our results, we believe Social Score serves as an
effective heuristic to speed up CELF despite expected decreases in quality of selection.

1.2 Dataset

We use a directed (unweighted multiple edge) network of emails in the 2016 Democratic
National Committee email leak [4]. Nodes in the network correspond to persons in the
dataset (e.g. Hillary Clinton, Debbie Wasserman Schultz, etc.). A directed edge in the
dataset denotes that a person has sent an email to another person. The timestamp field
is the Unix datetime at which the email was sent. Our dataset was aggregated and
provided publicly by the Institute for Web Science and Technologies at the University of
Koblenz-Landau. The data-set has already been engineered into a text file, with three
columns for the source node, destination node, and timestamp.

Full set of statistics and graphs: http://konect.uni-koblenz.de/networks/dnc-temporalGraph
Total Vertices: 2,029 - Edges (with timestamps): 39,246

2. Related Work

2.1 CELF

Our project draws heavily on previous work in influence maximization and outbreak
detection. “Maximizing the Spread of Influence through a Social Network” by Kempe et
al. first specifies the greedy hill-climbing approximation algorithm to select a discrete set

of optimal detectors with provable bounds on its optimality [1]. “Cost-effective Outbreak
Detection in Networks” by Leskovec et al. further improves on greedy-hill with the
Cost-effective Lazy Forward (CELF) algorithm [2]. We take CELF to be the
state-of-the-art benchmark for detector placement in our dataset, given it's guarantee of
63% optimality, and compare its empirical runtime with the runtimes of our hybrid
solutions. We implement this algorithm for our dataset and modify it using work
highlighted in 2.2.

2.2 Social Score

We looked at the Social Score algorithm proposed in “Automated social hierarchy
detection through email network analysis” by Rowe et al. [3]. The algorithm discovers
social hierarchy through mining email network datasets. The social score algorithm
combines a node’s structural attributes, e.g. degree centrality, hub and authority score,
betweenness centrality, closeness centrality and dynamic behavioral attributes such as
volume of emails exchanged with neighbors and average email response time. The
algorithm exploits timestamp characteristics of email communications to judge strength
of communication between nodes. It further uses weights to control the contribution of
structural and behavioral attributes in computing the overall social score of a node. The
inclusion of dynamic behavior attributes in computing social score makes it a suitable
metric for selecting nodes as detectors. We use the social scores to optimize selection
of detector nodes in DNC email network.

2.3 Outbreaks

Finally, Jin et al. highlight different methods of modeling online information spread
through existing outbreak simulation models [5]. We draw inspiration from the SEIZ
model described in this paper in modeling our own phishing spread. While Jin et. al find
that marking individuals as “skeptics” realistically models the spread of information on
Twitter, we modeled our outbreak using the paradigms of an SI model - in which nodes
can be silently infected and neither recover nor become re-susceptible after recovery.
Because we did not harden nodes and assumed every node was equally likely to be
infected, we can simulate our outbreak accurately with less sophisticated models.
Nevertheless, the work of Jin et al. served as a good example of how information
spread can be modeled using traditional disease epidemic simulation techniques.

3. Model and Methods

3.1 Phishing Outbreak Simulations
3.1.1 Hyper-parameters

In our email network, we run phishing outbreaks with a susceptible-infected (SI) model
where infected nodes do not recover. We use two hyper-parameters, which we
pinpointed with a grid search in the milestone: 1) proportion initially infected to specify
the number of initially compromised email accounts and 2) probability of infection to
stochastically determine if an infected node would successfully compromise its neighbor
through an email. Specifically, we ran simulations with two or ten “infected” nodes at
t=0, selected arbitrarily from the graph, and we used 30% or 50% as probability of
infection. The probability of infection parameters are based on the Verizon Data Breach
Investigations Report, which reports that 30% of users would open a phishing email. We
also include an even higher probability of infection because we believe that users would
be even more likely to open a malicious email from another trusted internal email
address. [6] Moreover, we ran our outbreaks in strict accordance with the timestamps
scraped from the original emails. As our dataset included 32K emails, we follow the
timestamps to run our outbreaks. Our phishing simulations thus exactly replicated the
email transmission sequence of the 2016 DNC.

3.1.2 Metrics

We use the three metrics of outbreak detection discussed in class: probability of
detecting an outbreak, population affected, and time to detection. We consider an
outbreak to be detected and consequently stop a simulation when a single detector
node has been infected. Otherwise, the outbreak continues until the 32K emails have
been processed. Thus, in calculating the population affected, we take the list of
currently infected nodes if we do detect an outbreak and otherwise sum all the infected
nodes if we do not detect an outbreak. In calculating time to detection, we use
simulation steps, which corresponds to how many emails have been sent since the first
email in the dataset. When an outbreak has been detected, time to detection represents
how many emails have been sent between the first email and infection of the detector.
Otherwise, we use 32K to represent that all the emails have been transmitted without
detection.

3.1.3 Live Edge Implementation

To implement our outbreaks, we invoke the principle of deferred decisions as outlined in
Lecture 12 - Influence Maximization. For the hyper-parameters of initially infected nodes
and probabilities of infection, we save 200,000 deterministic graphs with only live edges
that fire successfully. In all the results shown below, we thus average our influence set
sizes over this set or subsets of these saved graphs. This is important because we
contrast our algorithms over the same set of outbreaks to directly compare their
outbreak detection performance and runtimes.

3.2 Cost-Effective Lazy Forward Evaluation (CELF)

We implement the CELF algorithm discussed in Section 2. Our detectors have uniform
cost, and we allocate a budget of 40-50 detectors for our simulations. For our three
metrics, we seek to maximize the likelihood of detecting an outbreak, as well as
minimize the population affected and time to detection. For the latter two metrics,
previously framed as maximization objectives in Lecture 12, we reframe them as
minimization functions by simply taking the most negative marginal gain. Submodularity
is still preserved in these metrics because the marginals become less negative and
converge to zero in the minimization framework. Thus, the results for population
affected and time to detection display decreasing functions that are concave up.

3.3 Social Score

We implemented the Social Score algorithm defined by Rowe et al. [3]. We computed
response time (¢) for emails sent by a node using the difference in request and
response email timestamps. We consider an email from a destination node to be a
response email when a source node sends mail to the destination, and the subsequent
email from destination node to source node is sent within 24hrs. Only emails with
responses are considered in computing average response time. We compute a feature
vector for each node that includes attributes like degree centrality, betweenness

centrality, closeness centrality, authority and hub index, raw clique score (R = Y 2" 1)

where »n, is number nodes in " clique to which node belongs and weighted clique
(W =t=R,) where tis an average email response time for the node. Social Score for
each node is computed as a normalized weighted combination of all feature metrics

=] J
Wy Cy =w, -100- [Sva _nj;’; 3 for x™ feature of i" node

Z WX'CX
S — allx
Y we

all x

Increasing weights of structural attributes favors nodes with higher network centrality.
Increasing weights of behavioral attributes favors nodes based on their communication
strength. Our experiments suggest higher weights for behavior attributes works best in
identifying detector nodes. We used weight 0.9 for the weighted clique metric that
captures dynamic behavior, and weights 0.8 and 0.7 respectively for raw cliques and
number of cliques metrics. We used weight 0.5 for betweenness centrality and
closeness centrality metrics. This combination of weights selected nodes that are most
“socially important” based on dynamic behavior and network centrality in DNC email
network.

3.4 Modified Social Score

The dynamic behavior of a node is determined by its weighted clique metric. This metric
relies on determining average response time for emails. The method proposed by Rowe
et al. isn’t robust. A delay in response due to time zone differences between nodes or
different working hours can skew average response time computation. We defined a
new measure to determine the importance of node in an email network. We consider a
node to be important if a large fraction of emails sent by a node are responded to with
high priority by the receivers. We consider a mail to be handled with high priority if a
destination node, after receiving an email from a source node, responds to the node
within next N emails. We used N=5, i.e node responds within next five emails. We
compute the fraction of such high priority responses. A higher fraction indicates higher
social rank. We used a modified weighted clique metric (W' = f* R) where f is fraction
of emails handled with priority. We only consider pairs of nodes that have exchanged a
significant volume of emails (>200) for computing priority fractions. The top 50 nodes
picked by modified social score algorithm were identical to the nodes picked by the
Rowe et al. algorithm, but the order of a few nodes differed. This indicates that our
modified social score algorithm performs just as well on this email network while our
modified algorithm could provide a more robust method for determining the social
hierarchy of nodes spread across different time zone or different working hours.

3.5 CELF with Social Score Speed-up

For our speed-up algorithm, we simply run CELF over a subset of nodes outputted from
the modified social score algorithm described above. To pick the first detector, we
compute the marginal gains from the top Vn of social score-ranked nodes. We then
greedily select the node with the largest marginal gain and store the rest of the nodes
and their respective marginals in a priority queue. In each subsequent step, we add one
more node from the social score-ranked nodes and add it to the priority queue. This
heap of Yn nodes constitutes candidate nodes from which we then run the CELF
algorithm to select a detector. Our speed-up algorithm thus ensures that each round of
selecting a detector at most requires running outbreaks for Vn nodes, a substantial
improvement upon the worst-case scenario of linear-time evaluations for CELF.

Our algorithm still exhibits characteristics of submodularity. We do see step-like
changes in performance only when we peek at the next node in the social score list and
add it to our priority queue of marginals. However, after immediately selecting a
previously unseen node, lazy forward evaluation of the top nodes ensures that we are
still greedily grabbing the largest marginal gain because the other marginals would only
be lower with the addition of the unseen node to whatever set of nodes those marginals
were previously computed over.

4 Results

4.1 Contrasting Social Score vs. CELF vs. Speed-up

Below are three pairs of graphs, which correspond to the three metrics of outbreak
detection probability, population affected, and time to detection, labeled on the y-axis of
the left plots. In each pair, the graph on the left shows the performance of the three
algorithms as we add detectors, while the graph on the right contrasts the runtimes of
the three algorithms. The hyper-parameters (probability of initial infection, probability of
infection, number of outbreaks) are listed in the plot title.

Outbreak detection success probability

064

=
o
~

=
o
=}

058

Figure 1: Maximizing Probability of Detecting and Outbreak

200K runs, P_infect = 0.5, P_initial_infect = 0.001

— CELF
Social Score only
Speed up

T T T T T T
0 10 20 30 40 50

of Detectors

Runtime (minutes)

175

-
0
=}

&

—
=3
(=3

A

s

N
W

200K runs, P_infect = 0.5, P_initial_infect = 0.001

e CELF S
Social Score only /_//,
Speed up
///
0 10 20 30 40 50

of Detectors

Figure 1 confirms the trade-offs in our implementation. Our speed-up contribution performs
worse than CELF, but better than a purely static social score implementation. The right plot
shows a drastic improvement in runtime for our speed-up algorithm. Additionally, our speed up
implementation is also mostly concave down, which attests to the submodularity of the greedy

selection method, in contrast to the step-like nature of social score.

Population Affected

215

25.0 1

25

200

175

150

125

10.0

Figure 2: Minimizing Population Infected

100K runs, P_infect = 0.3, P_initial_infect = 0.005

-~ CELF
—&— Social Score only
-~ Speed up
Initial Number of Infected Nodes

0 5 10 15 20 25 30 35 40
of Detectors

Runtime (minutes)

—
o
=3

100K runs, P_infect = 0.3, P_initial_infect = 0.005

e CELF
- Social Score only
- Speed up

0 L 10 15 20 25 30 35 40

of Detectors

For Figure 2, we add a yellow asymptote to denote the initial number of infected nodes and
convergence goal for our algorithms. For this metric, and across other hyper-parameters as
well, we see that speed up performs just as well as CELF. Indeed, for the first few detector

nodes, speed-up would select the exact same detectors. Again, the runtime comparisons
confirm the tremendous speed improvement of our algorithm.

Figure 3: Minimizing Time to Detection

o Time to Detection: 100K runs, P infect = 0.5, P initial infect = 0.001 Time to Detection: 100K runs, P_infect = 0.5, P_initial_infect = 0.001
2 - A W

175 | —— CELF _—

Social Score only e adl
150 Speed up

26000 \ s . X - >4

~N
~
o
=]
o

B—

[
~
w
\
\
|
\

—
=]
=]

25000 N =

~
v

Runtime (minutes)

8

24000 e

—— CELF o
23000 Social Score only 0 - — = —
Speed up R 0

/
N~
]

Number of e-mails sent before outbreak alert

0 10 20 30 40 50
of Detectors

’ = 22 of Dele((c?ros - -
Figure 3 reinforces the trade-offs we make with our speed-up algorithm. Time to detection is
measured in simulation steps, or number of emails transmitted in the exact same sequence as
the DNC email network, as explained in Section 3.1. We trade time to detection performance for
drastic increases in runtime again. We also see that the speed up algorithm is concave up for
the first few detectors and thus generally exhibits submodular characteristics for initial detectors.

4.2 Analyzing Social Score Node Structure

Figure 4 (below, left) shows the cumulative egonet set size vs. number of nodes
selected. It illustrates why statically selecting nodes ranked by social score can be
suboptimal due to overlapping influence sets. The graph shows distinct step-like
increases in cumulative egonet set size for social score, while the greedy algorithms are
smooth curves, maximizing reach with every additional node. Figure 5 (a) and (b)
(below, right) shows that the egonet size of the second detector nodes selected by
CELF is much larger when compared to the second node selected based on Social
Score. Figure 5 (c) and (d) show the egonets of nodes selected by CELF that have
lower social scores but significant influence.

Union of EgoNet Nodes

—— Nodes Selected by Social Score
—— Nodes Selected by CELF

1600 1 —— Nodes Selected by CELF with Speedup

1400

1200

1000

Cummulative Egonet Node Count

-]
8

600

00

15 0
Number of detector nodes

5a. Egonet of 2nd Node
selected by CELF
(Social rank 4)

e Y9 p

5c. Egonet of 12th Node
selected by CELF (Social
rank 84)

5b. Egonet of node with
2nd highest Social Sore

5d. Egonet of 14th Node
selected by CELF (Social
rank 563)

Figure 6 (a) and (b) (below) show the top 50 nodes picked by CELF and social score
respectively. We linearly split the nodes into 10 bins (layers) using social score. The
size of the node in the figure is proportional to the egonet size of the node. We detect
communities within the email network using Clauset-Newman-Moore greedy modularity
maximization algorithm. The nodes are colored based on their community. The social
score algorithm effectively identifies social hierarchy and detects influential nodes within
different communities at different levels within the organization. Figure 6 shows CELF is
effective in selecting nodes with lower social score (layer 9) that have higher influence.

Subgraph of Nodes picked by CELF

Social Hierarchy

’/1/}/'5’.05.‘f ; /s
“a
Kt

7%
I"’/,) {l " ip!f‘

W

e

N _\§

N
X

Detector Nodes Selected by CELF

” N
ALK

TART TSN
[
7z

Subgraph of Top 50 Social Score Nodes

Top 50 Nodes ranked by Social Score

4.3 Further Runtime Analyses for Speed-up Algorithm

Figure 7

Runtime Comparisons for Outbreak detection metric Runtime comparison for minimizing population affected Runtime Comparison for Time to Detection Metric
P_infect = 0.3, P_initial_infect = 0.005 P_infect = 0.3, P_initial_infect = 0.005 = P_infect = 0.3, P_initial_infect = 0.005

1 CELF 10K —— CELF 10K runs
Social Score only 100K : y — Social Score only 100K runs
2 Speed up 100K — 20 { = Speed up 100K runs

o
- gl

) et 3 3
Sw — £ g
£ f £ £
- £ :
e 81 /| v ¢
£ E g 204
5 [€ §
| =3

In Section 4.1, we showed the performance vs. speed trade-offs we observed in our
speed-up implementation. Figure 7 compares the different algorithms, with the three
plots corresponding to the three metrics, over the detectors on the x-axis and the
runtime on the y-axis. The legends label how many outbreaks we use to evaluate each
marginal gain for each algorithm. For the three metrics, we observe that the CELF
algorithm, with 10K outbreaks per marginal gain, runs in similar time to our speed-up
algorithm over 100K outbreaks, which is a 10x speed-up. Indeed, for the time to
detection metric, our speed-up algorithm with 100K outbreaks (red line in third plot) runs
quicker than CELF w/ 10K outbreaks (blue line), which is even more than a 10x
improvement. Comparing runtimes of 100k outbreaks v/s 5k outbreaks further
demonstrates that large number of outbreaks (to reduce variance in Monte Carlo
simulation) present the most beneficial scenarios to see runtime improvements from our
speed-up algorithm.

These analyses empirically verify the O(vVn) runtime bounds of speed-up in contrast to
the O(v*n) runtime bounds on CELF. Additionally, the order of magnitude runtime
improvement empirically observed above holds ramifications for variance reduction in
outbreaks simulations as well.

4.4 Investigation of Order of Detector Triggering

Histogram of Node IDs and Corresponding Order of
Trigger in Outbreak

Order Triggered

250 500 750 1000 1250 1500 1750

Node ID

We briefly investigated the possibility of predicting the order of detector triggering in our
outbreak simulation using linear and logistic regression. However, the order of triggering
had very limited discernable patterns across 1,000 outbreaks. For example, note in the
in the histogram above that although node 1624 tends to be triggered early (positions
1-30 in each outbreak) most other nodes are equally likely to be triggered first, last, or
somewhere in the middle. While the prediction of detector trigger order may be an
interesting area of future work, our project reinforces the power of the CELF algorithm in
remaining consistently effective despite the inherent stochasticity in these simulations,
which can pose a challenge for machine learning and pattern-recognition based models.

5 Conclusion and Future Work

CELF is a powerful tool for optimal detector placement in outbreaks, but researchers
and network scientists working on massive datasets could benefit from a faster
algorithm. We have shown that we can achieve reasonable quality across detection
probability, population infected, and time to detection with significant speedups in
runtime. Indeed, we show that we can essentially match CELF performance on
population infected in our empirical dataset while achieving a 10x runtime gain. These
runtime improvements are additionally important for variance reduction in future Monte
Carlo simulation work on outbreak modeling. Future work would focus on validating our
findings on other email networks with different architectures to demonstrate the
robustness of our results. From the perspective of a sysadmin, this speedier placement
can lead to a wider array of investigations and faster modelling, consequently helping
mitigate the impact of phishing attacks such as the DNC outbreak of 2016.

References

[1]1 D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. In KDD 2003.

[2] J. Leskovec et al. Cost-effective outbreak detection in networks. In KDD 2007.

[3] Ryan Rowe, German Creamer, Shlomo Hershkop, and Salvatore J Stolfo. 2007.
Automated social hierarchy detection through email network analysis. In Proceedings of
the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis

[4] Dnc emails network dataset. KONECT, April 2017.
[5] Epidemiological Modeling of News and Rumors on Twitter. Jin et al. SNAKDD 2013.

[6] Verizon Data Breach Investigations Report 2017.
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigati
ons-Report.pdf

